LCOV - code coverage report
Current view: top level - chart2/source/view/charttypes - Splines.cxx (source / functions) Hit Total Coverage
Test: commit 0e63ca4fde4e446f346e35849c756a30ca294aab Lines: 0 433 0.0 %
Date: 2014-04-11 Functions: 0 11 0.0 %
Legend: Lines: hit not hit

          Line data    Source code
       1             : /* -*- Mode: C++; tab-width: 4; indent-tabs-mode: nil; c-basic-offset: 4 -*- */
       2             : /*
       3             :  * This file is part of the LibreOffice project.
       4             :  *
       5             :  * This Source Code Form is subject to the terms of the Mozilla Public
       6             :  * License, v. 2.0. If a copy of the MPL was not distributed with this
       7             :  * file, You can obtain one at http://mozilla.org/MPL/2.0/.
       8             :  *
       9             :  * This file incorporates work covered by the following license notice:
      10             :  *
      11             :  *   Licensed to the Apache Software Foundation (ASF) under one or more
      12             :  *   contributor license agreements. See the NOTICE file distributed
      13             :  *   with this work for additional information regarding copyright
      14             :  *   ownership. The ASF licenses this file to you under the Apache
      15             :  *   License, Version 2.0 (the "License"); you may not use this file
      16             :  *   except in compliance with the License. You may obtain a copy of
      17             :  *   the License at http://www.apache.org/licenses/LICENSE-2.0 .
      18             :  */
      19             : 
      20             : #include "Splines.hxx"
      21             : #include <rtl/math.hxx>
      22             : 
      23             : #include <vector>
      24             : #include <algorithm>
      25             : #include <functional>
      26             : #include <boost/scoped_array.hpp>
      27             : 
      28             : #define MAX_BSPLINE_DEGREE 15
      29             : 
      30             : namespace chart
      31             : {
      32             : using namespace ::com::sun::star;
      33             : 
      34             : namespace
      35             : {
      36             : 
      37             : typedef ::std::pair< double, double >   tPointType;
      38             : typedef ::std::vector< tPointType >     tPointVecType;
      39             : typedef tPointVecType::size_type        lcl_tSizeType;
      40             : 
      41           0 : class lcl_SplineCalculation
      42             : {
      43             : public:
      44             :     /** @descr creates an object that calculates cublic splines on construction
      45             : 
      46             :         @param rSortedPoints  the points for which splines shall be calculated, they need to be sorted in x values
      47             :         @param fY1FirstDerivation the resulting spline should have the first
      48             :                derivation equal to this value at the x-value of the first point
      49             :                of rSortedPoints.  If fY1FirstDerivation is set to infinity, a natural
      50             :                spline is calculated.
      51             :         @param fYnFirstDerivation the resulting spline should have the first
      52             :                derivation equal to this value at the x-value of the last point
      53             :                of rSortedPoints
      54             :      */
      55             :     lcl_SplineCalculation( const tPointVecType & rSortedPoints,
      56             :                            double fY1FirstDerivation,
      57             :                            double fYnFirstDerivation );
      58             : 
      59             :     /** @descr creates an object that calculates cublic splines on construction
      60             :                for the special case of periodic cubic spline
      61             : 
      62             :         @param rSortedPoints  the points for which splines shall be calculated,
      63             :                they need to be sorted in x values. First and last y value must be equal
      64             :      */
      65             :     lcl_SplineCalculation( const tPointVecType & rSortedPoints);
      66             : 
      67             :     /** @descr this function corresponds to the function splint in [1].
      68             : 
      69             :         [1] Numerical Recipies in C, 2nd edition
      70             :             William H. Press, et al.,
      71             :             Section 3.3, page 116
      72             :     */
      73             :     double GetInterpolatedValue( double x );
      74             : 
      75             : private:
      76             :     /// a copy of the points given in the CTOR
      77             :     tPointVecType            m_aPoints;
      78             : 
      79             :     /// the result of the Calculate() method
      80             :     ::std::vector< double >         m_aSecDerivY;
      81             : 
      82             :     double m_fYp1;
      83             :     double m_fYpN;
      84             : 
      85             :     // these values are cached for performance reasons
      86             :     lcl_tSizeType m_nKLow;
      87             :     lcl_tSizeType m_nKHigh;
      88             :     double m_fLastInterpolatedValue;
      89             : 
      90             :     /** @descr this function corresponds to the function spline in [1].
      91             : 
      92             :         [1] Numerical Recipies in C, 2nd edition
      93             :             William H. Press, et al.,
      94             :             Section 3.3, page 115
      95             :     */
      96             :     void Calculate();
      97             : 
      98             :     /** @descr this function corresponds to the algorithm 4.76 in [2] and
      99             :         theorem 5.3.7 in [3]
     100             : 
     101             :         [2] Engeln-Müllges, Gisela: Numerik-Algorithmen: Verfahren, Beispiele, Anwendungen
     102             :             Springer, Berlin; Auflage: 9., überarb. und erw. A. (8. Dezember 2004)
     103             :             Section 4.10.2, page 175
     104             : 
     105             :         [3] Hanrath, Wilhelm: Mathematik III / Numerik, Vorlesungsskript zur
     106             :             Veranstaltung im WS 2007/2008
     107             :             Fachhochschule Aachen, 2009-09-19
     108             :             Numerik_01.pdf, downloaded 2011-04-19 via
     109             :             http://www.fh-aachen.de/index.php?id=11424&no_cache=1&file=5016&uid=44191
     110             :             Section 5.3, page 129
     111             :     */
     112             :     void CalculatePeriodic();
     113             : };
     114             : 
     115           0 : lcl_SplineCalculation::lcl_SplineCalculation(
     116             :     const tPointVecType & rSortedPoints,
     117             :     double fY1FirstDerivation,
     118             :     double fYnFirstDerivation )
     119             :         : m_aPoints( rSortedPoints ),
     120             :           m_fYp1( fY1FirstDerivation ),
     121             :           m_fYpN( fYnFirstDerivation ),
     122             :           m_nKLow( 0 ),
     123           0 :           m_nKHigh( rSortedPoints.size() - 1 ),
     124           0 :           m_fLastInterpolatedValue(0.0)
     125             : {
     126           0 :     ::rtl::math::setInf( &m_fLastInterpolatedValue, false );
     127           0 :     Calculate();
     128           0 : }
     129             : 
     130           0 : lcl_SplineCalculation::lcl_SplineCalculation(
     131             :     const tPointVecType & rSortedPoints)
     132             :         : m_aPoints( rSortedPoints ),
     133             :           m_fYp1( 0.0 ),  /*dummy*/
     134             :           m_fYpN( 0.0 ),  /*dummy*/
     135             :           m_nKLow( 0 ),
     136           0 :           m_nKHigh( rSortedPoints.size() - 1 ),
     137           0 :           m_fLastInterpolatedValue(0.0)
     138             : {
     139           0 :     ::rtl::math::setInf( &m_fLastInterpolatedValue, false );
     140           0 :     CalculatePeriodic();
     141           0 : }
     142             : 
     143           0 : void lcl_SplineCalculation::Calculate()
     144             : {
     145           0 :     if( m_aPoints.size() <= 1 )
     146           0 :         return;
     147             : 
     148             :     // n is the last valid index to m_aPoints
     149           0 :     const lcl_tSizeType n = m_aPoints.size() - 1;
     150           0 :     ::std::vector< double > u( n );
     151           0 :     m_aSecDerivY.resize( n + 1, 0.0 );
     152             : 
     153           0 :     if( ::rtl::math::isInf( m_fYp1 ) )
     154             :     {
     155             :         // natural spline
     156           0 :         m_aSecDerivY[ 0 ] = 0.0;
     157           0 :         u[ 0 ] = 0.0;
     158             :     }
     159             :     else
     160             :     {
     161           0 :         m_aSecDerivY[ 0 ] = -0.5;
     162           0 :         double xDiff = ( m_aPoints[ 1 ].first - m_aPoints[ 0 ].first );
     163           0 :         u[ 0 ] = ( 3.0 / xDiff ) *
     164           0 :             ((( m_aPoints[ 1 ].second - m_aPoints[ 0 ].second ) / xDiff ) - m_fYp1 );
     165             :     }
     166             : 
     167           0 :     for( lcl_tSizeType i = 1; i < n; ++i )
     168             :     {
     169             :         tPointType
     170           0 :             p_i = m_aPoints[ i ],
     171           0 :             p_im1 = m_aPoints[ i - 1 ],
     172           0 :             p_ip1 = m_aPoints[ i + 1 ];
     173             : 
     174           0 :         double sig = ( p_i.first - p_im1.first ) /
     175           0 :             ( p_ip1.first - p_im1.first );
     176           0 :         double p = sig * m_aSecDerivY[ i - 1 ] + 2.0;
     177             : 
     178           0 :         m_aSecDerivY[ i ] = ( sig - 1.0 ) / p;
     179           0 :         u[ i ] =
     180           0 :             ( ( p_ip1.second - p_i.second ) /
     181           0 :               ( p_ip1.first - p_i.first ) ) -
     182           0 :             ( ( p_i.second - p_im1.second ) /
     183           0 :               ( p_i.first - p_im1.first ) );
     184           0 :         u[ i ] =
     185           0 :             ( 6.0 * u[ i ] / ( p_ip1.first - p_im1.first )
     186           0 :               - sig * u[ i - 1 ] ) / p;
     187             :     }
     188             : 
     189             :     // initialize to values for natural splines (used for m_fYpN equal to
     190             :     // infinity)
     191           0 :     double qn = 0.0;
     192           0 :     double un = 0.0;
     193             : 
     194           0 :     if( ! ::rtl::math::isInf( m_fYpN ) )
     195             :     {
     196           0 :         qn = 0.5;
     197           0 :         double xDiff = ( m_aPoints[ n ].first - m_aPoints[ n - 1 ].first );
     198           0 :         un = ( 3.0 / xDiff ) *
     199           0 :             ( m_fYpN - ( m_aPoints[ n ].second - m_aPoints[ n - 1 ].second ) / xDiff );
     200             :     }
     201             : 
     202           0 :     m_aSecDerivY[ n ] = ( un - qn * u[ n - 1 ] ) * ( qn * m_aSecDerivY[ n - 1 ] + 1.0 );
     203             : 
     204             :     // note: the algorithm in [1] iterates from n-1 to 0, but as size_type
     205             :     // may be (usuall is) an unsigned type, we can not write k >= 0, as this
     206             :     // is always true.
     207           0 :     for( lcl_tSizeType k = n; k > 0; --k )
     208             :     {
     209           0 :         ( m_aSecDerivY[ k - 1 ] *= m_aSecDerivY[ k ] ) += u[ k - 1 ];
     210           0 :     }
     211             : }
     212             : 
     213           0 : void lcl_SplineCalculation::CalculatePeriodic()
     214             : {
     215           0 :     if( m_aPoints.size() <= 1 )
     216           0 :         return;
     217             : 
     218             :     // n is the last valid index to m_aPoints
     219           0 :     const lcl_tSizeType n = m_aPoints.size() - 1;
     220             : 
     221             :     // u is used for vector f in A*c=f in [3], vector a in  Ax=a in [2],
     222             :     // vector z in Rtranspose z = a and Dr=z in [2]
     223           0 :     ::std::vector< double > u( n + 1, 0.0 );
     224             : 
     225             :     // used for vector c in A*c=f and vector x in Ax=a in [2]
     226           0 :     m_aSecDerivY.resize( n + 1, 0.0 );
     227             : 
     228             :     // diagonal of matrix A, used index 1 to n
     229           0 :     ::std::vector< double > Adiag( n + 1, 0.0 );
     230             : 
     231             :     // secondary diagonal of matrix A with index 1 to n-1 and upper right element in A[n]
     232           0 :     ::std::vector< double > Aupper( n + 1, 0.0 );
     233             : 
     234             :     // diagonal of matrix D in A=(R transpose)*D*R in [2], used index 1 to n
     235           0 :     ::std::vector< double > Ddiag( n+1, 0.0 );
     236             : 
     237             :     // right column of matrix R, used index 1 to n-2
     238           0 :     ::std::vector< double > Rright( n-1, 0.0 );
     239             : 
     240             :     // secondary diagonal of matrix R, used index 1 to n-1
     241           0 :     ::std::vector< double > Rupper( n, 0.0 );
     242             : 
     243           0 :     if (n<4)
     244             :     {
     245           0 :         if (n==3)
     246             :         {   // special handling of three polynomials, that are four points
     247           0 :             double xDiff0 = m_aPoints[ 1 ].first - m_aPoints[ 0 ].first ;
     248           0 :             double xDiff1 = m_aPoints[ 2 ].first - m_aPoints[ 1 ].first ;
     249           0 :             double xDiff2 = m_aPoints[ 3 ].first - m_aPoints[ 2 ].first ;
     250           0 :             double xDiff2p1 = xDiff2 + xDiff1;
     251           0 :             double xDiff0p2 = xDiff0 + xDiff2;
     252           0 :             double xDiff1p0 = xDiff1 + xDiff0;
     253           0 :             double fFactor = 1.5 / (xDiff0*xDiff1 + xDiff1*xDiff2 + xDiff2*xDiff0);
     254           0 :             double yDiff0 = (m_aPoints[ 1 ].second - m_aPoints[ 0 ].second) / xDiff0;
     255           0 :             double yDiff1 = (m_aPoints[ 2 ].second - m_aPoints[ 1 ].second) / xDiff1;
     256           0 :             double yDiff2 = (m_aPoints[ 0 ].second - m_aPoints[ 2 ].second) / xDiff2;
     257           0 :             m_aSecDerivY[ 1 ] = fFactor * (yDiff1*xDiff2p1 - yDiff0*xDiff0p2);
     258           0 :             m_aSecDerivY[ 2 ] = fFactor * (yDiff2*xDiff0p2 - yDiff1*xDiff1p0);
     259           0 :             m_aSecDerivY[ 3 ] = fFactor * (yDiff0*xDiff1p0 - yDiff2*xDiff2p1);
     260           0 :             m_aSecDerivY[ 0 ] = m_aSecDerivY[ 3 ];
     261             :         }
     262           0 :         else if (n==2)
     263             :         {
     264             :         // special handling of two polynomials, that are three points
     265           0 :             double xDiff0 = m_aPoints[ 1 ].first - m_aPoints[ 0 ].first;
     266           0 :             double xDiff1 = m_aPoints[ 2 ].first - m_aPoints[ 1 ].first;
     267           0 :             double fHelp = 3.0 * (m_aPoints[ 0 ].second - m_aPoints[ 1 ].second) / (xDiff0*xDiff1);
     268           0 :             m_aSecDerivY[ 1 ] = fHelp ;
     269           0 :             m_aSecDerivY[ 2 ] = -fHelp ;
     270           0 :             m_aSecDerivY[ 0 ] = m_aSecDerivY[ 2 ] ;
     271             :         }
     272             :         else
     273             :         {
     274             :             // should be handled with natural spline, periodic not possible.
     275             :         }
     276             :     }
     277             :     else
     278             :     {
     279           0 :         double xDiff_i =1.0; // values are dummy;
     280           0 :         double xDiff_im1 =1.0;
     281           0 :         double yDiff_i = 1.0;
     282           0 :         double yDiff_im1 = 1.0;
     283             :         // fill matrix A and fill right side vector u
     284           0 :         for( lcl_tSizeType i=1; i<n; ++i )
     285             :         {
     286           0 :             xDiff_im1 = m_aPoints[ i ].first - m_aPoints[ i-1 ].first;
     287           0 :             xDiff_i = m_aPoints[ i+1 ].first - m_aPoints[ i ].first;
     288           0 :             yDiff_im1 = (m_aPoints[ i ].second - m_aPoints[ i-1 ].second) / xDiff_im1;
     289           0 :             yDiff_i = (m_aPoints[ i+1 ].second - m_aPoints[ i ].second) / xDiff_i;
     290           0 :             Adiag[ i ] = 2 * (xDiff_im1 + xDiff_i);
     291           0 :             Aupper[ i ] = xDiff_i;
     292           0 :             u [ i ] = 3 * (yDiff_i - yDiff_im1);
     293             :         }
     294           0 :         xDiff_im1 = m_aPoints[ n ].first - m_aPoints[ n-1 ].first;
     295           0 :         xDiff_i = m_aPoints[ 1 ].first - m_aPoints[ 0 ].first;
     296           0 :         yDiff_im1 = (m_aPoints[ n ].second - m_aPoints[ n-1 ].second) / xDiff_im1;
     297           0 :         yDiff_i = (m_aPoints[ 1 ].second - m_aPoints[ 0 ].second) / xDiff_i;
     298           0 :         Adiag[ n ] = 2 * (xDiff_im1 + xDiff_i);
     299           0 :         Aupper[ n ] = xDiff_i;
     300           0 :         u [ n ] = 3 * (yDiff_i - yDiff_im1);
     301             : 
     302             :         // decomposite A=(R transpose)*D*R
     303           0 :         Ddiag[1] = Adiag[1];
     304           0 :         Rupper[1] = Aupper[1] / Ddiag[1];
     305           0 :         Rright[1] = Aupper[n] / Ddiag[1];
     306           0 :         for( lcl_tSizeType i=2; i<=n-2; ++i )
     307             :         {
     308           0 :             Ddiag[i] = Adiag[i] - Aupper[ i-1 ] * Rupper[ i-1 ];
     309           0 :             Rupper[ i ] = Aupper[ i ] / Ddiag[ i ];
     310           0 :             Rright[ i ] = - Rright[ i-1 ] * Aupper[ i-1 ] / Ddiag[ i ];
     311             :         }
     312           0 :         Ddiag[ n-1 ] = Adiag[ n-1 ] - Aupper[ n-2 ] * Rupper[ n-2 ];
     313           0 :         Rupper[ n-1 ] = ( Aupper[ n-1 ] - Aupper[ n-2 ] * Rright[ n-2] ) / Ddiag[ n-1 ];
     314           0 :         double fSum = 0.0;
     315           0 :         for ( lcl_tSizeType i=1; i<=n-2; ++i )
     316             :         {
     317           0 :             fSum += Ddiag[ i ] * Rright[ i ] * Rright[ i ];
     318             :         }
     319           0 :         Ddiag[ n ] = Adiag[ n ] - fSum - Ddiag[ n-1 ] * Rupper[ n-1 ] * Rupper[ n-1 ]; // bug in [2]!
     320             : 
     321             :         // solve forward (R transpose)*z=u, overwrite u with z
     322           0 :         for ( lcl_tSizeType i=2; i<=n-1; ++i )
     323             :         {
     324           0 :             u[ i ] -= u[ i-1 ]* Rupper[ i-1 ];
     325             :         }
     326           0 :         fSum = 0.0;
     327           0 :         for ( lcl_tSizeType i=1; i<=n-2; ++i )
     328             :         {
     329           0 :             fSum += Rright[ i ] * u[ i ];
     330             :         }
     331           0 :         u[ n ] = u[ n ] - fSum - Rupper[ n - 1] * u[ n-1 ];
     332             : 
     333             :         // solve forward D*r=z, z is in u, overwrite u with r
     334           0 :         for ( lcl_tSizeType i=1; i<=n; ++i )
     335             :         {
     336           0 :             u[ i ] = u[i] / Ddiag[ i ];
     337             :         }
     338             : 
     339             :         // solve backward R*x= r, r is in u
     340           0 :         m_aSecDerivY[ n ] = u[ n ];
     341           0 :         m_aSecDerivY[ n-1 ] = u[ n-1 ] - Rupper[ n-1 ] * m_aSecDerivY[ n ];
     342           0 :         for ( lcl_tSizeType i=n-2; i>=1; --i)
     343             :         {
     344           0 :             m_aSecDerivY[ i ] = u[ i ] - Rupper[ i ] * m_aSecDerivY[ i+1 ] - Rright[ i ] * m_aSecDerivY[ n ];
     345             :         }
     346             :         // periodic
     347           0 :         m_aSecDerivY[ 0 ] = m_aSecDerivY[ n ];
     348             :     }
     349             : 
     350             :     // adapt m_aSecDerivY for usage in GetInterpolatedValue()
     351           0 :     for( lcl_tSizeType i = 0; i <= n ; ++i )
     352             :     {
     353           0 :         m_aSecDerivY[ i ] *= 2.0;
     354           0 :     }
     355             : 
     356             : }
     357             : 
     358           0 : double lcl_SplineCalculation::GetInterpolatedValue( double x )
     359             : {
     360             :     OSL_PRECOND( ( m_aPoints[ 0 ].first <= x ) &&
     361             :                 ( x <= m_aPoints[ m_aPoints.size() - 1 ].first ),
     362             :                 "Trying to extrapolate" );
     363             : 
     364           0 :     const lcl_tSizeType n = m_aPoints.size() - 1;
     365           0 :     if( x < m_fLastInterpolatedValue )
     366             :     {
     367           0 :         m_nKLow = 0;
     368           0 :         m_nKHigh = n;
     369             : 
     370             :         // calculate m_nKLow and m_nKHigh
     371             :         // first initialization is done in CTOR
     372           0 :         while( m_nKHigh - m_nKLow > 1 )
     373             :         {
     374           0 :             lcl_tSizeType k = ( m_nKHigh + m_nKLow ) / 2;
     375           0 :             if( m_aPoints[ k ].first > x )
     376           0 :                 m_nKHigh = k;
     377             :             else
     378           0 :                 m_nKLow = k;
     379             :         }
     380             :     }
     381             :     else
     382             :     {
     383           0 :         while( ( m_aPoints[ m_nKHigh ].first < x ) &&
     384           0 :                ( m_nKHigh <= n ) )
     385             :         {
     386           0 :             ++m_nKHigh;
     387           0 :             ++m_nKLow;
     388             :         }
     389             :         OSL_ENSURE( m_nKHigh <= n, "Out of Bounds" );
     390             :     }
     391           0 :     m_fLastInterpolatedValue = x;
     392             : 
     393           0 :     double h = m_aPoints[ m_nKHigh ].first - m_aPoints[ m_nKLow ].first;
     394             :     OSL_ENSURE( h != 0, "Bad input to GetInterpolatedValue()" );
     395             : 
     396           0 :     double a = ( m_aPoints[ m_nKHigh ].first - x ) / h;
     397           0 :     double b = ( x - m_aPoints[ m_nKLow ].first  ) / h;
     398             : 
     399           0 :     return ( a * m_aPoints[ m_nKLow ].second +
     400           0 :              b * m_aPoints[ m_nKHigh ].second +
     401           0 :              (( a*a*a - a ) * m_aSecDerivY[ m_nKLow ] +
     402           0 :               ( b*b*b - b ) * m_aSecDerivY[ m_nKHigh ] ) *
     403           0 :              ( h*h ) / 6.0 );
     404             : }
     405             : 
     406             : // helper methods for B-spline
     407             : 
     408             : // Create parameter t_0 to t_n using the centripetal method with a power of 0.5
     409           0 : bool createParameterT(const tPointVecType aUniquePoints, double* t)
     410             : {   // precondition: no adjacent identical points
     411             :     // postcondition: 0 = t_0 < t_1 < ... < t_n = 1
     412           0 :     bool bIsSuccessful = true;
     413           0 :     const lcl_tSizeType n = aUniquePoints.size() - 1;
     414           0 :     t[0]=0.0;
     415           0 :     double dx = 0.0;
     416           0 :     double dy = 0.0;
     417           0 :     double fDiffMax = 1.0; //dummy values
     418           0 :     double fDenominator = 0.0; // initialized for summing up
     419           0 :     for (lcl_tSizeType i=1; i<=n ; ++i)
     420             :     {   // 4th root(dx^2+dy^2)
     421           0 :         dx = aUniquePoints[i].first - aUniquePoints[i-1].first;
     422           0 :         dy = aUniquePoints[i].second - aUniquePoints[i-1].second;
     423             :         // scaling to avoid underflow or overflow
     424           0 :         fDiffMax = (fabs(dx)>fabs(dy)) ? fabs(dx) : fabs(dy);
     425           0 :         if (fDiffMax == 0.0)
     426             :         {
     427           0 :             bIsSuccessful = false;
     428           0 :             break;
     429             :         }
     430             :         else
     431             :         {
     432           0 :             dx /= fDiffMax;
     433           0 :             dy /= fDiffMax;
     434           0 :             fDenominator += sqrt(sqrt(dx * dx + dy * dy)) * sqrt(fDiffMax);
     435             :         }
     436             :     }
     437           0 :     if (fDenominator == 0.0)
     438             :     {
     439           0 :         bIsSuccessful = false;
     440             :     }
     441           0 :     if (bIsSuccessful)
     442             :     {
     443           0 :         for (lcl_tSizeType j=1; j<=n ; ++j)
     444             :         {
     445           0 :             double fNumerator = 0.0;
     446           0 :             for (lcl_tSizeType i=1; i<=j ; ++i)
     447             :             {
     448           0 :                 dx = aUniquePoints[i].first - aUniquePoints[i-1].first;
     449           0 :                 dy = aUniquePoints[i].second - aUniquePoints[i-1].second;
     450           0 :                 fDiffMax = (fabs(dx)>fabs(dy)) ? fabs(dx) : fabs(dy);
     451             :                 // same as above, so should not be zero
     452           0 :                 dx /= fDiffMax;
     453           0 :                 dy /= fDiffMax;
     454           0 :                 fNumerator += sqrt(sqrt(dx * dx + dy * dy)) * sqrt(fDiffMax);
     455             :             }
     456           0 :             t[j] = fNumerator / fDenominator;
     457             : 
     458             :         }
     459             :         // postcondition check
     460           0 :         t[n] = 1.0;
     461           0 :         double fPrevious = 0.0;
     462           0 :         for (lcl_tSizeType i=1; i <= n && bIsSuccessful ; ++i)
     463             :         {
     464           0 :             if (fPrevious >= t[i])
     465             :             {
     466           0 :                 bIsSuccessful = false;
     467             :             }
     468             :             else
     469             :             {
     470           0 :                 fPrevious = t[i];
     471             :             }
     472             :         }
     473             :     }
     474           0 :     return bIsSuccessful;
     475             : }
     476             : 
     477           0 : void createKnotVector(const lcl_tSizeType n, const sal_uInt32 p, double* t, double* u)
     478             : {  // precondition: 0 = t_0 < t_1 < ... < t_n = 1
     479           0 :         for (lcl_tSizeType j = 0; j <= p; ++j)
     480             :         {
     481           0 :             u[j] = 0.0;
     482             :         }
     483           0 :         double fSum = 0.0;
     484           0 :         for (lcl_tSizeType j = 1; j <= n-p; ++j )
     485             :         {
     486           0 :             fSum = 0.0;
     487           0 :             for (lcl_tSizeType i = j; i <= j+p-1; ++i)
     488             :             {
     489           0 :                 fSum += t[i];
     490             :             }
     491             :             assert(p != 0);
     492           0 :             u[j+p] = fSum / p ;
     493             :         }
     494           0 :         for (lcl_tSizeType j = n+1; j <= n+1+p; ++j)
     495             :         {
     496           0 :             u[j] = 1.0;
     497             :         }
     498           0 : }
     499             : 
     500           0 : void applyNtoParameterT(const lcl_tSizeType i,const double tk,const sal_uInt32 p,const double* u, double* rowN)
     501             : {
     502             :     // get N_p(t_k) recursively, only N_(i-p) till N_(i) are relevant, all other N_# are zero
     503           0 :     double fRightFactor = 0.0;
     504           0 :     double fLeftFactor = 0.0;
     505             : 
     506             :     // initialize with indicator function degree 0
     507           0 :     rowN[p] = 1.0; // all others are zero
     508             : 
     509             :     // calculate up to degree p
     510           0 :     for (sal_uInt32 s = 1; s <= p; ++s)
     511             :     {
     512             :         // first element
     513           0 :         fRightFactor = ( u[i+1] - tk ) / ( u[i+1]- u[i-s+1] );
     514             :         // i-s "true index" - (i-p)"shift" = p-s
     515           0 :         rowN[p-s] = fRightFactor * rowN[p-s+1];
     516             : 
     517             :         // middle elements
     518           0 :         for (sal_uInt32 j = s-1; j>=1 ; --j)
     519             :         {
     520           0 :             fLeftFactor = ( tk - u[i-j] ) / ( u[i-j+s] - u[i-j] ) ;
     521           0 :             fRightFactor = ( u[i-j+s+1] - tk ) / ( u[i-j+s+1] - u[i-j+1] );
     522             :             // i-j "true index" - (i-p)"shift" = p-j
     523           0 :             rowN[p-j] = fLeftFactor * rowN[p-j] + fRightFactor *  rowN[p-j+1];
     524             :         }
     525             : 
     526             :         // last element
     527           0 :         fLeftFactor = ( tk - u[i] ) / ( u[i+s] - u[i] );
     528             :         // i "true index" - (i-p)"shift" = p
     529           0 :         rowN[p] = fLeftFactor * rowN[p];
     530             :     }
     531           0 : }
     532             : 
     533             : } //  anonymous namespace
     534             : 
     535             : // Calculates uniform parametric splines with subinterval length 1,
     536             : // according ODF1.2 part 1, chapter 'chart interpolation'.
     537           0 : void SplineCalculater::CalculateCubicSplines(
     538             :     const drawing::PolyPolygonShape3D& rInput
     539             :     , drawing::PolyPolygonShape3D& rResult
     540             :     , sal_uInt32 nGranularity )
     541             : {
     542             :     OSL_PRECOND( nGranularity > 0, "Granularity is invalid" );
     543             : 
     544           0 :     rResult.SequenceX.realloc(0);
     545           0 :     rResult.SequenceY.realloc(0);
     546           0 :     rResult.SequenceZ.realloc(0);
     547             : 
     548           0 :     sal_uInt32 nOuterCount = rInput.SequenceX.getLength();
     549           0 :     if( !nOuterCount )
     550           0 :         return;
     551             : 
     552           0 :     rResult.SequenceX.realloc(nOuterCount);
     553           0 :     rResult.SequenceY.realloc(nOuterCount);
     554           0 :     rResult.SequenceZ.realloc(nOuterCount);
     555             : 
     556           0 :     for( sal_uInt32 nOuter = 0; nOuter < nOuterCount; ++nOuter )
     557             :     {
     558           0 :         if( rInput.SequenceX[nOuter].getLength() <= 1 )
     559           0 :             continue; //we need at least two points
     560             : 
     561           0 :         sal_uInt32 nMaxIndexPoints = rInput.SequenceX[nOuter].getLength()-1; // is >=1
     562           0 :         const double* pOldX = rInput.SequenceX[nOuter].getConstArray();
     563           0 :         const double* pOldY = rInput.SequenceY[nOuter].getConstArray();
     564           0 :         const double* pOldZ = rInput.SequenceZ[nOuter].getConstArray();
     565             : 
     566           0 :         ::std::vector < double > aParameter(nMaxIndexPoints+1);
     567           0 :         aParameter[0]=0.0;
     568           0 :         for( sal_uInt32 nIndex=1; nIndex<=nMaxIndexPoints; nIndex++ )
     569             :         {
     570           0 :             aParameter[nIndex]=aParameter[nIndex-1]+1;
     571             :         }
     572             : 
     573             :         // Split the calculation to X, Y and Z coordinate
     574           0 :         tPointVecType aInputX;
     575           0 :         aInputX.resize(nMaxIndexPoints+1);
     576           0 :         tPointVecType aInputY;
     577           0 :         aInputY.resize(nMaxIndexPoints+1);
     578           0 :         tPointVecType aInputZ;
     579           0 :         aInputZ.resize(nMaxIndexPoints+1);
     580           0 :         for (sal_uInt32 nN=0;nN<=nMaxIndexPoints; nN++ )
     581             :         {
     582           0 :           aInputX[ nN ].first=aParameter[nN];
     583           0 :           aInputX[ nN ].second=pOldX[ nN ];
     584           0 :           aInputY[ nN ].first=aParameter[nN];
     585           0 :           aInputY[ nN ].second=pOldY[ nN ];
     586           0 :           aInputZ[ nN ].first=aParameter[nN];
     587           0 :           aInputZ[ nN ].second=pOldZ[ nN ];
     588             :         }
     589             : 
     590             :         // generate a spline for each coordinate. It holds the complete
     591             :         // information to calculate each point of the curve
     592             :         double fXDerivation;
     593             :         double fYDerivation;
     594             :         lcl_SplineCalculation* aSplineX;
     595             :         lcl_SplineCalculation* aSplineY;
     596             :         // lcl_SplineCalculation* aSplineZ; the z-coordinates of all points in
     597             :         // a data series are equal. No spline calculation needed, but copy
     598             :         // coordinate to output
     599             : 
     600           0 :         if( pOldX[ 0 ] == pOldX[nMaxIndexPoints] &&
     601           0 :             pOldY[ 0 ] == pOldY[nMaxIndexPoints] &&
     602           0 :             pOldZ[ 0 ] == pOldZ[nMaxIndexPoints] &&
     603             :             nMaxIndexPoints >=2 )
     604             :         {   // periodic spline
     605           0 :             aSplineX = new lcl_SplineCalculation( aInputX) ;
     606           0 :             aSplineY = new lcl_SplineCalculation( aInputY) ;
     607             :             // aSplineZ = new lcl_SplineCalculation( aInputZ) ;
     608             :         }
     609             :         else // generate the kind "natural spline"
     610             :         {
     611             :             double fInfty;
     612           0 :             ::rtl::math::setInf( &fInfty, false );
     613           0 :             fXDerivation = fInfty;
     614           0 :             fYDerivation = fInfty;
     615           0 :             aSplineX = new lcl_SplineCalculation( aInputX, fXDerivation, fXDerivation );
     616           0 :             aSplineY = new lcl_SplineCalculation( aInputY, fYDerivation, fYDerivation );
     617             :         }
     618             : 
     619             :         // fill result polygon with calculated values
     620           0 :         rResult.SequenceX[nOuter].realloc( nMaxIndexPoints*nGranularity + 1);
     621           0 :         rResult.SequenceY[nOuter].realloc( nMaxIndexPoints*nGranularity + 1);
     622           0 :         rResult.SequenceZ[nOuter].realloc( nMaxIndexPoints*nGranularity + 1);
     623             : 
     624           0 :         double* pNewX = rResult.SequenceX[nOuter].getArray();
     625           0 :         double* pNewY = rResult.SequenceY[nOuter].getArray();
     626           0 :         double* pNewZ = rResult.SequenceZ[nOuter].getArray();
     627             : 
     628           0 :         sal_uInt32 nNewPointIndex = 0; // Index in result points
     629             :         // needed for inner loop
     630             :         double    fInc;   // step for intermediate points
     631             :         sal_uInt32 nj;     // for loop
     632             :         double    fParam; // a intermediate parameter value
     633             : 
     634           0 :         for( sal_uInt32 ni = 0; ni < nMaxIndexPoints; ni++ )
     635             :         {
     636             :             // given point is surely a curve point
     637           0 :             pNewX[nNewPointIndex] = pOldX[ni];
     638           0 :             pNewY[nNewPointIndex] = pOldY[ni];
     639           0 :             pNewZ[nNewPointIndex] = pOldZ[ni];
     640           0 :             nNewPointIndex++;
     641             : 
     642             :             // calculate intermediate points
     643           0 :             fInc = ( aParameter[ ni+1 ] - aParameter[ni] ) / static_cast< double >( nGranularity );
     644           0 :             for(nj = 1; nj < nGranularity; nj++)
     645             :             {
     646           0 :                 fParam = aParameter[ni] + ( fInc * static_cast< double >( nj ) );
     647             : 
     648           0 :                 pNewX[nNewPointIndex]=aSplineX->GetInterpolatedValue( fParam );
     649           0 :                 pNewY[nNewPointIndex]=aSplineY->GetInterpolatedValue( fParam );
     650             :                 // pNewZ[nNewPointIndex]=aSplineZ->GetInterpolatedValue( fParam );
     651           0 :                 pNewZ[nNewPointIndex] = pOldZ[ni];
     652           0 :                 nNewPointIndex++;
     653             :             }
     654             :         }
     655             :         // add last point
     656           0 :         pNewX[nNewPointIndex] = pOldX[nMaxIndexPoints];
     657           0 :         pNewY[nNewPointIndex] = pOldY[nMaxIndexPoints];
     658           0 :         pNewZ[nNewPointIndex] = pOldZ[nMaxIndexPoints];
     659           0 :         delete aSplineX;
     660           0 :         delete aSplineY;
     661             :         // delete aSplineZ;
     662           0 :     }
     663             : }
     664             : 
     665             : // The implementation follows closely ODF1.2 spec, chapter chart:interpolation
     666             : // using the same names as in spec as far as possible, without prefix.
     667             : // More details can be found on
     668             : // Dr. C.-K. Shene: CS3621 Introduction to Computing with Geometry Notes
     669             : // Unit 9: Interpolation and Approximation/Curve Global Interpolation
     670             : // Department of Computer Science, Michigan Technological University
     671             : // http://www.cs.mtu.edu/~shene/COURSES/cs3621/NOTES/
     672             : // [last called 2011-05-20]
     673           0 : void SplineCalculater::CalculateBSplines(
     674             :             const ::com::sun::star::drawing::PolyPolygonShape3D& rInput
     675             :             , ::com::sun::star::drawing::PolyPolygonShape3D& rResult
     676             :             , sal_uInt32 nResolution
     677             :             , sal_uInt32 nDegree )
     678             : {
     679             :     // nResolution is ODF1.2 file format attribut chart:spline-resolution and
     680             :     // ODF1.2 spec variable k. Causion, k is used as index in the spec in addition.
     681             :     // nDegree is ODF1.2 file format attribut chart:spline-order and
     682             :     // ODF1.2 spec variable p
     683             :     OSL_ASSERT( nResolution > 1 );
     684             :     OSL_ASSERT( nDegree >= 1 );
     685             : 
     686             :     // limit the b-spline degree to prevent insanely large sets of points
     687           0 :     sal_uInt32 p = std::min<sal_uInt32>(nDegree, MAX_BSPLINE_DEGREE);
     688             : 
     689           0 :     rResult.SequenceX.realloc(0);
     690           0 :     rResult.SequenceY.realloc(0);
     691           0 :     rResult.SequenceZ.realloc(0);
     692             : 
     693           0 :     sal_Int32 nOuterCount = rInput.SequenceX.getLength();
     694           0 :     if( !nOuterCount )
     695           0 :         return; // no input
     696             : 
     697           0 :     rResult.SequenceX.realloc(nOuterCount);
     698           0 :     rResult.SequenceY.realloc(nOuterCount);
     699           0 :     rResult.SequenceZ.realloc(nOuterCount);
     700             : 
     701           0 :     for( sal_Int32 nOuter = 0; nOuter < nOuterCount; ++nOuter )
     702             :     {
     703           0 :         if( rInput.SequenceX[nOuter].getLength() <= 1 )
     704           0 :             continue; // need at least 2 points, next piece of the series
     705             : 
     706             :         // Copy input to vector of points and remove adjacent double points. The
     707             :         // Z-coordinate is equal for all points in a series and holds the depth
     708             :         // in 3D mode, simple copying is enough.
     709           0 :         lcl_tSizeType nMaxIndexPoints = rInput.SequenceX[nOuter].getLength()-1; // is >=1
     710           0 :         const double* pOldX = rInput.SequenceX[nOuter].getConstArray();
     711           0 :         const double* pOldY = rInput.SequenceY[nOuter].getConstArray();
     712           0 :         const double* pOldZ = rInput.SequenceZ[nOuter].getConstArray();
     713           0 :         double fZCoordinate = pOldZ[0];
     714           0 :         tPointVecType aPointsIn;
     715           0 :         aPointsIn.resize(nMaxIndexPoints+1);
     716           0 :         for (lcl_tSizeType i = 0; i <= nMaxIndexPoints; ++i )
     717             :         {
     718           0 :           aPointsIn[ i ].first = pOldX[i];
     719           0 :           aPointsIn[ i ].second = pOldY[i];
     720             :         }
     721             :         aPointsIn.erase( ::std::unique( aPointsIn.begin(), aPointsIn.end()),
     722           0 :                      aPointsIn.end() );
     723             : 
     724             :         // n is the last valid index to the reduced aPointsIn
     725             :         // There are n+1 valid data points.
     726           0 :         const lcl_tSizeType n = aPointsIn.size() - 1;
     727           0 :         if (n < 1 || p > n)
     728           0 :             continue; // need at least 2 points, degree p needs at least n+1 points
     729             :                       // next piece of series
     730             : 
     731           0 :         boost::scoped_array<double> t(new double [n+1]);
     732           0 :         if (!createParameterT(aPointsIn, t.get()))
     733             :         {
     734           0 :             continue; // next piece of series
     735             :         }
     736             : 
     737           0 :         lcl_tSizeType m = n + p + 1;
     738           0 :         boost::scoped_array<double> u(new double [m+1]);
     739           0 :         createKnotVector(n, p, t.get(), u.get());
     740             : 
     741             :         // The matrix N contains the B-spline basis functions applied to parameters.
     742             :         // In each row only p+1 adjacent elements are non-zero. The starting
     743             :         // column in a higher row is equal or greater than in the lower row.
     744             :         // To store this matrix the non-zero elements are shifted to column 0
     745             :         // and the amount of shifting is remembered in an array.
     746           0 :         boost::scoped_array<double*> aMatN(new double*[n+1]);
     747           0 :         for (lcl_tSizeType row = 0; row <=n; ++row)
     748             :         {
     749           0 :             aMatN[row] = new double[p+1];
     750           0 :             for (sal_uInt32 col = 0; col <= p; ++col)
     751           0 :             aMatN[row][col] = 0.0;
     752             :         }
     753           0 :         boost::scoped_array<lcl_tSizeType> aShift(new lcl_tSizeType[n+1]);
     754           0 :         aMatN[0][0] = 1.0; //all others are zero
     755           0 :         aShift[0] = 0;
     756           0 :         aMatN[n][0] = 1.0;
     757           0 :         aShift[n] = n;
     758           0 :         for (lcl_tSizeType k = 1; k<=n-1; ++k)
     759             :         { // all basis functions are applied to t_k,
     760             :             // results are elements in row k in matrix N
     761             : 
     762             :             // find the one interval with u_i <= t_k < u_(i+1)
     763             :             // remember u_0 = ... = u_p = 0.0 and u_(m-p) = ... u_m = 1.0 and 0<t_k<1
     764           0 :             lcl_tSizeType i = p;
     765           0 :             while (!(u[i] <= t[k] && t[k] < u[i+1]))
     766             :             {
     767           0 :                 ++i;
     768             :             }
     769             : 
     770             :             // index in reduced matrix aMatN = (index in full matrix N) - (i-p)
     771           0 :             aShift[k] = i - p;
     772             : 
     773           0 :             applyNtoParameterT(i, t[k], p, u.get(), aMatN[k]);
     774             :         } // next row k
     775             : 
     776             :         // Get matrix C of control points from the matrix equation aMatN * C = aPointsIn
     777             :         // aPointsIn is overwritten with C.
     778             :         // Gaussian elimination is possible without pivoting, see reference
     779           0 :         lcl_tSizeType r = 0; // true row index
     780           0 :         lcl_tSizeType c = 0; // true column index
     781           0 :         double fDivisor = 1.0; // used for diagonal element
     782           0 :         double fEliminate = 1.0; // used for the element, that will become zero
     783             :         double fHelp;
     784           0 :         tPointType aHelp;
     785             :         lcl_tSizeType nHelp; // used in triangle change
     786           0 :         bool bIsSuccessful = true;
     787           0 :         for (c = 0 ; c <= n && bIsSuccessful; ++c)
     788             :         {
     789             :             // search for first non-zero downwards
     790           0 :             r = c;
     791           0 :             while ( r < n && aMatN[r][c-aShift[r]] == 0 )
     792             :             {
     793           0 :                 ++r;
     794             :             }
     795           0 :             if (aMatN[r][c-aShift[r]] == 0.0)
     796             :             {
     797             :                 // Matrix N is singular, although this is mathematically impossible
     798           0 :                 bIsSuccessful = false;
     799             :             }
     800             :             else
     801             :             {
     802             :                 // exchange total row r with total row c if necessary
     803           0 :                 if (r != c)
     804             :                 {
     805           0 :                     for ( sal_uInt32 i = 0; i <= p ; ++i)
     806             :                     {
     807           0 :                         fHelp = aMatN[r][i];
     808           0 :                         aMatN[r][i] = aMatN[c][i];
     809           0 :                         aMatN[c][i] = fHelp;
     810             :                     }
     811           0 :                     aHelp = aPointsIn[r];
     812           0 :                     aPointsIn[r] = aPointsIn[c];
     813           0 :                     aPointsIn[c] = aHelp;
     814           0 :                     nHelp = aShift[r];
     815           0 :                     aShift[r] = aShift[c];
     816           0 :                     aShift[c] = nHelp;
     817             :                 }
     818             : 
     819             :                 // divide row c, so that element(c,c) becomes 1
     820           0 :                 fDivisor = aMatN[c][c-aShift[c]]; // not zero, see above
     821           0 :                 for (sal_uInt32 i = 0; i <= p; ++i)
     822             :                 {
     823           0 :                     aMatN[c][i] /= fDivisor;
     824             :                 }
     825           0 :                 aPointsIn[c].first /= fDivisor;
     826           0 :                 aPointsIn[c].second /= fDivisor;
     827             : 
     828             :                 // eliminate forward, examine row c+1 to n-1 (worst case)
     829             :                 // stop if first non-zero element in row has an higher column as c
     830             :                 // look at nShift for that, elements in nShift are equal or increasing
     831           0 :                 for ( r = c+1; r < n && aShift[r]<=c ; ++r)
     832             :                 {
     833           0 :                     fEliminate = aMatN[r][0];
     834           0 :                     if (fEliminate != 0.0) // else accidentally zero, nothing to do
     835             :                     {
     836           0 :                         for (sal_uInt32 i = 1; i <= p; ++i)
     837             :                         {
     838           0 :                             aMatN[r][i-1] = aMatN[r][i] - fEliminate * aMatN[c][i];
     839             :                         }
     840           0 :                         aMatN[r][p]=0;
     841           0 :                         aPointsIn[r].first -= fEliminate * aPointsIn[c].first;
     842           0 :                         aPointsIn[r].second -= fEliminate * aPointsIn[c].second;
     843           0 :                         ++aShift[r];
     844             :                     }
     845             :                 }
     846             :             }
     847             :         }// upper triangle form is reached
     848           0 :         if( bIsSuccessful)
     849             :         {
     850             :             // eliminate backwards, begin with last column
     851           0 :             for (lcl_tSizeType cc = n; cc >= 1; --cc )
     852             :             {
     853             :                 // In row cc the diagonal element(cc,cc) == 1 and all elements left from
     854             :                 // diagonal are zero and do not influence other rows.
     855             :                 // Full matrix N has semibandwidth < p, therefore element(r,c) is
     856             :                 // zero, if abs(r-cc)>=p.  abs(r-cc)=cc-r, because r<cc.
     857           0 :                 r = cc - 1;
     858           0 :                 while ( r !=0 && cc-r < p )
     859             :                 {
     860           0 :                     fEliminate = aMatN[r][ cc - aShift[r] ];
     861           0 :                     if ( fEliminate != 0.0) // else element is accidentically zero, no action needed
     862             :                     {
     863             :                         // row r -= fEliminate * row cc only relevant for right side
     864           0 :                         aMatN[r][cc - aShift[r]] = 0.0;
     865           0 :                         aPointsIn[r].first -= fEliminate * aPointsIn[cc].first;
     866           0 :                         aPointsIn[r].second -= fEliminate * aPointsIn[cc].second;
     867             :                     }
     868           0 :                     --r;
     869             :                 }
     870             :             }
     871             :         }   // aPointsIn contains the control points now.
     872           0 :         if (bIsSuccessful)
     873             :         {
     874             :             // calculate the intermediate points according given resolution
     875             :             // using deBoor-Cox algorithm
     876           0 :             lcl_tSizeType nNewSize = nResolution * n + 1;
     877           0 :             rResult.SequenceX[nOuter].realloc(nNewSize);
     878           0 :             rResult.SequenceY[nOuter].realloc(nNewSize);
     879           0 :             rResult.SequenceZ[nOuter].realloc(nNewSize);
     880           0 :             double* pNewX = rResult.SequenceX[nOuter].getArray();
     881           0 :             double* pNewY = rResult.SequenceY[nOuter].getArray();
     882           0 :             double* pNewZ = rResult.SequenceZ[nOuter].getArray();
     883           0 :             pNewX[0] = aPointsIn[0].first;
     884           0 :             pNewY[0] = aPointsIn[0].second;
     885           0 :             pNewZ[0] = fZCoordinate; // Precondition: z-coordinates of all points of a series are equal
     886           0 :             pNewX[nNewSize -1 ] = aPointsIn[n].first;
     887           0 :             pNewY[nNewSize -1 ] = aPointsIn[n].second;
     888           0 :             pNewZ[nNewSize -1 ] = fZCoordinate;
     889           0 :             boost::scoped_array<double> aP(new double[m+1]);
     890           0 :             lcl_tSizeType nLow = 0;
     891           0 :             for ( lcl_tSizeType nTIndex = 0; nTIndex <= n-1; ++nTIndex)
     892             :             {
     893           0 :                 for (sal_uInt32 nResolutionStep = 1;
     894           0 :                      nResolutionStep <= nResolution && !( nTIndex == n-1 && nResolutionStep == nResolution);
     895             :                      ++nResolutionStep)
     896             :                 {
     897           0 :                     lcl_tSizeType nNewIndex = nTIndex * nResolution + nResolutionStep;
     898           0 :                     double ux = t[nTIndex] + nResolutionStep * ( t[nTIndex+1] - t[nTIndex]) /nResolution;
     899             : 
     900             :                     // get index nLow, so that u[nLow]<= ux < u[nLow +1]
     901             :                     // continue from previous nLow
     902           0 :                     while ( u[nLow] <= ux)
     903             :                     {
     904           0 :                         ++nLow;
     905             :                     }
     906           0 :                     --nLow;
     907             : 
     908             :                     // x-coordinate
     909           0 :                     for (lcl_tSizeType i = nLow-p; i <= nLow; ++i)
     910             :                     {
     911           0 :                         aP[i] = aPointsIn[i].first;
     912             :                     }
     913           0 :                     for (sal_uInt32 lcl_Degree = 1; lcl_Degree <= p; ++lcl_Degree)
     914             :                     {
     915           0 :                         double fFactor = 0.0;
     916           0 :                         for (lcl_tSizeType i = nLow; i >= nLow + lcl_Degree - p; --i)
     917             :                         {
     918           0 :                             fFactor = ( ux - u[i] ) / ( u[i+p+1-lcl_Degree] - u[i]);
     919           0 :                             aP[i] = (1 - fFactor)* aP[i-1] + fFactor * aP[i];
     920             :                         }
     921             :                     }
     922           0 :                     pNewX[nNewIndex] = aP[nLow];
     923             : 
     924             :                     // y-coordinate
     925           0 :                     for (lcl_tSizeType i = nLow - p; i <= nLow; ++i)
     926             :                     {
     927           0 :                         aP[i] = aPointsIn[i].second;
     928             :                     }
     929           0 :                     for (sal_uInt32 lcl_Degree = 1; lcl_Degree <= p; ++lcl_Degree)
     930             :                     {
     931           0 :                         double fFactor = 0.0;
     932           0 :                         for (lcl_tSizeType i = nLow; i >= nLow +lcl_Degree - p; --i)
     933             :                         {
     934           0 :                             fFactor = ( ux - u[i] ) / ( u[i+p+1-lcl_Degree] - u[i]);
     935           0 :                             aP[i] = (1 - fFactor)* aP[i-1] + fFactor * aP[i];
     936             :                         }
     937             :                     }
     938           0 :                     pNewY[nNewIndex] = aP[nLow];
     939           0 :                     pNewZ[nNewIndex] = fZCoordinate;
     940             :                 }
     941           0 :             }
     942             :         }
     943           0 :         for (lcl_tSizeType row = 0; row <=n; ++row)
     944             :         {
     945           0 :             delete[] aMatN[row];
     946             :         }
     947           0 :     } // next piece of the series
     948             : }
     949             : 
     950             : } //namespace chart
     951             : 
     952             : /* vim:set shiftwidth=4 softtabstop=4 expandtab: */

Generated by: LCOV version 1.10