LCOV - code coverage report
Current view: top level - sccomp/source/solver - CoinMPSolver.cxx (source / functions) Hit Total Coverage
Test: commit 10e77ab3ff6f4314137acd6e2702a6e5c1ce1fae Lines: 5 165 3.0 %
Date: 2014-11-03 Functions: 6 9 66.7 %
Legend: Lines: hit not hit

          Line data    Source code
       1             : /* -*- Mode: C++; tab-width: 4; indent-tabs-mode: nil; c-basic-offset: 4 -*- */
       2             : /*
       3             :  * This file is part of the LibreOffice project.
       4             :  *
       5             :  * This Source Code Form is subject to the terms of the Mozilla Public
       6             :  * License, v. 2.0. If a copy of the MPL was not distributed with this
       7             :  * file, You can obtain one at http://mozilla.org/MPL/2.0/.
       8             :  *
       9             :  * This file incorporates work covered by the following license notice:
      10             :  *
      11             :  *   Licensed to the Apache Software Foundation (ASF) under one or more
      12             :  *   contributor license agreements. See the NOTICE file distributed
      13             :  *   with this work for additional information regarding copyright
      14             :  *   ownership. The ASF licenses this file to you under the Apache
      15             :  *   License, Version 2.0 (the "License"); you may not use this file
      16             :  *   except in compliance with the License. You may obtain a copy of
      17             :  *   the License at http://www.apache.org/licenses/LICENSE-2.0 .
      18             :  */
      19             : 
      20             : #include <CoinMP.h>
      21             : #include <CoinError.hpp>
      22             : 
      23             : #include "SolverComponent.hxx"
      24             : #include "solver.hrc"
      25             : 
      26             : #include <com/sun/star/frame/XModel.hpp>
      27             : #include <com/sun/star/table/CellAddress.hpp>
      28             : #include <com/sun/star/uno/XComponentContext.hpp>
      29             : 
      30             : #include <rtl/math.hxx>
      31             : #include <vector>
      32             : 
      33             : using namespace com::sun::star;
      34             : 
      35             : class CoinMPSolver : public SolverComponent
      36             : {
      37             : public:
      38           2 :     CoinMPSolver() {}
      39           4 :     virtual ~CoinMPSolver() {}
      40             : 
      41             : private:
      42             :     virtual void SAL_CALL solve() throw(css::uno::RuntimeException, std::exception) SAL_OVERRIDE;
      43           0 :     virtual OUString SAL_CALL getImplementationName()
      44             :         throw(css::uno::RuntimeException, std::exception) SAL_OVERRIDE
      45             :     {
      46           0 :         return OUString("com.sun.star.comp.Calc.CoinMPSolver");
      47             :     }
      48           0 :     virtual OUString SAL_CALL getComponentDescription()
      49             :         throw (uno::RuntimeException, std::exception) SAL_OVERRIDE
      50             :     {
      51           0 :         return SolverComponent::GetResourceString( RID_COINMP_SOLVER_COMPONENT );
      52             :     }
      53             : };
      54             : 
      55           0 : void SAL_CALL CoinMPSolver::solve() throw(uno::RuntimeException, std::exception)
      56             : {
      57           0 :     uno::Reference<frame::XModel> xModel( mxDoc, uno::UNO_QUERY );
      58           0 :     if ( !xModel.is() )
      59           0 :         throw uno::RuntimeException();
      60             : 
      61           0 :     maStatus = "";
      62           0 :     mbSuccess = false;
      63             : 
      64           0 :     xModel->lockControllers();
      65             : 
      66             :     // collect variables in vector (?)
      67             : 
      68           0 :     std::vector<table::CellAddress> aVariableCells;
      69           0 :     for (sal_Int32 nPos=0; nPos<maVariables.getLength(); nPos++)
      70           0 :         aVariableCells.push_back( maVariables[nPos] );
      71           0 :     size_t nVariables = aVariableCells.size();
      72           0 :     size_t nVar = 0;
      73             : 
      74             :     // collect all dependent cells
      75             : 
      76           0 :     ScSolverCellHashMap aCellsHash;
      77           0 :     aCellsHash[maObjective].reserve( nVariables + 1 );                  // objective function
      78             : 
      79           0 :     for (sal_Int32 nConstrPos = 0; nConstrPos < maConstraints.getLength(); ++nConstrPos)
      80             :     {
      81           0 :         table::CellAddress aCellAddr = maConstraints[nConstrPos].Left;
      82           0 :         aCellsHash[aCellAddr].reserve( nVariables + 1 );                // constraints: left hand side
      83             : 
      84           0 :         if ( maConstraints[nConstrPos].Right >>= aCellAddr )
      85           0 :             aCellsHash[aCellAddr].reserve( nVariables + 1 );            // constraints: right hand side
      86             :     }
      87             : 
      88             :     // set all variables to zero
      89             :     //! store old values?
      90             :     //! use old values as initial values?
      91           0 :     std::vector<table::CellAddress>::const_iterator aVarIter;
      92           0 :     for ( aVarIter = aVariableCells.begin(); aVarIter != aVariableCells.end(); ++aVarIter )
      93             :     {
      94           0 :         SolverComponent::SetValue( mxDoc, *aVarIter, 0.0 );
      95             :     }
      96             : 
      97             :     // read initial values from all dependent cells
      98           0 :     ScSolverCellHashMap::iterator aCellsIter;
      99           0 :     for ( aCellsIter = aCellsHash.begin(); aCellsIter != aCellsHash.end(); ++aCellsIter )
     100             :     {
     101           0 :         double fValue = SolverComponent::GetValue( mxDoc, aCellsIter->first );
     102           0 :         aCellsIter->second.push_back( fValue );                         // store as first element, as-is
     103             :     }
     104             : 
     105             :     // loop through variables
     106           0 :     for ( aVarIter = aVariableCells.begin(); aVarIter != aVariableCells.end(); ++aVarIter )
     107             :     {
     108           0 :         SolverComponent::SetValue( mxDoc, *aVarIter, 1.0 );      // set to 1 to examine influence
     109             : 
     110             :         // read value change from all dependent cells
     111           0 :         for ( aCellsIter = aCellsHash.begin(); aCellsIter != aCellsHash.end(); ++aCellsIter )
     112             :         {
     113           0 :             double fChanged = SolverComponent::GetValue( mxDoc, aCellsIter->first );
     114           0 :             double fInitial = aCellsIter->second.front();
     115           0 :             aCellsIter->second.push_back( fChanged - fInitial );
     116             :         }
     117             : 
     118           0 :         SolverComponent::SetValue( mxDoc, *aVarIter, 2.0 );      // minimal test for linearity
     119             : 
     120           0 :         for ( aCellsIter = aCellsHash.begin(); aCellsIter != aCellsHash.end(); ++aCellsIter )
     121             :         {
     122           0 :             double fInitial = aCellsIter->second.front();
     123           0 :             double fCoeff   = aCellsIter->second.back();       // last appended: coefficient for this variable
     124           0 :             double fTwo     = SolverComponent::GetValue( mxDoc, aCellsIter->first );
     125             : 
     126           0 :             bool bLinear = rtl::math::approxEqual( fTwo, fInitial + 2.0 * fCoeff ) ||
     127           0 :                            rtl::math::approxEqual( fInitial, fTwo - 2.0 * fCoeff );
     128             :             // second comparison is needed in case fTwo is zero
     129           0 :             if ( !bLinear )
     130           0 :                 maStatus = SolverComponent::GetResourceString( RID_ERROR_NONLINEAR );
     131             :         }
     132             : 
     133           0 :         SolverComponent::SetValue( mxDoc, *aVarIter, 0.0 );      // set back to zero for examining next variable
     134             :     }
     135             : 
     136           0 :     xModel->unlockControllers();
     137             : 
     138           0 :     if ( !maStatus.isEmpty() )
     139           0 :         return;
     140             : 
     141             :     //
     142             :     // build parameter arrays for CoinMP
     143             :     //
     144             : 
     145             :     // set objective function
     146             : 
     147           0 :     const std::vector<double>& rObjCoeff = aCellsHash[maObjective];
     148           0 :     double* pObjectCoeffs = new double[nVariables];
     149           0 :     for (nVar=0; nVar<nVariables; nVar++)
     150           0 :         pObjectCoeffs[nVar] = rObjCoeff[nVar+1];
     151           0 :     double nObjectConst = rObjCoeff[0];             // constant term of objective
     152             : 
     153             :     // add rows
     154             : 
     155           0 :     size_t nRows = maConstraints.getLength();
     156           0 :     size_t nCompSize = nVariables * nRows;
     157           0 :     double* pCompMatrix = new double[nCompSize];    // first collect all coefficients, row-wise
     158           0 :     for (size_t i=0; i<nCompSize; i++)
     159           0 :         pCompMatrix[i] = 0.0;
     160             : 
     161           0 :     double* pRHS = new double[nRows];
     162           0 :     char* pRowType = new char[nRows];
     163           0 :     for (size_t i=0; i<nRows; i++)
     164             :     {
     165           0 :         pRHS[i] = 0.0;
     166           0 :         pRowType[i] = 'N';
     167             :     }
     168             : 
     169           0 :     for (sal_Int32 nConstrPos = 0; nConstrPos < maConstraints.getLength(); ++nConstrPos)
     170             :     {
     171             :         // integer constraints are set later
     172           0 :         sheet::SolverConstraintOperator eOp = maConstraints[nConstrPos].Operator;
     173           0 :         if ( eOp == sheet::SolverConstraintOperator_LESS_EQUAL ||
     174           0 :              eOp == sheet::SolverConstraintOperator_GREATER_EQUAL ||
     175             :              eOp == sheet::SolverConstraintOperator_EQUAL )
     176             :         {
     177           0 :             double fDirectValue = 0.0;
     178           0 :             bool bRightCell = false;
     179           0 :             table::CellAddress aRightAddr;
     180           0 :             const uno::Any& rRightAny = maConstraints[nConstrPos].Right;
     181           0 :             if ( rRightAny >>= aRightAddr )
     182           0 :                 bRightCell = true;                  // cell specified as right-hand side
     183             :             else
     184           0 :                 rRightAny >>= fDirectValue;         // constant value
     185             : 
     186           0 :             table::CellAddress aLeftAddr = maConstraints[nConstrPos].Left;
     187             : 
     188           0 :             const std::vector<double>& rLeftCoeff = aCellsHash[aLeftAddr];
     189           0 :             double* pValues = &pCompMatrix[nConstrPos * nVariables];
     190           0 :             for (nVar=0; nVar<nVariables; nVar++)
     191           0 :                 pValues[nVar] = rLeftCoeff[nVar+1];
     192             : 
     193             :             // if left hand cell has a constant term, put into rhs value
     194           0 :             double fRightValue = -rLeftCoeff[0];
     195             : 
     196           0 :             if ( bRightCell )
     197             :             {
     198           0 :                 const std::vector<double>& rRightCoeff = aCellsHash[aRightAddr];
     199             :                 // modify pValues with rhs coefficients
     200           0 :                 for (nVar=0; nVar<nVariables; nVar++)
     201           0 :                     pValues[nVar] -= rRightCoeff[nVar+1];
     202             : 
     203           0 :                 fRightValue += rRightCoeff[0];      // constant term
     204             :             }
     205             :             else
     206           0 :                 fRightValue += fDirectValue;
     207             : 
     208           0 :             switch ( eOp )
     209             :             {
     210           0 :                 case sheet::SolverConstraintOperator_LESS_EQUAL:    pRowType[nConstrPos] = 'L'; break;
     211           0 :                 case sheet::SolverConstraintOperator_GREATER_EQUAL: pRowType[nConstrPos] = 'G'; break;
     212           0 :                 case sheet::SolverConstraintOperator_EQUAL:         pRowType[nConstrPos] = 'E'; break;
     213             :                 default:
     214             :                     OSL_ENSURE( false, "unexpected enum type" );
     215             :             }
     216           0 :             pRHS[nConstrPos] = fRightValue;
     217             :         }
     218             :     }
     219             : 
     220             :     // Find non-zero coefficients, column-wise
     221             : 
     222           0 :     int* pMatrixBegin = new int[nVariables+1];
     223           0 :     int* pMatrixCount = new int[nVariables];
     224           0 :     double* pMatrix = new double[nCompSize];    // not always completely used
     225           0 :     int* pMatrixIndex = new int[nCompSize];
     226           0 :     int nMatrixPos = 0;
     227           0 :     for (nVar=0; nVar<nVariables; nVar++)
     228             :     {
     229           0 :         int nBegin = nMatrixPos;
     230           0 :         for (size_t nRow=0; nRow<nRows; nRow++)
     231             :         {
     232           0 :             double fCoeff = pCompMatrix[ nRow * nVariables + nVar ];    // row-wise
     233           0 :             if ( fCoeff != 0.0 )
     234             :             {
     235           0 :                 pMatrix[nMatrixPos] = fCoeff;
     236           0 :                 pMatrixIndex[nMatrixPos] = nRow;
     237           0 :                 ++nMatrixPos;
     238             :             }
     239             :         }
     240           0 :         pMatrixBegin[nVar] = nBegin;
     241           0 :         pMatrixCount[nVar] = nMatrixPos - nBegin;
     242             :     }
     243           0 :     pMatrixBegin[nVariables] = nMatrixPos;
     244           0 :     delete[] pCompMatrix;
     245           0 :     pCompMatrix = NULL;
     246             : 
     247             :     // apply settings to all variables
     248             : 
     249           0 :     double* pLowerBounds = new double[nVariables];
     250           0 :     double* pUpperBounds = new double[nVariables];
     251           0 :     for (nVar=0; nVar<nVariables; nVar++)
     252             :     {
     253           0 :         pLowerBounds[nVar] = mbNonNegative ? 0.0 : -DBL_MAX;
     254           0 :         pUpperBounds[nVar] = DBL_MAX;
     255             : 
     256             :         // bounds could possibly be further restricted from single-cell constraints
     257             :     }
     258             : 
     259           0 :     char* pColType = new char[nVariables];
     260           0 :     for (nVar=0; nVar<nVariables; nVar++)
     261           0 :         pColType[nVar] = mbInteger ? 'I' : 'C';
     262             : 
     263             :     // apply single-var integer constraints
     264             : 
     265           0 :     for (sal_Int32 nConstrPos = 0; nConstrPos < maConstraints.getLength(); ++nConstrPos)
     266             :     {
     267           0 :         sheet::SolverConstraintOperator eOp = maConstraints[nConstrPos].Operator;
     268           0 :         if ( eOp == sheet::SolverConstraintOperator_INTEGER ||
     269             :              eOp == sheet::SolverConstraintOperator_BINARY )
     270             :         {
     271           0 :             table::CellAddress aLeftAddr = maConstraints[nConstrPos].Left;
     272             :             // find variable index for cell
     273           0 :             for (nVar=0; nVar<nVariables; nVar++)
     274           0 :                 if ( AddressEqual( aVariableCells[nVar], aLeftAddr ) )
     275             :                 {
     276           0 :                     if ( eOp == sheet::SolverConstraintOperator_INTEGER )
     277           0 :                         pColType[nVar] = 'I';
     278             :                     else
     279             :                     {
     280           0 :                         pColType[nVar] = 'B';
     281           0 :                         pLowerBounds[nVar] = 0.0;
     282           0 :                         pUpperBounds[nVar] = 1.0;
     283             :                     }
     284             :                 }
     285             :         }
     286             :     }
     287             : 
     288           0 :     int nObjectSense = mbMaximize ? SOLV_OBJSENS_MAX : SOLV_OBJSENS_MIN;
     289             : 
     290           0 :     HPROB hProb = CoinCreateProblem("");
     291             :     int nResult = CoinLoadProblem( hProb, nVariables, nRows, nMatrixPos, 0,
     292             :                     nObjectSense, nObjectConst, pObjectCoeffs,
     293             :                     pLowerBounds, pUpperBounds, pRowType, pRHS, NULL,
     294             :                     pMatrixBegin, pMatrixCount, pMatrixIndex, pMatrix,
     295           0 :                     NULL, NULL, NULL );
     296           0 :     nResult = CoinLoadInteger( hProb, pColType );
     297             : 
     298           0 :     delete[] pColType;
     299           0 :     delete[] pMatrixIndex;
     300           0 :     delete[] pMatrix;
     301           0 :     delete[] pMatrixCount;
     302           0 :     delete[] pMatrixBegin;
     303           0 :     delete[] pUpperBounds;
     304           0 :     delete[] pLowerBounds;
     305           0 :     delete[] pRowType;
     306           0 :     delete[] pRHS;
     307           0 :     delete[] pObjectCoeffs;
     308             : 
     309           0 :     CoinSetRealOption( hProb, COIN_REAL_MAXSECONDS, mnTimeout );
     310           0 :     CoinSetRealOption( hProb, COIN_REAL_MIPMAXSEC, mnTimeout );
     311             : 
     312             :     // TODO: handle (or remove) settings: epsilon, B&B depth
     313             : 
     314             :     // solve model
     315             : 
     316           0 :     nResult = CoinCheckProblem( hProb );
     317             : 
     318             :     try
     319             :     {
     320           0 :         nResult = CoinOptimizeProblem( hProb, 0 );
     321             :     }
     322           0 :     catch (const CoinError& e)
     323             :     {
     324           0 :         throw std::runtime_error(e.message());
     325             :     }
     326             : 
     327           0 :     mbSuccess = ( nResult == SOLV_CALL_SUCCESS );
     328           0 :     if ( mbSuccess )
     329             :     {
     330             :         // get solution
     331             : 
     332           0 :         maSolution.realloc( nVariables );
     333           0 :         CoinGetSolutionValues( hProb, maSolution.getArray(), NULL, NULL, NULL );
     334           0 :         mfResultValue = CoinGetObjectValue( hProb );
     335             :     }
     336             :     else
     337             :     {
     338           0 :         int nSolutionStatus = CoinGetSolutionStatus( hProb );
     339           0 :         if ( nSolutionStatus == 1 )
     340           0 :             maStatus = SolverComponent::GetResourceString( RID_ERROR_INFEASIBLE );
     341           0 :         else if ( nSolutionStatus == 2 )
     342           0 :             maStatus = SolverComponent::GetResourceString( RID_ERROR_UNBOUNDED );
     343             :         // TODO: detect timeout condition and report as RID_ERROR_TIMEOUT
     344             :         // (currently reported as infeasible)
     345             :     }
     346             : 
     347           0 :     CoinUnloadProblem( hProb );
     348             : }
     349             : 
     350             : extern "C" SAL_DLLPUBLIC_EXPORT css::uno::XInterface * SAL_CALL
     351           2 : com_sun_star_comp_Calc_CoinMPSolver_get_implementation(
     352             :     css::uno::XComponentContext *,
     353             :     css::uno::Sequence<css::uno::Any> const &)
     354             : {
     355           2 :     return cppu::acquire(new CoinMPSolver());
     356           6 : }
     357             : 
     358             : /* vim:set shiftwidth=4 softtabstop=4 expandtab: */

Generated by: LCOV version 1.10