vPFBu‖Statistical Functions Part Three

jEGQr‖

3n4aT‖LOGINV

LWoHA‖Returns the inverse of the lognormal distribution.

GSbiK‖Syntax

kK6DB‖LOGINV(Number [; Mean [; StDev]])

vDVWm‖Number (required) is the probability value for which the inverse standard logarithmic distribution is to be calculated.

aJATB‖Mean (optional) is the arithmetic mean of the standard logarithmic distribution (defaults to 0 if omitted).

PDJWU‖StDev (optional) is the standard deviation of the standard logarithmic distribution (defaults to 1 if omitted).

MiUAf‖Example

Uh6oi‖=LOGINV(0.05;0;1) returns 0.1930408167.

B5GAK‖

97kfB‖COVARIANCE.S

YuTmR‖Returns the covariance of the product of paired deviations, for a sample of the population.

GSbiK‖Syntax

R5CkE‖COVARIANCE.S(Data1; Data2)

G7eyH‖Data1 is the first data set.

GFKnA‖Data2 is the second data set.

MiUAf‖Example

sAG8k‖=COVARIANCE.S(A1:A30;B1:B30)

XAFa7‖Technical information

tip

2cFVC‖This function is available since LibreOfficeDev 4.2.


7AVhU‖This function is not part of the Open Document Format for Office Applications (OpenDocument) Version 1.3. Part 4: Recalculated Formula (OpenFormula) Format standard. The name space is

COM.MICROSOFT.COVARIANCE.S

KDBoE‖

9nXq7‖CONFIDENCE

4ABAb‖Returns the (1-alpha) confidence interval for a normal distribution.

GSbiK‖Syntax

8K2G5‖CONFIDENCE(Alpha; StDev; Size)

DqcAB‖Alpha is the level of the confidence interval.

CBEqd‖StDev is the standard deviation for the total population.

mHvfH‖Size is the size of the total population.

MiUAf‖Example

BJrpA‖=CONFIDENCE(0.05;1.5;100) gives 0.29.

bB7mP‖

CBSo7‖LARGE

Hr8AM‖Returns the Rank_c-th largest value in a data set.

note

RZfPH‖This function is part of the Open Document Format for Office Applications (OpenDocument) standard Version 1.2. (ISO/IEC 26300:2-2015)


GSbiK‖Syntax

nrZUw‖LARGE(Data; RankC)

Z5puA‖Data is the cell range of data.

TvB38‖RankC is the ranking of the value. If RankC is an array, the function becomes an array function.

note

rBWwb‖This function ignores any text or empty cell within a data range. If you suspect wrong results from this function, look for text in the data ranges. To highlight text contents in a data range, use the value highlighting feature.


MiUAf‖Example

9gMJx‖=LARGE(A1:C50;2) gives the second largest value in A1:C50.

fdcAk‖=LARGE(A1:C50;B1:B5) entered as an array function gives an array of the c-th largest value in A1:C50 with ranks defined in B1:B5.

Gkpem‖

Cm2X5‖COVARIANCE.P

EcoZQ‖Returns the covariance of the product of paired deviations, for the entire population.

GSbiK‖Syntax

mRijA‖COVARIANCE.P(Data1; Data2)

v94iP‖Data1 is the first data set.

36GZS‖Data2 is the second data set.

MiUAf‖Example

BUFDd‖=COVARIANCE.P(A1:A30;B1:B30)

XAFa7‖Technical information

tip

2cFVC‖This function is available since LibreOfficeDev 4.2.


7AVhU‖This function is not part of the Open Document Format for Office Applications (OpenDocument) Version 1.3. Part 4: Recalculated Formula (OpenFormula) Format standard. The name space is

COM.MICROSOFT.COVARIANCE.P

spVtz‖

FWMyW‖LOGNORMDIST

bwd9F‖Returns the values of a lognormal distribution.

GSbiK‖Syntax

r4obV‖LOGNORMDIST(Number [; Mean [; StDev [; Cumulative]]])

BiGC6‖Number is the probability value for which the standard logarithmic distribution is to be calculated.

sHpZv‖Mean (optional) is the mean value of the standard logarithmic distribution.

zUAQh‖StDev (optional) is the standard deviation of the standard logarithmic distribution.

PBogE‖Cumulative (optional) = 0 calculates the density function, Cumulative = 1 calculates the distribution.

MiUAf‖Example

TCmfp‖=LOGNORMDIST(0.1;0;1) returns 0.01.

gQ7EM‖

J2Zm9‖LOGNORM.INV

EHoeL‖Returns the inverse of the lognormal distribution.

Nj7bL‖This function is identical to LOGINV and was introduced for interoperability with other office suites.

GSbiK‖Syntax

xAjhR‖LOGNORM.INV(Number ; Mean ; StDev)

p2y5k‖Number (required) is the probability value for which the inverse standard logarithmic distribution is to be calculated.

sFACF‖Mean (required) is the arithmetic mean of the standard logarithmic distribution.

PZ4w5‖StDev (required) is the standard deviation of the standard logarithmic distribution.

MiUAf‖Example

UYg6S‖=LOGNORM.INV(0.05;0;1) returns 0.1930408167.

XAFa7‖Technical information

tip

iV7XA‖This function is available since LibreOfficeDev 4.3.


7AVhU‖This function is not part of the Open Document Format for Office Applications (OpenDocument) Version 1.3. Part 4: Recalculated Formula (OpenFormula) Format standard. The name space is

COM.MICROSOFT.LOGNORM.INV

rHwmt‖

NAnB8‖KURT

PFx4k‖Returns the kurtosis of a data set (at least 4 values required).

GSbiK‖Syntax

VpSiM‖KURT(Number 1 [; Number 2 [; … [; Number 255]]])

QKcwi‖Number 1, Number 2, … , Number 255 are numbers, references to cells or to cell ranges of numbers.

qFqj4‖The parameters should specify at least four values.

note

rBWwb‖This function ignores any text or empty cell within a data range. If you suspect wrong results from this function, look for text in the data ranges. To highlight text contents in a data range, use the value highlighting feature.


MiUAf‖Example

V4wcF‖=KURT(A1;A2;A3;A4;A5;A6)

XHGgs‖

SzX7B‖CRITBINOM

hUSNJ‖Returns the smallest value for which the cumulative binomial distribution is greater than or equal to a criterion value.

GSbiK‖Syntax

zr46x‖CRITBINOM(Trials; SP; Alpha)

Tyv6i‖Trials is the total number of trials.

Bk2fZ‖SP is the probability of success for one trial.

CXBen‖Alpha is the threshold probability to be reached or exceeded.

MiUAf‖Example

CB9AU‖=CRITBINOM(100;0.5;0.1) yields 44.

cLGdF‖

Whn8H‖COVAR

PyxZm‖Returns the covariance of the product of paired deviations.

GSbiK‖Syntax

e4Ztx‖COVAR(Data1; Data2)

DHWDD‖Data1 is the first data set.

bHVAY‖Data2 is the second data set.

MiUAf‖Example

gAEGY‖=COVAR(A1:A30;B1:B30)

GCLue‖

eHLzB‖CONFIDENCE.T

3abAb‖ Returns the (1-alpha) confidence interval for a Student's t distribution.

GSbiK‖Syntax

khHBF‖CONFIDENCE.T(Alpha; StDev; Size)

P5YFG‖Alpha is the level of the confidence interval.

bQwaZ‖StDev is the standard deviation for the total population.

urFEo‖Size is the size of the total population.

MiUAf‖Example

v37Jx‖=CONFIDENCE.T(0.05;1.5;100) gives 0.2976325427.

XAFa7‖Technical information

tip

2cFVC‖This function is available since LibreOfficeDev 4.2.


7AVhU‖This function is not part of the Open Document Format for Office Applications (OpenDocument) Version 1.3. Part 4: Recalculated Formula (OpenFormula) Format standard. The name space is

COM.MICROSOFT.CONFIDENCE.T

cDRV3‖

hhsFy‖LOGNORM.DIST

FyQNA‖Returns the values of a lognormal distribution.

GSbiK‖Syntax

ZHrxv‖LOGNORM.DIST(Number; Mean; StDev; Cumulative)

nLfGx‖Number (required) is the probability value for which the standard logarithmic distribution is to be calculated.

oRBDn‖Mean (required) is the mean value of the standard logarithmic distribution.

tX6iZ‖StDev (required) is the standard deviation of the standard logarithmic distribution.

ajzHR‖Cumulative (required) = 0 calculates the density function, Cumulative = 1 calculates the distribution.

MiUAf‖Example

omgye‖=LOGNORM.DIST(0.1;0;1;1) returns 0.0106510993.

XAFa7‖Technical information

tip

iV7XA‖This function is available since LibreOfficeDev 4.3.


7AVhU‖This function is not part of the Open Document Format for Office Applications (OpenDocument) Version 1.3. Part 4: Recalculated Formula (OpenFormula) Format standard. The name space is

COM.MICROSOFT.LOGNORM.DIST

2RZme‖

khAGE‖CORREL

LGDKB‖Returns the correlation coefficient between two data sets.

GSbiK‖Syntax

GVCK8‖CORREL(Data1; Data2)

GHV79‖Data1 is the first data set.

jQmib‖Data2 is the second data set.

MiUAf‖Example

tRoAB‖=CORREL(A1:A50;B1:B50) calculates the correlation coefficient as a measure of the linear correlation of the two data sets.

p8pZc‖

mzbdE‖SMALL

6ApAi‖Returns the Rank_c-th smallest value in a data set.

note

RZfPH‖This function is part of the Open Document Format for Office Applications (OpenDocument) standard Version 1.2. (ISO/IEC 26300:2-2015)


GSbiK‖Syntax

jXJsY‖SMALL(Data; RankC)

LxZAE‖Data is the cell range of data.

xBJHr‖RankC is the rank of the value. If RankC is an array, the function becomes an array function.

note

rBWwb‖This function ignores any text or empty cell within a data range. If you suspect wrong results from this function, look for text in the data ranges. To highlight text contents in a data range, use the value highlighting feature.


MiUAf‖Example

8BLf3‖=SMALL(A1:C50;2) gives the second smallest value in A1:C50.

AuKCZ‖=SMALL(A1:C50;B1:B5) entered as an array function gives an array of the c-th smallest value in A1:C50 with ranks defined in B1:B5.

dq7TB‖

vYCr7‖CONFIDENCE.NORM

SMXMR‖ Returns the (1-alpha) confidence interval for a normal distribution.

GSbiK‖Syntax

t87Ts‖CONFIDENCE.NORM(Alpha; StDev; Size)

2FBGV‖Alpha is the level of the confidence interval.

NxWTM‖StDev is the standard deviation for the total population.

FgvKt‖Size is the size of the total population.

MiUAf‖Example

n5BXo‖=CONFIDENCE.NORM(0.05;1.5;100) gives 0.2939945977.

XAFa7‖Technical information

tip

2cFVC‖This function is available since LibreOfficeDev 4.2.


7AVhU‖This function is not part of the Open Document Format for Office Applications (OpenDocument) Version 1.3. Part 4: Recalculated Formula (OpenFormula) Format standard. The name space is

COM.MICROSOFT.CONFIDENCE.NORM