LCOV - code coverage report
Current view: top level - include/rtl - math.hxx (source / functions) Hit Total Coverage
Test: commit e02a6cb2c3e2b23b203b422e4e0680877f232636 Lines: 2 123 1.6 %
Date: 2014-04-14 Functions: 1 34 2.9 %
Legend: Lines: hit not hit

          Line data    Source code
       1             : /* -*- Mode: C++; tab-width: 4; indent-tabs-mode: nil; c-basic-offset: 4 -*- */
       2             : /*
       3             :  * This file is part of the LibreOffice project.
       4             :  *
       5             :  * This Source Code Form is subject to the terms of the Mozilla Public
       6             :  * License, v. 2.0. If a copy of the MPL was not distributed with this
       7             :  * file, You can obtain one at http://mozilla.org/MPL/2.0/.
       8             :  *
       9             :  * This file incorporates work covered by the following license notice:
      10             :  *
      11             :  *   Licensed to the Apache Software Foundation (ASF) under one or more
      12             :  *   contributor license agreements. See the NOTICE file distributed
      13             :  *   with this work for additional information regarding copyright
      14             :  *   ownership. The ASF licenses this file to you under the Apache
      15             :  *   License, Version 2.0 (the "License"); you may not use this file
      16             :  *   except in compliance with the License. You may obtain a copy of
      17             :  *   the License at http://www.apache.org/licenses/LICENSE-2.0 .
      18             :  */
      19             : 
      20             : #ifndef INCLUDED_RTL_MATH_HXX
      21             : #define INCLUDED_RTL_MATH_HXX
      22             : 
      23             : #include <rtl/math.h>
      24             : #include <rtl/string.hxx>
      25             : #include <rtl/ustring.hxx>
      26             : #include <rtl/ustrbuf.hxx>
      27             : #include <sal/mathconf.h>
      28             : #include <sal/types.h>
      29             : 
      30             : #include <math.h>
      31             : 
      32             : namespace rtl {
      33             : 
      34             : namespace math {
      35             : 
      36             : /** A wrapper around rtl_math_doubleToString.
      37             :  */
      38           0 : inline rtl::OString doubleToString(double fValue, rtl_math_StringFormat eFormat,
      39             :                                    sal_Int32 nDecPlaces,
      40             :                                    sal_Char cDecSeparator,
      41             :                                    sal_Int32 const * pGroups,
      42             :                                    sal_Char cGroupSeparator,
      43             :                                    bool bEraseTrailingDecZeros = false)
      44             : {
      45           0 :     rtl::OString aResult;
      46             :     rtl_math_doubleToString(&aResult.pData, 0, 0, fValue, eFormat, nDecPlaces,
      47             :                             cDecSeparator, pGroups, cGroupSeparator,
      48           0 :                             bEraseTrailingDecZeros);
      49           0 :     return aResult;
      50             : }
      51             : 
      52             : /** A wrapper around rtl_math_doubleToString, with no grouping.
      53             :  */
      54           0 : inline rtl::OString doubleToString(double fValue, rtl_math_StringFormat eFormat,
      55             :                                    sal_Int32 nDecPlaces,
      56             :                                    sal_Char cDecSeparator,
      57             :                                    bool bEraseTrailingDecZeros = false)
      58             : {
      59           0 :     rtl::OString aResult;
      60             :     rtl_math_doubleToString(&aResult.pData, 0, 0, fValue, eFormat, nDecPlaces,
      61           0 :                             cDecSeparator, 0, 0, bEraseTrailingDecZeros);
      62           0 :     return aResult;
      63             : }
      64             : 
      65             : /** A wrapper around rtl_math_doubleToUString.
      66             :  */
      67           0 : inline rtl::OUString doubleToUString(double fValue,
      68             :                                      rtl_math_StringFormat eFormat,
      69             :                                      sal_Int32 nDecPlaces,
      70             :                                      sal_Unicode cDecSeparator,
      71             :                                      sal_Int32 const * pGroups,
      72             :                                      sal_Unicode cGroupSeparator,
      73             :                                      bool bEraseTrailingDecZeros = false)
      74             : {
      75           0 :     rtl::OUString aResult;
      76             :     rtl_math_doubleToUString(&aResult.pData, 0, 0, fValue, eFormat, nDecPlaces,
      77             :                              cDecSeparator, pGroups, cGroupSeparator,
      78           0 :                              bEraseTrailingDecZeros);
      79           0 :     return aResult;
      80             : }
      81             : 
      82             : /** A wrapper around rtl_math_doubleToUString, with no grouping.
      83             :  */
      84           0 : inline rtl::OUString doubleToUString(double fValue,
      85             :                                      rtl_math_StringFormat eFormat,
      86             :                                      sal_Int32 nDecPlaces,
      87             :                                      sal_Unicode cDecSeparator,
      88             :                                      bool bEraseTrailingDecZeros = false)
      89             : {
      90           0 :     rtl::OUString aResult;
      91             :     rtl_math_doubleToUString(&aResult.pData, 0, 0, fValue, eFormat, nDecPlaces,
      92           0 :                              cDecSeparator, 0, 0, bEraseTrailingDecZeros);
      93           0 :     return aResult;
      94             : }
      95             : 
      96             : /** A wrapper around rtl_math_doubleToUString that appends to an
      97             :     rtl::OUStringBuffer.
      98             :  */
      99           0 : inline void doubleToUStringBuffer( rtl::OUStringBuffer& rBuffer, double fValue,
     100             :                                    rtl_math_StringFormat eFormat,
     101             :                                    sal_Int32 nDecPlaces,
     102             :                                    sal_Unicode cDecSeparator,
     103             :                                    sal_Int32 const * pGroups,
     104             :                                    sal_Unicode cGroupSeparator,
     105             :                                    bool bEraseTrailingDecZeros = false)
     106             : {
     107             :     rtl_uString ** pData;
     108             :     sal_Int32 * pCapacity;
     109           0 :     rBuffer.accessInternals( &pData, &pCapacity );
     110             :     rtl_math_doubleToUString( pData, pCapacity, rBuffer.getLength(), fValue,
     111             :                               eFormat, nDecPlaces, cDecSeparator, pGroups,
     112           0 :                               cGroupSeparator, bEraseTrailingDecZeros);
     113           0 : }
     114             : 
     115             : /** A wrapper around rtl_math_doubleToUString that appends to an
     116             :     rtl::OUStringBuffer, with no grouping.
     117             :  */
     118           0 : inline void doubleToUStringBuffer( rtl::OUStringBuffer& rBuffer, double fValue,
     119             :                                    rtl_math_StringFormat eFormat,
     120             :                                    sal_Int32 nDecPlaces,
     121             :                                    sal_Unicode cDecSeparator,
     122             :                                    bool bEraseTrailingDecZeros = false)
     123             : {
     124             :     rtl_uString ** pData;
     125             :     sal_Int32 * pCapacity;
     126           0 :     rBuffer.accessInternals( &pData, &pCapacity );
     127             :     rtl_math_doubleToUString( pData, pCapacity, rBuffer.getLength(), fValue,
     128             :                               eFormat, nDecPlaces, cDecSeparator, 0, 0,
     129           0 :                               bEraseTrailingDecZeros);
     130           0 : }
     131             : 
     132             : /** A wrapper around rtl_math_stringToDouble.
     133             :  */
     134           0 : inline double stringToDouble(rtl::OString const & rString,
     135             :                              sal_Char cDecSeparator, sal_Char cGroupSeparator,
     136             :                              rtl_math_ConversionStatus * pStatus = 0,
     137             :                              sal_Int32 * pParsedEnd = 0)
     138             : {
     139           0 :     sal_Char const * pBegin = rString.getStr();
     140             :     sal_Char const * pEnd;
     141             :     double fResult = rtl_math_stringToDouble(pBegin,
     142           0 :                                              pBegin + rString.getLength(),
     143             :                                              cDecSeparator, cGroupSeparator,
     144           0 :                                              pStatus, &pEnd);
     145           0 :     if (pParsedEnd != 0)
     146           0 :         *pParsedEnd = (sal_Int32)(pEnd - pBegin);
     147           0 :     return fResult;
     148             : }
     149             : 
     150             : /** A wrapper around rtl_math_uStringToDouble.
     151             :  */
     152           0 : inline double stringToDouble(rtl::OUString const & rString,
     153             :                              sal_Unicode cDecSeparator,
     154             :                              sal_Unicode cGroupSeparator,
     155             :                              rtl_math_ConversionStatus * pStatus = 0,
     156             :                              sal_Int32 * pParsedEnd = 0)
     157             : {
     158           0 :     sal_Unicode const * pBegin = rString.getStr();
     159             :     sal_Unicode const * pEnd;
     160             :     double fResult = rtl_math_uStringToDouble(pBegin,
     161           0 :                                               pBegin + rString.getLength(),
     162             :                                               cDecSeparator, cGroupSeparator,
     163           0 :                                               pStatus, &pEnd);
     164           0 :     if (pParsedEnd != 0)
     165           0 :         *pParsedEnd = (sal_Int32)(pEnd - pBegin);
     166           0 :     return fResult;
     167             : }
     168             : 
     169             : /** A wrapper around rtl_math_round.
     170             :  */
     171           0 : inline double round(
     172             :     double fValue, int nDecPlaces = 0,
     173             :     rtl_math_RoundingMode eMode = rtl_math_RoundingMode_Corrected)
     174             : {
     175           0 :     return rtl_math_round(fValue, nDecPlaces, eMode);
     176             : }
     177             : 
     178             : /** A wrapper around rtl_math_pow10Exp.
     179             :  */
     180          44 : inline double pow10Exp(double fValue, int nExp)
     181             : {
     182          44 :     return rtl_math_pow10Exp(fValue, nExp);
     183             : }
     184             : 
     185             : /** A wrapper around rtl_math_approxValue.
     186             :  */
     187           0 : inline double approxValue(double fValue)
     188             : {
     189           0 :     return rtl_math_approxValue(fValue);
     190             : }
     191             : 
     192             : /** A wrapper around rtl_math_expm1.
     193             :  */
     194           0 : inline double expm1(double fValue)
     195             : {
     196           0 :     return rtl_math_expm1(fValue);
     197             : }
     198             : 
     199             : /** A wrapper around rtl_math_log1p.
     200             :  */
     201           0 : inline double log1p(double fValue)
     202             : {
     203           0 :     return rtl_math_log1p(fValue);
     204             : }
     205             : 
     206             : /** A wrapper around rtl_math_atanh.
     207             :  */
     208           0 : inline double atanh(double fValue)
     209             : {
     210           0 :     return rtl_math_atanh(fValue);
     211             : }
     212             : 
     213             : /** A wrapper around rtl_math_erf.
     214             :  */
     215           0 : inline double erf(double fValue)
     216             : {
     217           0 :     return rtl_math_erf(fValue);
     218             : }
     219             : 
     220             : /** A wrapper around rtl_math_erfc.
     221             :  */
     222           0 : inline double erfc(double fValue)
     223             : {
     224           0 :     return rtl_math_erfc(fValue);
     225             : }
     226             : 
     227             : /** A wrapper around rtl_math_asinh.
     228             :  */
     229           0 : inline double asinh(double fValue)
     230             : {
     231           0 :     return rtl_math_asinh(fValue);
     232             : }
     233             : 
     234             : /** A wrapper around rtl_math_acosh.
     235             :  */
     236           0 : inline double acosh(double fValue)
     237             : {
     238           0 :     return rtl_math_acosh(fValue);
     239             : }
     240             : 
     241             : 
     242             : /** Test equality of two values with an accuracy of the magnitude of the
     243             :     given values scaled by 2^-48 (4 bits roundoff stripped).
     244             : 
     245             :     @attention
     246             :     approxEqual( value!=0.0, 0.0 ) _never_ yields true.
     247             :  */
     248           0 : inline bool approxEqual(double a, double b)
     249             : {
     250           0 :     if ( a == b )
     251           0 :         return true;
     252           0 :     double x = a - b;
     253             :     return (x < 0.0 ? -x : x)
     254           0 :         < ((a < 0.0 ? -a : a) * (1.0 / (16777216.0 * 16777216.0)));
     255             : }
     256             : 
     257             : /** Test equality of two values with an accuracy defined by nPrec
     258             : 
     259             :     @attention
     260             :     approxEqual( value!=0.0, 0.0 ) _never_ yields true.
     261             :  */
     262           0 : inline bool approxEqual(double a, double b, sal_Int16 nPrec)
     263             : {
     264           0 :     if ( a == b )
     265           0 :         return true;
     266           0 :     double x = a - b;
     267             :     return (x < 0.0 ? -x : x)
     268           0 :         < ((a < 0.0 ? -a : a) * (1.0 / (pow(static_cast<double>(2.0), nPrec))));
     269             : }
     270             : /** Add two values.
     271             : 
     272             :     If signs differ and the absolute values are equal according to approxEqual()
     273             :     the method returns 0.0 instead of calculating the sum.
     274             : 
     275             :     If you wanted to sum up multiple values it would be convenient not to call
     276             :     approxAdd() for each value but instead remember the first value not equal to
     277             :     0.0, add all other values using normal + operator, and with the result and
     278             :     the remembered value call approxAdd().
     279             :  */
     280           0 : inline double approxAdd(double a, double b)
     281             : {
     282           0 :     if ( ((a < 0.0 && b > 0.0) || (b < 0.0 && a > 0.0))
     283           0 :          && approxEqual( a, -b ) )
     284           0 :         return 0.0;
     285           0 :     return a + b;
     286             : }
     287             : 
     288             : /** Substract two values (a-b).
     289             : 
     290             :     If signs are identical and the values are equal according to approxEqual()
     291             :     the method returns 0.0 instead of calculating the substraction.
     292             :  */
     293           0 : inline double approxSub(double a, double b)
     294             : {
     295           0 :     if ( ((a < 0.0 && b < 0.0) || (a > 0.0 && b > 0.0)) && approxEqual( a, b ) )
     296           0 :         return 0.0;
     297           0 :     return a - b;
     298             : }
     299             : 
     300             : /** floor() method taking approxValue() into account.
     301             : 
     302             :     Use for expected integer values being calculated by double functions.
     303             :  */
     304           0 : inline double approxFloor(double a)
     305             : {
     306           0 :     return floor( approxValue( a ));
     307             : }
     308             : 
     309             : /** ceil() method taking approxValue() into account.
     310             : 
     311             :     Use for expected integer values being calculated by double functions.
     312             :  */
     313           0 : inline double approxCeil(double a)
     314             : {
     315           0 :     return ceil( approxValue( a ));
     316             : }
     317             : 
     318             : /** Tests whether a value is neither INF nor NAN.
     319             :  */
     320           0 : inline bool isFinite(double d)
     321             : {
     322           0 :     return SAL_MATH_FINITE(d);
     323             : }
     324             : 
     325             : /** If a value represents +INF or -INF.
     326             : 
     327             :     The sign bit may be queried with isSignBitSet().
     328             : 
     329             :     If isFinite(d)==false and isInf(d)==false then NAN.
     330             :  */
     331           0 : inline bool isInf(double d)
     332             : {
     333             :     // exponent==0x7ff fraction==0
     334           0 :     return !SAL_MATH_FINITE(d) &&
     335           0 :         (reinterpret_cast< sal_math_Double * >(&d)->inf_parts.fraction_hi == 0)
     336           0 :         && (reinterpret_cast< sal_math_Double * >(&d)->inf_parts.fraction_lo
     337           0 :             == 0);
     338             : }
     339             : 
     340             : /** Test on any QNAN or SNAN.
     341             :  */
     342           0 : inline bool isNan(double d)
     343             : {
     344             :     // exponent==0x7ff fraction!=0
     345           0 :     return !SAL_MATH_FINITE(d) && (
     346           0 :         (reinterpret_cast< sal_math_Double * >(&d)->inf_parts.fraction_hi != 0)
     347           0 :         || (reinterpret_cast< sal_math_Double * >(&d)->inf_parts.fraction_lo
     348           0 :             != 0) );
     349             : }
     350             : 
     351             : /** If the sign bit is set.
     352             :  */
     353           0 : inline bool isSignBitSet(double d)
     354             : {
     355           0 :     return reinterpret_cast< sal_math_Double * >(&d)->inf_parts.sign != 0;
     356             : }
     357             : 
     358             : /** Set to +INF if bNegative==false or -INF if bNegative==true.
     359             :  */
     360           0 : inline void setInf(double * pd, bool bNegative)
     361             : {
     362             :     union
     363             :     {
     364             :         double sd;
     365             :         sal_math_Double md;
     366             :     };
     367           0 :     md.w32_parts.msw = bNegative ? 0xFFF00000 : 0x7FF00000;
     368           0 :     md.w32_parts.lsw = 0;
     369           0 :     *pd = sd;
     370           0 : }
     371             : 
     372             : /** Set a QNAN.
     373             :  */
     374           0 : inline void setNan(double * pd)
     375             : {
     376             :     union
     377             :     {
     378             :         double sd;
     379             :         sal_math_Double md;
     380             :     };
     381           0 :     md.w32_parts.msw = 0x7FFFFFFF;
     382           0 :     md.w32_parts.lsw = 0xFFFFFFFF;
     383           0 :     *pd = sd;
     384           0 : }
     385             : 
     386             : /** If a value is a valid argument for sin(), cos(), tan().
     387             : 
     388             :     IEEE 754 specifies that absolute values up to 2^64 (=1.844e19) for the
     389             :     radian must be supported by trigonometric functions.  Unfortunately, at
     390             :     least on x86 architectures, the FPU doesn't generate an error pattern for
     391             :     values >2^64 but produces erroneous results instead and sets only the
     392             :     "invalid operation" (IM) flag in the status word :-(  Thus the application
     393             :     has to handle it itself.
     394             :  */
     395           0 : inline bool isValidArcArg(double d)
     396             : {
     397           0 :     return fabs(d)
     398             :         <= (static_cast< double >(static_cast< unsigned long >(0x80000000))
     399             :             * static_cast< double >(static_cast< unsigned long >(0x80000000))
     400           0 :             * 2);
     401             : }
     402             : 
     403             : /** Safe sin(), returns NAN if not valid.
     404             :  */
     405           0 : inline double sin(double d)
     406             : {
     407           0 :     if ( isValidArcArg( d ) )
     408           0 :         return ::sin( d );
     409           0 :     setNan( &d );
     410           0 :     return d;
     411             : }
     412             : 
     413             : /** Safe cos(), returns NAN if not valid.
     414             :  */
     415           0 : inline double cos(double d)
     416             : {
     417           0 :     if ( isValidArcArg( d ) )
     418           0 :         return ::cos( d );
     419           0 :     setNan( &d );
     420           0 :     return d;
     421             : }
     422             : 
     423             : /** Safe tan(), returns NAN if not valid.
     424             :  */
     425           0 : inline double tan(double d)
     426             : {
     427           0 :     if ( isValidArcArg( d ) )
     428           0 :         return ::tan( d );
     429           0 :     setNan( &d );
     430           0 :     return d;
     431             : }
     432             : 
     433             : }
     434             : 
     435             : }
     436             : 
     437             : #endif // INCLUDED_RTL_MATH_HXX
     438             : 
     439             : /* vim:set shiftwidth=4 softtabstop=4 expandtab: */

Generated by: LCOV version 1.10