Line data Source code
1 : /* -*- Mode: C++; tab-width: 4; indent-tabs-mode: nil; c-basic-offset: 4 -*- */
2 : /*
3 : * This file is part of the LibreOffice project.
4 : *
5 : * This Source Code Form is subject to the terms of the Mozilla Public
6 : * License, v. 2.0. If a copy of the MPL was not distributed with this
7 : * file, You can obtain one at http://mozilla.org/MPL/2.0/.
8 : *
9 : * This file incorporates work covered by the following license notice:
10 : *
11 : * Licensed to the Apache Software Foundation (ASF) under one or more
12 : * contributor license agreements. See the NOTICE file distributed
13 : * with this work for additional information regarding copyright
14 : * ownership. The ASF licenses this file to you under the Apache
15 : * License, Version 2.0 (the "License"); you may not use this file
16 : * except in compliance with the License. You may obtain a copy of
17 : * the License at http://www.apache.org/licenses/LICENSE-2.0 .
18 : */
19 :
20 : #ifndef INCLUDED_TOOLS_VECTOR2D_HXX
21 : #define INCLUDED_TOOLS_VECTOR2D_HXX
22 :
23 : #include <math.h>
24 : #include <tools/gen.hxx>
25 :
26 : class Vector2D
27 : {
28 : private:
29 : double mfX;
30 : double mfY;
31 :
32 : public:
33 : inline Vector2D() : mfX( 0.0 ), mfY( 0.0 ) {}
34 : inline Vector2D( double fX, double fY ) : mfX( fX ), mfY( fY ) {}
35 : inline Vector2D( const Vector2D& rVec ) : mfX( rVec.mfX ), mfY( rVec.mfY ) {}
36 0 : inline Vector2D( const Pair& rPair ) : mfX( rPair.A() ), mfY( rPair.B() ) {};
37 0 : inline ~Vector2D() {}
38 :
39 : inline const double& X() const { return mfX; }
40 : inline const double& Y() const { return mfY; }
41 : inline double& X() { return mfX; }
42 : inline double& Y() { return mfY; }
43 : inline const double& operator[] (int nPos) const { return (nPos ? mfY : mfX); }
44 : inline double& operator[] (int nPos) { return (nPos ? mfY : mfX); }
45 :
46 0 : inline double GetLength() const { return hypot( mfX, mfY ); }
47 : inline Vector2D& Normalize();
48 :
49 : inline void Min(const Vector2D& rVec) { if(rVec.mfX < mfX) mfX = rVec.mfX; if(rVec.mfY < mfY) mfY = rVec.mfY; }
50 : inline void Max(const Vector2D& rVec) { if(rVec.mfX > mfX) mfX = rVec.mfX; if(rVec.mfY > mfY) mfY = rVec.mfY; }
51 : inline void Abs() { if(mfX < 0.0) mfX = -mfX; if(mfY < 0.0) mfY = -mfY; }
52 :
53 : inline void CalcInBetween(Vector2D& rOld1, Vector2D& rOld2, double t)
54 : { mfX = ((rOld2.mfX - rOld1.mfX) + t) + rOld1.mfX; mfY = ((rOld2.mfY - rOld1.mfY) + t) + rOld1.mfY; }
55 : inline void CalcMiddle(Vector2D& rOld1, Vector2D& rOld2)
56 : { mfX = (rOld1.mfX + rOld2.mfX) / 2.0; mfY = (rOld1.mfY + rOld2.mfY) / 2.0; }
57 : inline void CalcMiddle(Vector2D& rOld1, Vector2D& rOld2, Vector2D& rOld3)
58 : { mfX = (rOld1.mfX + rOld2.mfX + rOld3.mfX) / 3.0; mfY = (rOld1.mfY + rOld2.mfY + rOld3.mfY) / 3.0; }
59 :
60 : inline Vector2D& operator+=( const Vector2D& rVec ) { mfX += rVec.mfX, mfY += rVec.mfY; return *this; }
61 : inline Vector2D& operator-=( const Vector2D& rVec ) { mfX -= rVec.mfX, mfY -= rVec.mfY; return *this; }
62 : inline Vector2D operator+(const Vector2D& rVec) const { Vector2D aSum(*this); aSum += rVec; return aSum; }
63 : inline Vector2D operator-(const Vector2D& rVec) const { Vector2D aSub(*this); aSub -= rVec; return aSub; }
64 : inline Vector2D operator-(void) const { return Vector2D(-mfX, -mfY); }
65 :
66 0 : inline double Scalar( const Vector2D& rVec ) const { return( mfX * rVec.mfX + mfY * rVec.mfY ); }
67 :
68 : inline Vector2D& operator/=( const Vector2D& rVec ) { mfX /= rVec.mfX, mfY /= rVec.mfY; return *this; }
69 : inline Vector2D& operator*=( const Vector2D& rVec ) { mfX *= rVec.mfX, mfY *= rVec.mfY; return *this; }
70 : inline Vector2D operator/(const Vector2D& rVec) const { Vector2D aDiv(*this); aDiv /= rVec; return aDiv; }
71 : inline Vector2D operator*(const Vector2D& rVec) const { Vector2D aMul(*this); aMul *= rVec; return aMul; }
72 :
73 : inline Vector2D& operator*=(double t) { mfX *= t; mfY *= t; return *this; }
74 : inline Vector2D operator*(double t) const { Vector2D aNew(*this); aNew *= t; return aNew; }
75 : inline Vector2D& operator/=(double t) { mfX /= t; mfY /= t; return *this; }
76 : inline Vector2D operator/(double t) const { Vector2D aNew(*this); aNew /= t; return aNew; }
77 :
78 : inline bool operator==( const Vector2D& rVec ) const { return( mfX == rVec.mfX && mfY == rVec.mfY ); }
79 : inline bool operator!=( const Vector2D& rVec ) const { return !( *this == rVec ); }
80 :
81 : inline Vector2D& operator=( const Vector2D& rVec ) { mfX = rVec.mfX, mfY = rVec.mfY; return *this; }
82 : inline Vector2D& operator=( const Pair& rPair ) { mfX = rPair.A(), mfY = rPair.B(); return *this; }
83 0 : inline Vector2D& operator-=( const Pair& rPair ) { mfX -= rPair.A(), mfY -= rPair.B(); return *this; }
84 : inline Vector2D& operator+=( const Pair& rPair ) { mfX += rPair.A(), mfY += rPair.B(); return *this; }
85 : inline Vector2D& operator*=( const Pair& rPair ) { mfX *= rPair.A(), mfY *= rPair.B(); return *this; }
86 : inline Vector2D& operator/=( const Pair& rPair ) { mfX /= rPair.A(), mfY /= rPair.B(); return *this; }
87 :
88 : inline bool operator==( const Pair& rPair ) const { return( mfX == rPair.A() && mfY == rPair.B() ); }
89 : inline bool operator!=( const Pair& rPair ) const { return !( *this == rPair ); }
90 :
91 0 : inline bool IsPositive( Vector2D& rVec ) const { return( ( mfX * rVec.mfY - mfY * rVec.mfX ) >= 0.0 ); }
92 0 : inline bool IsNegative( Vector2D& rVec ) const { return !IsPositive( rVec ); }
93 : };
94 :
95 0 : inline Vector2D& Vector2D::Normalize()
96 : {
97 0 : double fLen = Scalar( *this );
98 :
99 0 : if( ( fLen != 0.0 ) && ( fLen != 1.0 ) && ( ( fLen = sqrt( fLen ) ) != 0.0 ) )
100 0 : mfX /= fLen, mfY /= fLen;
101 :
102 0 : return *this;
103 : }
104 :
105 : #endif
106 :
107 : /* vim:set shiftwidth=4 softtabstop=4 expandtab: */
|