Line data Source code
1 : /* -*- Mode: C++; tab-width: 4; indent-tabs-mode: nil; c-basic-offset: 4 -*- */
2 : /*
3 : * This file is part of the LibreOffice project.
4 : *
5 : * This Source Code Form is subject to the terms of the Mozilla Public
6 : * License, v. 2.0. If a copy of the MPL was not distributed with this
7 : * file, You can obtain one at http://mozilla.org/MPL/2.0/.
8 : *
9 : * This file incorporates work covered by the following license notice:
10 : *
11 : * Licensed to the Apache Software Foundation (ASF) under one or more
12 : * contributor license agreements. See the NOTICE file distributed
13 : * with this work for additional information regarding copyright
14 : * ownership. The ASF licenses this file to you under the Apache
15 : * License, Version 2.0 (the "License"); you may not use this file
16 : * except in compliance with the License. You may obtain a copy of
17 : * the License at http://www.apache.org/licenses/LICENSE-2.0 .
18 : */
19 :
20 : #include <CoinMP.h>
21 :
22 : #include "SolverComponent.hxx"
23 : #include "solver.hrc"
24 :
25 : #include <com/sun/star/frame/XModel.hpp>
26 : #include <com/sun/star/table/CellAddress.hpp>
27 : #include <com/sun/star/uno/XComponentContext.hpp>
28 :
29 : #include <rtl/math.hxx>
30 : #include <vector>
31 :
32 : using namespace com::sun::star;
33 :
34 : class CoinMPSolver : public SolverComponent
35 : {
36 : public:
37 0 : CoinMPSolver() {}
38 0 : virtual ~CoinMPSolver() {}
39 :
40 : private:
41 : virtual void SAL_CALL solve() throw(css::uno::RuntimeException, std::exception) SAL_OVERRIDE;
42 0 : virtual OUString SAL_CALL getImplementationName()
43 : throw(css::uno::RuntimeException, std::exception) SAL_OVERRIDE
44 : {
45 0 : return OUString("com.sun.star.comp.Calc.CoinMPSolver");
46 : }
47 0 : virtual OUString SAL_CALL getComponentDescription()
48 : throw (uno::RuntimeException, std::exception) SAL_OVERRIDE
49 : {
50 0 : return SolverComponent::GetResourceString( RID_COINMP_SOLVER_COMPONENT );
51 : }
52 : };
53 :
54 0 : void SAL_CALL CoinMPSolver::solve() throw(uno::RuntimeException, std::exception)
55 : {
56 0 : uno::Reference<frame::XModel> xModel( mxDoc, uno::UNO_QUERY );
57 0 : if ( !xModel.is() )
58 0 : throw uno::RuntimeException();
59 :
60 0 : maStatus = "";
61 0 : mbSuccess = false;
62 :
63 0 : xModel->lockControllers();
64 :
65 : // collect variables in vector (?)
66 :
67 0 : std::vector<table::CellAddress> aVariableCells;
68 0 : for (sal_Int32 nPos=0; nPos<maVariables.getLength(); nPos++)
69 0 : aVariableCells.push_back( maVariables[nPos] );
70 0 : size_t nVariables = aVariableCells.size();
71 0 : size_t nVar = 0;
72 :
73 : // collect all dependent cells
74 :
75 0 : ScSolverCellHashMap aCellsHash;
76 0 : aCellsHash[maObjective].reserve( nVariables + 1 ); // objective function
77 :
78 0 : for (sal_Int32 nConstrPos = 0; nConstrPos < maConstraints.getLength(); ++nConstrPos)
79 : {
80 0 : table::CellAddress aCellAddr = maConstraints[nConstrPos].Left;
81 0 : aCellsHash[aCellAddr].reserve( nVariables + 1 ); // constraints: left hand side
82 :
83 0 : if ( maConstraints[nConstrPos].Right >>= aCellAddr )
84 0 : aCellsHash[aCellAddr].reserve( nVariables + 1 ); // constraints: right hand side
85 : }
86 :
87 : // set all variables to zero
88 : //! store old values?
89 : //! use old values as initial values?
90 0 : std::vector<table::CellAddress>::const_iterator aVarIter;
91 0 : for ( aVarIter = aVariableCells.begin(); aVarIter != aVariableCells.end(); ++aVarIter )
92 : {
93 0 : SolverComponent::SetValue( mxDoc, *aVarIter, 0.0 );
94 : }
95 :
96 : // read initial values from all dependent cells
97 0 : ScSolverCellHashMap::iterator aCellsIter;
98 0 : for ( aCellsIter = aCellsHash.begin(); aCellsIter != aCellsHash.end(); ++aCellsIter )
99 : {
100 0 : double fValue = SolverComponent::GetValue( mxDoc, aCellsIter->first );
101 0 : aCellsIter->second.push_back( fValue ); // store as first element, as-is
102 : }
103 :
104 : // loop through variables
105 0 : for ( aVarIter = aVariableCells.begin(); aVarIter != aVariableCells.end(); ++aVarIter )
106 : {
107 0 : SolverComponent::SetValue( mxDoc, *aVarIter, 1.0 ); // set to 1 to examine influence
108 :
109 : // read value change from all dependent cells
110 0 : for ( aCellsIter = aCellsHash.begin(); aCellsIter != aCellsHash.end(); ++aCellsIter )
111 : {
112 0 : double fChanged = SolverComponent::GetValue( mxDoc, aCellsIter->first );
113 0 : double fInitial = aCellsIter->second.front();
114 0 : aCellsIter->second.push_back( fChanged - fInitial );
115 : }
116 :
117 0 : SolverComponent::SetValue( mxDoc, *aVarIter, 2.0 ); // minimal test for linearity
118 :
119 0 : for ( aCellsIter = aCellsHash.begin(); aCellsIter != aCellsHash.end(); ++aCellsIter )
120 : {
121 0 : double fInitial = aCellsIter->second.front();
122 0 : double fCoeff = aCellsIter->second.back(); // last appended: coefficient for this variable
123 0 : double fTwo = SolverComponent::GetValue( mxDoc, aCellsIter->first );
124 :
125 0 : bool bLinear = rtl::math::approxEqual( fTwo, fInitial + 2.0 * fCoeff ) ||
126 0 : rtl::math::approxEqual( fInitial, fTwo - 2.0 * fCoeff );
127 : // second comparison is needed in case fTwo is zero
128 0 : if ( !bLinear )
129 0 : maStatus = SolverComponent::GetResourceString( RID_ERROR_NONLINEAR );
130 : }
131 :
132 0 : SolverComponent::SetValue( mxDoc, *aVarIter, 0.0 ); // set back to zero for examining next variable
133 : }
134 :
135 0 : xModel->unlockControllers();
136 :
137 0 : if ( !maStatus.isEmpty() )
138 0 : return;
139 :
140 : //
141 : // build parameter arrays for CoinMP
142 : //
143 :
144 : // set objective function
145 :
146 0 : const std::vector<double>& rObjCoeff = aCellsHash[maObjective];
147 0 : double* pObjectCoeffs = new double[nVariables];
148 0 : for (nVar=0; nVar<nVariables; nVar++)
149 0 : pObjectCoeffs[nVar] = rObjCoeff[nVar+1];
150 0 : double nObjectConst = rObjCoeff[0]; // constant term of objective
151 :
152 : // add rows
153 :
154 0 : size_t nRows = maConstraints.getLength();
155 0 : size_t nCompSize = nVariables * nRows;
156 0 : double* pCompMatrix = new double[nCompSize]; // first collect all coefficients, row-wise
157 0 : for (size_t i=0; i<nCompSize; i++)
158 0 : pCompMatrix[i] = 0.0;
159 :
160 0 : double* pRHS = new double[nRows];
161 0 : char* pRowType = new char[nRows];
162 0 : for (size_t i=0; i<nRows; i++)
163 : {
164 0 : pRHS[i] = 0.0;
165 0 : pRowType[i] = 'N';
166 : }
167 :
168 0 : for (sal_Int32 nConstrPos = 0; nConstrPos < maConstraints.getLength(); ++nConstrPos)
169 : {
170 : // integer constraints are set later
171 0 : sheet::SolverConstraintOperator eOp = maConstraints[nConstrPos].Operator;
172 0 : if ( eOp == sheet::SolverConstraintOperator_LESS_EQUAL ||
173 0 : eOp == sheet::SolverConstraintOperator_GREATER_EQUAL ||
174 : eOp == sheet::SolverConstraintOperator_EQUAL )
175 : {
176 0 : double fDirectValue = 0.0;
177 0 : bool bRightCell = false;
178 0 : table::CellAddress aRightAddr;
179 0 : const uno::Any& rRightAny = maConstraints[nConstrPos].Right;
180 0 : if ( rRightAny >>= aRightAddr )
181 0 : bRightCell = true; // cell specified as right-hand side
182 : else
183 0 : rRightAny >>= fDirectValue; // constant value
184 :
185 0 : table::CellAddress aLeftAddr = maConstraints[nConstrPos].Left;
186 :
187 0 : const std::vector<double>& rLeftCoeff = aCellsHash[aLeftAddr];
188 0 : double* pValues = &pCompMatrix[nConstrPos * nVariables];
189 0 : for (nVar=0; nVar<nVariables; nVar++)
190 0 : pValues[nVar] = rLeftCoeff[nVar+1];
191 :
192 : // if left hand cell has a constant term, put into rhs value
193 0 : double fRightValue = -rLeftCoeff[0];
194 :
195 0 : if ( bRightCell )
196 : {
197 0 : const std::vector<double>& rRightCoeff = aCellsHash[aRightAddr];
198 : // modify pValues with rhs coefficients
199 0 : for (nVar=0; nVar<nVariables; nVar++)
200 0 : pValues[nVar] -= rRightCoeff[nVar+1];
201 :
202 0 : fRightValue += rRightCoeff[0]; // constant term
203 : }
204 : else
205 0 : fRightValue += fDirectValue;
206 :
207 0 : switch ( eOp )
208 : {
209 0 : case sheet::SolverConstraintOperator_LESS_EQUAL: pRowType[nConstrPos] = 'L'; break;
210 0 : case sheet::SolverConstraintOperator_GREATER_EQUAL: pRowType[nConstrPos] = 'G'; break;
211 0 : case sheet::SolverConstraintOperator_EQUAL: pRowType[nConstrPos] = 'E'; break;
212 : default:
213 : OSL_ENSURE( false, "unexpected enum type" );
214 : }
215 0 : pRHS[nConstrPos] = fRightValue;
216 : }
217 : }
218 :
219 : // Find non-zero coefficients, column-wise
220 :
221 0 : int* pMatrixBegin = new int[nVariables+1];
222 0 : int* pMatrixCount = new int[nVariables];
223 0 : double* pMatrix = new double[nCompSize]; // not always completely used
224 0 : int* pMatrixIndex = new int[nCompSize];
225 0 : int nMatrixPos = 0;
226 0 : for (nVar=0; nVar<nVariables; nVar++)
227 : {
228 0 : int nBegin = nMatrixPos;
229 0 : for (size_t nRow=0; nRow<nRows; nRow++)
230 : {
231 0 : double fCoeff = pCompMatrix[ nRow * nVariables + nVar ]; // row-wise
232 0 : if ( fCoeff != 0.0 )
233 : {
234 0 : pMatrix[nMatrixPos] = fCoeff;
235 0 : pMatrixIndex[nMatrixPos] = nRow;
236 0 : ++nMatrixPos;
237 : }
238 : }
239 0 : pMatrixBegin[nVar] = nBegin;
240 0 : pMatrixCount[nVar] = nMatrixPos - nBegin;
241 : }
242 0 : pMatrixBegin[nVariables] = nMatrixPos;
243 0 : delete[] pCompMatrix;
244 0 : pCompMatrix = NULL;
245 :
246 : // apply settings to all variables
247 :
248 0 : double* pLowerBounds = new double[nVariables];
249 0 : double* pUpperBounds = new double[nVariables];
250 0 : for (nVar=0; nVar<nVariables; nVar++)
251 : {
252 0 : pLowerBounds[nVar] = mbNonNegative ? 0.0 : -DBL_MAX;
253 0 : pUpperBounds[nVar] = DBL_MAX;
254 :
255 : // bounds could possibly be further restricted from single-cell constraints
256 : }
257 :
258 0 : char* pColType = new char[nVariables];
259 0 : for (nVar=0; nVar<nVariables; nVar++)
260 0 : pColType[nVar] = mbInteger ? 'I' : 'C';
261 :
262 : // apply single-var integer constraints
263 :
264 0 : for (sal_Int32 nConstrPos = 0; nConstrPos < maConstraints.getLength(); ++nConstrPos)
265 : {
266 0 : sheet::SolverConstraintOperator eOp = maConstraints[nConstrPos].Operator;
267 0 : if ( eOp == sheet::SolverConstraintOperator_INTEGER ||
268 : eOp == sheet::SolverConstraintOperator_BINARY )
269 : {
270 0 : table::CellAddress aLeftAddr = maConstraints[nConstrPos].Left;
271 : // find variable index for cell
272 0 : for (nVar=0; nVar<nVariables; nVar++)
273 0 : if ( AddressEqual( aVariableCells[nVar], aLeftAddr ) )
274 : {
275 0 : if ( eOp == sheet::SolverConstraintOperator_INTEGER )
276 0 : pColType[nVar] = 'I';
277 : else
278 : {
279 0 : pColType[nVar] = 'B';
280 0 : pLowerBounds[nVar] = 0.0;
281 0 : pUpperBounds[nVar] = 1.0;
282 : }
283 : }
284 : }
285 : }
286 :
287 0 : int nObjectSense = mbMaximize ? SOLV_OBJSENS_MAX : SOLV_OBJSENS_MIN;
288 :
289 0 : HPROB hProb = CoinCreateProblem("");
290 : int nResult = CoinLoadProblem( hProb, nVariables, nRows, nMatrixPos, 0,
291 : nObjectSense, nObjectConst, pObjectCoeffs,
292 : pLowerBounds, pUpperBounds, pRowType, pRHS, NULL,
293 : pMatrixBegin, pMatrixCount, pMatrixIndex, pMatrix,
294 0 : NULL, NULL, NULL );
295 0 : nResult = CoinLoadInteger( hProb, pColType );
296 :
297 0 : delete[] pColType;
298 0 : delete[] pMatrixIndex;
299 0 : delete[] pMatrix;
300 0 : delete[] pMatrixCount;
301 0 : delete[] pMatrixBegin;
302 0 : delete[] pUpperBounds;
303 0 : delete[] pLowerBounds;
304 0 : delete[] pRowType;
305 0 : delete[] pRHS;
306 0 : delete[] pObjectCoeffs;
307 :
308 0 : CoinSetRealOption( hProb, COIN_REAL_MAXSECONDS, mnTimeout );
309 0 : CoinSetRealOption( hProb, COIN_REAL_MIPMAXSEC, mnTimeout );
310 :
311 : // TODO: handle (or remove) settings: epsilon, B&B depth
312 :
313 : // solve model
314 :
315 0 : nResult = CoinCheckProblem( hProb );
316 0 : nResult = CoinOptimizeProblem( hProb, 0 );
317 :
318 0 : mbSuccess = ( nResult == SOLV_CALL_SUCCESS );
319 0 : if ( mbSuccess )
320 : {
321 : // get solution
322 :
323 0 : maSolution.realloc( nVariables );
324 0 : CoinGetSolutionValues( hProb, maSolution.getArray(), NULL, NULL, NULL );
325 0 : mfResultValue = CoinGetObjectValue( hProb );
326 : }
327 : else
328 : {
329 0 : int nSolutionStatus = CoinGetSolutionStatus( hProb );
330 0 : if ( nSolutionStatus == 1 )
331 0 : maStatus = SolverComponent::GetResourceString( RID_ERROR_INFEASIBLE );
332 0 : else if ( nSolutionStatus == 2 )
333 0 : maStatus = SolverComponent::GetResourceString( RID_ERROR_UNBOUNDED );
334 : // TODO: detect timeout condition and report as RID_ERROR_TIMEOUT
335 : // (currently reported as infeasible)
336 : }
337 :
338 0 : CoinUnloadProblem( hProb );
339 : }
340 :
341 : extern "C" SAL_DLLPUBLIC_EXPORT css::uno::XInterface * SAL_CALL
342 0 : com_sun_star_comp_Calc_CoinMPSolver_get_implementation(
343 : css::uno::XComponentContext *,
344 : css::uno::Sequence<css::uno::Any> const &)
345 : {
346 0 : return cppu::acquire(new CoinMPSolver());
347 : }
348 :
349 : /* vim:set shiftwidth=4 softtabstop=4 expandtab: */
|