Line data Source code
1 : /* -*- Mode: C++; tab-width: 4; indent-tabs-mode: nil; c-basic-offset: 4 -*- */
2 : /*
3 : * This file is part of the LibreOffice project.
4 : *
5 : * This Source Code Form is subject to the terms of the Mozilla Public
6 : * License, v. 2.0. If a copy of the MPL was not distributed with this
7 : * file, You can obtain one at http://mozilla.org/MPL/2.0/.
8 : *
9 : * This file incorporates work covered by the following license notice:
10 : *
11 : * Licensed to the Apache Software Foundation (ASF) under one or more
12 : * contributor license agreements. See the NOTICE file distributed
13 : * with this work for additional information regarding copyright
14 : * ownership. The ASF licenses this file to you under the Apache
15 : * License, Version 2.0 (the "License"); you may not use this file
16 : * except in compliance with the License. You may obtain a copy of
17 : * the License at http://www.apache.org/licenses/LICENSE-2.0 .
18 : */
19 :
20 : #include <unistd.h>
21 : #include <cstdio>
22 : #include <cstring>
23 :
24 : #include <bmp.hxx>
25 :
26 : #include <X11_selection.hxx>
27 : #include <unx/x11/xlimits.hxx>
28 :
29 : #include <sal/macros.h>
30 : #include <tools/stream.hxx>
31 : #include <vcl/dibtools.hxx>
32 : #include <vcl/svapp.hxx>
33 : #include "vcl/bitmap.hxx"
34 :
35 : using namespace x11;
36 :
37 : /*
38 : * helper functions
39 : */
40 :
41 0 : inline void writeLE( sal_uInt16 nNumber, sal_uInt8* pBuffer )
42 : {
43 0 : pBuffer[ 0 ] = (nNumber & 0xff);
44 0 : pBuffer[ 1 ] = ((nNumber>>8)&0xff);
45 0 : }
46 :
47 0 : inline void writeLE( sal_uInt32 nNumber, sal_uInt8* pBuffer )
48 : {
49 0 : pBuffer[ 0 ] = (nNumber & 0xff);
50 0 : pBuffer[ 1 ] = ((nNumber>>8)&0xff);
51 0 : pBuffer[ 2 ] = ((nNumber>>16)&0xff);
52 0 : pBuffer[ 3 ] = ((nNumber>>24)&0xff);
53 0 : }
54 :
55 0 : inline sal_uInt16 readLE16( const sal_uInt8* pBuffer )
56 : {
57 0 : return (((sal_uInt16)pBuffer[1]) << 8 ) | pBuffer[0];
58 : }
59 :
60 0 : inline sal_uInt16 readLE32( const sal_uInt8* pBuffer )
61 : {
62 : return
63 : (((sal_uInt32)pBuffer[3]) << 24 ) |
64 : (((sal_uInt32)pBuffer[2]) << 16 ) |
65 0 : (((sal_uInt32)pBuffer[1]) << 8 ) |
66 0 : pBuffer[0];
67 : }
68 :
69 : /*
70 : * scanline helpers
71 : */
72 :
73 0 : inline void X11_writeScanlinePixel( unsigned long nColor, sal_uInt8* pScanline, int depth, int x )
74 : {
75 0 : switch( depth )
76 : {
77 : case 1:
78 0 : pScanline[ x/8 ] &= ~(1 << (x&7));
79 0 : pScanline[ x/8 ] |= ((nColor & 1) << (x&7));
80 0 : break;
81 : case 4:
82 0 : pScanline[ x/2 ] &= ((x&1) ? 0x0f : 0xf0);
83 0 : pScanline[ x/2 ] |= ((x&1) ? (nColor & 0x0f) : ((nColor & 0x0f) << 4));
84 0 : break;
85 : default:
86 : case 8:
87 0 : pScanline[ x ] = (nColor & 0xff);
88 0 : break;
89 : }
90 0 : }
91 :
92 0 : static sal_uInt8* X11_getPaletteBmpFromImage(
93 : Display* pDisplay,
94 : XImage* pImage,
95 : Colormap aColormap,
96 : sal_Int32& rOutSize
97 : )
98 : {
99 0 : sal_uInt32 nColors = 0;
100 :
101 0 : rOutSize = 0;
102 :
103 0 : sal_uInt8* pBuffer = 0;
104 : sal_uInt32 nHeaderSize, nScanlineSize;
105 : sal_uInt16 nBitCount;
106 : // determine header and scanline size
107 0 : switch( pImage->depth )
108 : {
109 : case 1:
110 0 : nHeaderSize = 64;
111 0 : nScanlineSize = (pImage->width+31)/32;
112 0 : nBitCount = 1;
113 0 : break;
114 : case 4:
115 0 : nHeaderSize = 72;
116 0 : nScanlineSize = (pImage->width+1)/2;
117 0 : nBitCount = 4;
118 0 : break;
119 : default:
120 : case 8:
121 0 : nHeaderSize = 1084;
122 0 : nScanlineSize = pImage->width;
123 0 : nBitCount = 8;
124 0 : break;
125 : }
126 : // adjust scan lines to begin on %4 boundaries
127 0 : if( nScanlineSize & 3 )
128 : {
129 0 : nScanlineSize &= 0xfffffffc;
130 0 : nScanlineSize += 4;
131 : }
132 :
133 : // allocate buffer to hold header and scanlines, initialize to zero
134 0 : rOutSize = nHeaderSize + nScanlineSize*pImage->height;
135 0 : pBuffer = (sal_uInt8*)rtl_allocateZeroMemory( rOutSize );
136 0 : for( int y = 0; y < pImage->height; y++ )
137 : {
138 0 : sal_uInt8* pScanline = pBuffer + nHeaderSize + (pImage->height-1-y)*nScanlineSize;
139 0 : for( int x = 0; x < pImage->width; x++ )
140 : {
141 0 : unsigned long nPixel = XGetPixel( pImage, x, y );
142 0 : if( nPixel >= nColors )
143 0 : nColors = nPixel+1;
144 0 : X11_writeScanlinePixel( nPixel, pScanline, pImage->depth, x );
145 : }
146 : }
147 :
148 : // fill in header fields
149 0 : pBuffer[ 0 ] = 'B';
150 0 : pBuffer[ 1 ] = 'M';
151 :
152 0 : writeLE( nHeaderSize, pBuffer+10 );
153 0 : writeLE( (sal_uInt32)40, pBuffer+14 );
154 0 : writeLE( (sal_uInt32)pImage->width, pBuffer+18 );
155 0 : writeLE( (sal_uInt32)pImage->height, pBuffer+22 );
156 0 : writeLE( (sal_uInt16)1, pBuffer+26 );
157 0 : writeLE( nBitCount, pBuffer+28 );
158 0 : writeLE( (sal_uInt32)(DisplayWidth(pDisplay,DefaultScreen(pDisplay))*1000/DisplayWidthMM(pDisplay,DefaultScreen(pDisplay))), pBuffer+38);
159 0 : writeLE( (sal_uInt32)(DisplayHeight(pDisplay,DefaultScreen(pDisplay))*1000/DisplayHeightMM(pDisplay,DefaultScreen(pDisplay))), pBuffer+42);
160 0 : writeLE( nColors, pBuffer+46 );
161 0 : writeLE( nColors, pBuffer+50 );
162 :
163 : XColor aColors[256];
164 0 : if( nColors > (1U << nBitCount) ) // paranoia
165 0 : nColors = (1U << nBitCount);
166 0 : for( unsigned long nPixel = 0; nPixel < nColors; nPixel++ )
167 : {
168 0 : aColors[nPixel].flags = DoRed | DoGreen | DoBlue;
169 0 : aColors[nPixel].pixel = nPixel;
170 : }
171 0 : XQueryColors( pDisplay, aColormap, aColors, nColors );
172 0 : for( sal_uInt32 i = 0; i < nColors; i++ )
173 : {
174 0 : pBuffer[ 54 + i*4 ] = (sal_uInt8)(aColors[i].blue >> 8);
175 0 : pBuffer[ 55 + i*4 ] = (sal_uInt8)(aColors[i].green >> 8);
176 0 : pBuffer[ 56 + i*4 ] = (sal_uInt8)(aColors[i].red >> 8);
177 : }
178 :
179 : // done
180 :
181 0 : return pBuffer;
182 : }
183 :
184 0 : inline unsigned long doRightShift( unsigned long nValue, int nShift )
185 : {
186 0 : return (nShift > 0) ? (nValue >> nShift) : (nValue << (-nShift));
187 : }
188 :
189 0 : inline unsigned long doLeftShift( unsigned long nValue, int nShift )
190 : {
191 0 : return (nShift > 0) ? (nValue << nShift) : (nValue >> (-nShift));
192 : }
193 :
194 0 : static void getShift( unsigned long nMask, int& rShift, int& rSigBits, int& rShift2 )
195 : {
196 0 : unsigned long nUseMask = nMask;
197 0 : rShift = 0;
198 0 : while( nMask & 0xffffff00 )
199 : {
200 0 : rShift++;
201 0 : nMask >>= 1;
202 : }
203 0 : if( rShift == 0 )
204 0 : while( ! (nMask & 0x00000080) )
205 : {
206 0 : rShift--;
207 0 : nMask <<= 1;
208 : }
209 :
210 0 : int nRotate = sizeof(unsigned long)*8 - rShift;
211 0 : rSigBits = 0;
212 0 : nMask = doRightShift( nUseMask, rShift) ;
213 0 : while( nRotate-- )
214 : {
215 0 : if( nMask & 1 )
216 0 : rSigBits++;
217 0 : nMask >>= 1;
218 : }
219 :
220 0 : rShift2 = 0;
221 0 : if( rSigBits < 8 )
222 0 : rShift2 = 8-rSigBits;
223 0 : }
224 :
225 0 : static sal_uInt8* X11_getTCBmpFromImage(
226 : Display* pDisplay,
227 : XImage* pImage,
228 : sal_Int32& rOutSize,
229 : int nScreenNo
230 : )
231 : {
232 : // get masks from visual info (guesswork)
233 : XVisualInfo aVInfo;
234 0 : if( ! XMatchVisualInfo( pDisplay, nScreenNo, pImage->depth, TrueColor, &aVInfo ) )
235 0 : return NULL;
236 :
237 0 : rOutSize = 0;
238 :
239 0 : sal_uInt8* pBuffer = 0;
240 0 : sal_uInt32 nHeaderSize = 60;
241 0 : sal_uInt32 nScanlineSize = pImage->width*3;
242 :
243 : // adjust scan lines to begin on %4 boundaries
244 0 : if( nScanlineSize & 3 )
245 : {
246 0 : nScanlineSize &= 0xfffffffc;
247 0 : nScanlineSize += 4;
248 : }
249 0 : int nRedShift, nRedSig, nRedShift2 = 0;
250 0 : getShift( aVInfo.red_mask, nRedShift, nRedSig, nRedShift2 );
251 0 : int nGreenShift, nGreenSig, nGreenShift2 = 0;
252 0 : getShift( aVInfo.green_mask, nGreenShift, nGreenSig, nGreenShift2 );
253 0 : int nBlueShift, nBlueSig, nBlueShift2 = 0;
254 0 : getShift( aVInfo.blue_mask, nBlueShift, nBlueSig, nBlueShift2 );
255 :
256 : // allocate buffer to hold header and scanlines, initialize to zero
257 0 : rOutSize = nHeaderSize + nScanlineSize*pImage->height;
258 0 : pBuffer = (sal_uInt8*)rtl_allocateZeroMemory( rOutSize );
259 0 : for( int y = 0; y < pImage->height; y++ )
260 : {
261 0 : sal_uInt8* pScanline = pBuffer + nHeaderSize + (pImage->height-1-y)*nScanlineSize;
262 0 : for( int x = 0; x < pImage->width; x++ )
263 : {
264 0 : unsigned long nPixel = XGetPixel( pImage, x, y );
265 :
266 0 : sal_uInt8 nValue = (sal_uInt8)doRightShift( nPixel&aVInfo.blue_mask, nBlueShift);
267 0 : if( nBlueShift2 )
268 0 : nValue |= (nValue >> nBlueShift2 );
269 0 : *pScanline++ = nValue;
270 :
271 0 : nValue = (sal_uInt8)doRightShift( nPixel&aVInfo.green_mask, nGreenShift);
272 0 : if( nGreenShift2 )
273 0 : nValue |= (nValue >> nGreenShift2 );
274 0 : *pScanline++ = nValue;
275 :
276 0 : nValue = (sal_uInt8)doRightShift( nPixel&aVInfo.red_mask, nRedShift);
277 0 : if( nRedShift2 )
278 0 : nValue |= (nValue >> nRedShift2 );
279 0 : *pScanline++ = nValue;
280 : }
281 : }
282 :
283 : // fill in header fields
284 0 : pBuffer[ 0 ] = 'B';
285 0 : pBuffer[ 1 ] = 'M';
286 :
287 0 : writeLE( nHeaderSize, pBuffer+10 );
288 0 : writeLE( (sal_uInt32)40, pBuffer+14 );
289 0 : writeLE( (sal_uInt32)pImage->width, pBuffer+18 );
290 0 : writeLE( (sal_uInt32)pImage->height, pBuffer+22 );
291 0 : writeLE( (sal_uInt16)1, pBuffer+26 );
292 0 : writeLE( (sal_uInt16)24, pBuffer+28 );
293 0 : writeLE( (sal_uInt32)(DisplayWidth(pDisplay,DefaultScreen(pDisplay))*1000/DisplayWidthMM(pDisplay,DefaultScreen(pDisplay))), pBuffer+38);
294 0 : writeLE( (sal_uInt32)(DisplayHeight(pDisplay,DefaultScreen(pDisplay))*1000/DisplayHeightMM(pDisplay,DefaultScreen(pDisplay))), pBuffer+42);
295 :
296 : // done
297 :
298 0 : return pBuffer;
299 : }
300 :
301 0 : sal_uInt8* x11::X11_getBmpFromPixmap(
302 : Display* pDisplay,
303 : Drawable aDrawable,
304 : Colormap aColormap,
305 : sal_Int32& rOutSize
306 : )
307 : {
308 : // get geometry of drawable
309 : XLIB_Window aRoot;
310 : int x,y;
311 : unsigned int w, h, bw, d;
312 0 : XGetGeometry( pDisplay, aDrawable, &aRoot, &x, &y, &w, &h, &bw, &d );
313 :
314 : // find which screen we are on
315 0 : int nScreenNo = ScreenCount( pDisplay );
316 0 : while( nScreenNo-- )
317 : {
318 0 : if( RootWindow( pDisplay, nScreenNo ) == aRoot )
319 0 : break;
320 : }
321 0 : if( nScreenNo < 0 )
322 0 : return NULL;
323 :
324 0 : if( aColormap == None )
325 0 : aColormap = DefaultColormap( pDisplay, nScreenNo );
326 :
327 : // get the image
328 0 : XImage* pImage = XGetImage( pDisplay, aDrawable, 0, 0, w, h, AllPlanes, ZPixmap );
329 0 : if( ! pImage )
330 0 : return NULL;
331 :
332 0 : sal_uInt8* pBmp = d <= 8 ?
333 : X11_getPaletteBmpFromImage( pDisplay, pImage, aColormap, rOutSize ) :
334 0 : X11_getTCBmpFromImage( pDisplay, pImage, rOutSize, nScreenNo );
335 0 : XDestroyImage( pImage );
336 :
337 0 : return pBmp;
338 : }
339 :
340 0 : void x11::X11_freeBmp( sal_uInt8* pBmp )
341 : {
342 0 : rtl_freeMemory( pBmp );
343 0 : }
344 :
345 : /*
346 : * PixmapHolder
347 : */
348 :
349 0 : PixmapHolder::PixmapHolder( Display* pDisplay ) :
350 : m_pDisplay( pDisplay ),
351 : m_aColormap( None ),
352 : m_aPixmap( None ),
353 0 : m_aBitmap( None )
354 : {
355 : /* try to get a 24 bit true color visual, if that fails,
356 : * revert to default visual
357 : */
358 0 : if( ! XMatchVisualInfo( m_pDisplay, DefaultScreen( m_pDisplay ), 24, TrueColor, &m_aInfo ) )
359 : {
360 : #if OSL_DEBUG_LEVEL > 1
361 : fprintf( stderr, "PixmapHolder reverting to default visual\n" );
362 : #endif
363 0 : Visual* pVisual = DefaultVisual( m_pDisplay, DefaultScreen( m_pDisplay ) );
364 0 : m_aInfo.screen = DefaultScreen( m_pDisplay );
365 0 : m_aInfo.visual = pVisual;
366 0 : m_aInfo.visualid = pVisual->visualid;
367 0 : m_aInfo.c_class = pVisual->c_class;
368 0 : m_aInfo.red_mask = pVisual->red_mask;
369 0 : m_aInfo.green_mask = pVisual->green_mask;
370 0 : m_aInfo.blue_mask = pVisual->blue_mask;
371 0 : m_aInfo.depth = DefaultDepth( m_pDisplay, m_aInfo.screen );
372 : }
373 0 : m_aColormap = DefaultColormap( m_pDisplay, m_aInfo.screen );
374 : #if OSL_DEBUG_LEVEL > 1
375 : static const char* pClasses[] =
376 : { "StaticGray", "GrayScale", "StaticColor", "PseudoColor", "TrueColor", "DirectColor" };
377 : fprintf( stderr, "PixmapHolder visual: id = 0x%lx, class = %s (%d), depth=%d; color map = 0x%lx\n",
378 : m_aInfo.visualid,
379 : (m_aInfo.c_class >= 0 && unsigned(m_aInfo.c_class) < SAL_N_ELEMENTS(pClasses)) ? pClasses[m_aInfo.c_class] : "<unknown>",
380 : m_aInfo.c_class,
381 : m_aInfo.depth,
382 : m_aColormap );
383 : #endif
384 0 : if( m_aInfo.c_class == TrueColor )
385 : {
386 : int nRedSig, nGreenSig, nBlueSig;
387 0 : m_nRedShift = m_nRedShift2 = 0;
388 0 : getShift( m_aInfo.red_mask, m_nRedShift, nRedSig, m_nRedShift2 );
389 0 : m_nGreenShift = m_nGreenShift2 = 0;
390 0 : getShift( m_aInfo.green_mask, m_nGreenShift, nGreenSig, m_nGreenShift2 );
391 0 : m_nBlueShift = m_nBlueShift2 = 0;
392 0 : getShift( m_aInfo.blue_mask, m_nBlueShift, nBlueSig, m_nBlueShift2 );
393 :
394 0 : m_nBlueShift2Mask = m_nBlueShift2 ? ~((unsigned long)((1<<m_nBlueShift2)-1)) : ~0L;
395 0 : m_nGreenShift2Mask = m_nGreenShift2 ? ~((unsigned long)((1<<m_nGreenShift2)-1)) : ~0L;
396 0 : m_nRedShift2Mask = m_nRedShift2 ? ~((unsigned long)((1<<m_nRedShift2)-1)) : ~0L;
397 : }
398 0 : }
399 :
400 0 : PixmapHolder::~PixmapHolder()
401 : {
402 0 : if( m_aPixmap != None )
403 0 : XFreePixmap( m_pDisplay, m_aPixmap );
404 0 : if( m_aBitmap != None )
405 0 : XFreePixmap( m_pDisplay, m_aBitmap );
406 0 : }
407 :
408 0 : unsigned long PixmapHolder::getTCPixel( sal_uInt8 r, sal_uInt8 g, sal_uInt8 b ) const
409 : {
410 0 : unsigned long nPixel = 0;
411 0 : unsigned long nValue = (unsigned long)b;
412 0 : nValue &= m_nBlueShift2Mask;
413 0 : nPixel |= doLeftShift( nValue, m_nBlueShift );
414 :
415 0 : nValue = (unsigned long)g;
416 0 : nValue &= m_nGreenShift2Mask;
417 0 : nPixel |= doLeftShift( nValue, m_nGreenShift );
418 :
419 0 : nValue = (unsigned long)r;
420 0 : nValue &= m_nRedShift2Mask;
421 0 : nPixel |= doLeftShift( nValue, m_nRedShift );
422 :
423 0 : return nPixel;
424 : }
425 :
426 0 : void PixmapHolder::setBitmapDataPalette( const sal_uInt8* pData, XImage* pImage )
427 : {
428 : // setup palette
429 : XColor aPalette[256];
430 :
431 0 : sal_uInt32 nColors = readLE32( pData+32 );
432 0 : sal_uInt32 nWidth = readLE32( pData+4 );
433 0 : sal_uInt32 nHeight = readLE32( pData+8 );
434 0 : sal_uInt16 nDepth = readLE16( pData+14 );
435 :
436 0 : for( sal_uInt16 i = 0 ; i < nColors; i++ )
437 : {
438 0 : if( m_aInfo.c_class != TrueColor )
439 : {
440 0 : aPalette[i].red = ((unsigned short)pData[42 + i*4]) << 8 | ((unsigned short)pData[42 + i*4]);
441 0 : aPalette[i].green = ((unsigned short)pData[41 + i*4]) << 8 | ((unsigned short)pData[41 + i*4]);
442 0 : aPalette[i].blue = ((unsigned short)pData[40 + i*4]) << 8 | ((unsigned short)pData[40 + i*4]);
443 0 : XAllocColor( m_pDisplay, m_aColormap, aPalette+i );
444 : }
445 : else
446 0 : aPalette[i].pixel = getTCPixel( pData[42+i*4], pData[41+i*4], pData[40+i*4] );
447 : }
448 0 : const sal_uInt8* pBMData = pData + readLE32( pData ) + 4*nColors;
449 :
450 0 : sal_uInt32 nScanlineSize = 0;
451 0 : switch( nDepth )
452 : {
453 : case 1:
454 0 : nScanlineSize = (nWidth+31)/32;
455 0 : break;
456 : case 4:
457 0 : nScanlineSize = (nWidth+1)/2;
458 0 : break;
459 : case 8:
460 0 : nScanlineSize = nWidth;
461 0 : break;
462 : }
463 : // adjust scan lines to begin on %4 boundaries
464 0 : if( nScanlineSize & 3 )
465 : {
466 0 : nScanlineSize &= 0xfffffffc;
467 0 : nScanlineSize += 4;
468 : }
469 :
470 : // allocate buffer to hold header and scanlines, initialize to zero
471 0 : for( unsigned int y = 0; y < nHeight; y++ )
472 : {
473 0 : const sal_uInt8* pScanline = pBMData + (nHeight-1-y)*nScanlineSize;
474 0 : for( unsigned int x = 0; x < nWidth; x++ )
475 : {
476 0 : int nCol = 0;
477 0 : switch( nDepth )
478 : {
479 0 : case 1: nCol = (pScanline[ x/8 ] & (0x80 >> (x&7))) != 0 ? 0 : 1; break;
480 : case 4:
481 0 : if( x & 1 )
482 0 : nCol = (int)(pScanline[ x/2 ] >> 4);
483 : else
484 0 : nCol = (int)(pScanline[ x/2 ] & 0x0f);
485 0 : break;
486 0 : case 8: nCol = (int)pScanline[x];
487 : }
488 0 : XPutPixel( pImage, x, y, aPalette[nCol].pixel );
489 : }
490 : }
491 0 : }
492 :
493 0 : void PixmapHolder::setBitmapDataTCDither( const sal_uInt8* pData, XImage* pImage )
494 : {
495 : XColor aPalette[216];
496 :
497 0 : int nNonAllocs = 0;
498 :
499 0 : for( int r = 0; r < 6; r++ )
500 : {
501 0 : for( int g = 0; g < 6; g++ )
502 : {
503 0 : for( int b = 0; b < 6; b++ )
504 : {
505 0 : int i = r*36+g*6+b;
506 0 : aPalette[i].red = r == 5 ? 0xffff : r*10922;
507 0 : aPalette[i].green = g == 5 ? 0xffff : g*10922;
508 0 : aPalette[i].blue = b == 5 ? 0xffff : b*10922;
509 0 : aPalette[i].pixel = 0;
510 0 : if( ! XAllocColor( m_pDisplay, m_aColormap, aPalette+i ) )
511 0 : nNonAllocs++;
512 : }
513 : }
514 : }
515 :
516 0 : if( nNonAllocs )
517 : {
518 : XColor aRealPalette[256];
519 0 : int nColors = 1 << m_aInfo.depth;
520 : int i;
521 0 : for( i = 0; i < nColors; i++ )
522 0 : aRealPalette[i].pixel = (unsigned long)i;
523 0 : XQueryColors( m_pDisplay, m_aColormap, aRealPalette, nColors );
524 0 : for( i = 0; i < nColors; i++ )
525 : {
526 : sal_uInt8 nIndex =
527 : 36*(sal_uInt8)(aRealPalette[i].red/10923) +
528 : 6*(sal_uInt8)(aRealPalette[i].green/10923) +
529 0 : (sal_uInt8)(aRealPalette[i].blue/10923);
530 0 : if( aPalette[nIndex].pixel == 0 )
531 0 : aPalette[nIndex] = aRealPalette[i];
532 : }
533 : }
534 :
535 0 : sal_uInt32 nWidth = readLE32( pData+4 );
536 0 : sal_uInt32 nHeight = readLE32( pData+8 );
537 :
538 0 : const sal_uInt8* pBMData = pData + readLE32( pData );
539 0 : sal_uInt32 nScanlineSize = nWidth*3;
540 : // adjust scan lines to begin on %4 boundaries
541 0 : if( nScanlineSize & 3 )
542 : {
543 0 : nScanlineSize &= 0xfffffffc;
544 0 : nScanlineSize += 4;
545 : }
546 :
547 0 : for( int y = 0; y < (int)nHeight; y++ )
548 : {
549 0 : const sal_uInt8* pScanline = pBMData + (nHeight-1-(sal_uInt32)y)*nScanlineSize;
550 0 : for( int x = 0; x < (int)nWidth; x++ )
551 : {
552 0 : sal_uInt8 b = pScanline[3*x];
553 0 : sal_uInt8 g = pScanline[3*x+1];
554 0 : sal_uInt8 r = pScanline[3*x+2];
555 0 : sal_uInt8 i = 36*(r/43) + 6*(g/43) + (b/43);
556 :
557 0 : XPutPixel( pImage, x, y, aPalette[ i ].pixel );
558 : }
559 : }
560 0 : }
561 :
562 0 : void PixmapHolder::setBitmapDataTC( const sal_uInt8* pData, XImage* pImage )
563 : {
564 0 : sal_uInt32 nWidth = readLE32( pData+4 );
565 0 : sal_uInt32 nHeight = readLE32( pData+8 );
566 :
567 0 : const sal_uInt8* pBMData = pData + readLE32( pData );
568 0 : sal_uInt32 nScanlineSize = nWidth*3;
569 : // adjust scan lines to begin on %4 boundaries
570 0 : if( nScanlineSize & 3 )
571 : {
572 0 : nScanlineSize &= 0xfffffffc;
573 0 : nScanlineSize += 4;
574 : }
575 :
576 0 : for( int y = 0; y < (int)nHeight; y++ )
577 : {
578 0 : const sal_uInt8* pScanline = pBMData + (nHeight-1-(sal_uInt32)y)*nScanlineSize;
579 0 : for( int x = 0; x < (int)nWidth; x++ )
580 : {
581 0 : unsigned long nPixel = getTCPixel( pScanline[3*x+2], pScanline[3*x+1], pScanline[3*x] );
582 0 : XPutPixel( pImage, x, y, nPixel );
583 : }
584 : }
585 0 : }
586 :
587 0 : bool PixmapHolder::needsConversion( const sal_uInt8* pData )
588 : {
589 0 : if( pData[0] != 'B' || pData[1] != 'M' )
590 0 : return true;
591 :
592 0 : pData = pData+14;
593 0 : sal_uInt32 nDepth = readLE32( pData+14 );
594 0 : if( nDepth == 24 )
595 : {
596 0 : if( m_aInfo.c_class != TrueColor )
597 0 : return true;
598 : }
599 0 : else if( nDepth != (sal_uInt32)m_aInfo.depth )
600 : {
601 0 : if( m_aInfo.c_class != TrueColor )
602 0 : return true;
603 : }
604 :
605 0 : return false;
606 : }
607 :
608 0 : Pixmap PixmapHolder::setBitmapData( const sal_uInt8* pData )
609 : {
610 0 : if( pData[0] != 'B' || pData[1] != 'M' )
611 0 : return None;
612 :
613 0 : pData = pData+14;
614 :
615 : // reject compressed data
616 0 : if( readLE32( pData + 16 ) != 0 )
617 0 : return None;
618 :
619 0 : sal_uInt32 nWidth = readLE32( pData+4 );
620 0 : sal_uInt32 nHeight = readLE32( pData+8 );
621 :
622 0 : if( m_aPixmap != None )
623 0 : XFreePixmap( m_pDisplay, m_aPixmap ), m_aPixmap = None;
624 0 : if( m_aBitmap != None )
625 0 : XFreePixmap( m_pDisplay, m_aBitmap ), m_aBitmap = None;
626 :
627 : m_aPixmap = limitXCreatePixmap( m_pDisplay,
628 0 : RootWindow( m_pDisplay, m_aInfo.screen ),
629 0 : nWidth, nHeight, m_aInfo.depth );
630 :
631 0 : if( m_aPixmap != None )
632 : {
633 : XImage aImage;
634 0 : aImage.width = (int)nWidth;
635 0 : aImage.height = (int)nHeight;
636 0 : aImage.xoffset = 0;
637 0 : aImage.format = ZPixmap;
638 0 : aImage.data = NULL;
639 0 : aImage.byte_order = ImageByteOrder( m_pDisplay );
640 0 : aImage.bitmap_unit = BitmapUnit( m_pDisplay );
641 0 : aImage.bitmap_bit_order = BitmapBitOrder( m_pDisplay );
642 0 : aImage.bitmap_pad = BitmapPad( m_pDisplay );
643 0 : aImage.depth = m_aInfo.depth;
644 0 : aImage.red_mask = m_aInfo.red_mask;
645 0 : aImage.green_mask = m_aInfo.green_mask;
646 0 : aImage.blue_mask = m_aInfo.blue_mask;
647 0 : aImage.bytes_per_line = 0; // filled in by XInitImage
648 0 : if( m_aInfo.depth <= 8 )
649 0 : aImage.bits_per_pixel = m_aInfo.depth;
650 : else
651 0 : aImage.bits_per_pixel = 8*((m_aInfo.depth+7)/8);
652 0 : aImage.obdata = NULL;
653 :
654 0 : XInitImage( &aImage );
655 0 : aImage.data = (char*)rtl_allocateMemory( nHeight*aImage.bytes_per_line );
656 :
657 0 : if( readLE32( pData+14 ) == 24 )
658 : {
659 0 : if( m_aInfo.c_class == TrueColor )
660 0 : setBitmapDataTC( pData, &aImage );
661 : else
662 0 : setBitmapDataTCDither( pData, &aImage );
663 : }
664 : else
665 0 : setBitmapDataPalette( pData, &aImage );
666 :
667 : // put the image
668 : XPutImage( m_pDisplay,
669 : m_aPixmap,
670 0 : DefaultGC( m_pDisplay, m_aInfo.screen ),
671 : &aImage,
672 : 0, 0,
673 : 0, 0,
674 0 : nWidth, nHeight );
675 :
676 : // clean up
677 0 : rtl_freeMemory( aImage.data );
678 :
679 : // prepare bitmap (mask)
680 : m_aBitmap = limitXCreatePixmap( m_pDisplay,
681 0 : RootWindow( m_pDisplay, m_aInfo.screen ),
682 0 : nWidth, nHeight, 1 );
683 : XGCValues aVal;
684 0 : aVal.function = GXcopy;
685 0 : aVal.foreground = 0xffffffff;
686 0 : GC aGC = XCreateGC( m_pDisplay, m_aBitmap, GCFunction | GCForeground, &aVal );
687 0 : XFillRectangle( m_pDisplay, m_aBitmap, aGC, 0, 0, nWidth, nHeight );
688 0 : XFreeGC( m_pDisplay, aGC );
689 : }
690 :
691 0 : return m_aPixmap;
692 : }
693 :
694 0 : css::uno::Sequence<sal_Int8> x11::convertBitmapDepth(
695 : css::uno::Sequence<sal_Int8> const & data, int depth)
696 : {
697 0 : if (depth < 4) {
698 0 : depth = 1;
699 0 : } else if (depth < 8) {
700 0 : depth = 4;
701 0 : } else if (depth > 8 && depth < 24) {
702 0 : depth = 24;
703 : }
704 0 : SolarMutexGuard g;
705 : SvMemoryStream in(
706 0 : const_cast<sal_Int8 *>(data.getConstArray()), data.getLength(),
707 0 : STREAM_READ);
708 0 : Bitmap bm;
709 0 : ReadDIB(bm, in, true);
710 0 : if (bm.GetBitCount() == 24 && depth <= 8) {
711 0 : bm.Dither(BMP_DITHER_FLOYD);
712 : }
713 0 : if (bm.GetBitCount() != depth) {
714 0 : switch (depth) {
715 : case 1:
716 0 : bm.Convert(BMP_CONVERSION_1BIT_THRESHOLD);
717 0 : break;
718 : case 4:
719 0 : bm.ReduceColors(BMP_CONVERSION_4BIT_COLORS);
720 0 : break;
721 : case 8:
722 0 : bm.ReduceColors(BMP_CONVERSION_8BIT_COLORS);
723 0 : break;
724 : case 24:
725 0 : bm.Convert(BMP_CONVERSION_24BIT);
726 0 : break;
727 : }
728 : }
729 0 : SvMemoryStream out;
730 0 : WriteDIB(bm, out, false, true);
731 : return css::uno::Sequence<sal_Int8>(
732 0 : static_cast<sal_Int8 const *>(out.GetData()), out.GetEndOfData());
733 : }
734 :
735 : /* vim:set shiftwidth=4 softtabstop=4 expandtab: */
|