LCOV - code coverage report
Current view: top level - libreoffice/workdir/unxlngi6.pro/UnpackedTarball/python3/Modules/_ctypes/libffi/src - dlmalloc.c (source / functions) Hit Total Coverage
Test: libreoffice_filtered.info Lines: 0 763 0.0 %
Date: 2012-12-17 Functions: 0 51 0.0 %
Legend: Lines: hit not hit

          Line data    Source code
       1             : /*
       2             :   This is a version (aka dlmalloc) of malloc/free/realloc written by
       3             :   Doug Lea and released to the public domain, as explained at
       4             :   http://creativecommons.org/licenses/publicdomain.  Send questions,
       5             :   comments, complaints, performance data, etc to dl@cs.oswego.edu
       6             : 
       7             : * Version 2.8.3 Thu Sep 22 11:16:15 2005  Doug Lea  (dl at gee)
       8             : 
       9             :    Note: There may be an updated version of this malloc obtainable at
      10             :            ftp://gee.cs.oswego.edu/pub/misc/malloc.c
      11             :          Check before installing!
      12             : 
      13             : * Quickstart
      14             : 
      15             :   This library is all in one file to simplify the most common usage:
      16             :   ftp it, compile it (-O3), and link it into another program. All of
      17             :   the compile-time options default to reasonable values for use on
      18             :   most platforms.  You might later want to step through various
      19             :   compile-time and dynamic tuning options.
      20             : 
      21             :   For convenience, an include file for code using this malloc is at:
      22             :      ftp://gee.cs.oswego.edu/pub/misc/malloc-2.8.3.h
      23             :   You don't really need this .h file unless you call functions not
      24             :   defined in your system include files.  The .h file contains only the
      25             :   excerpts from this file needed for using this malloc on ANSI C/C++
      26             :   systems, so long as you haven't changed compile-time options about
      27             :   naming and tuning parameters.  If you do, then you can create your
      28             :   own malloc.h that does include all settings by cutting at the point
      29             :   indicated below. Note that you may already by default be using a C
      30             :   library containing a malloc that is based on some version of this
      31             :   malloc (for example in linux). You might still want to use the one
      32             :   in this file to customize settings or to avoid overheads associated
      33             :   with library versions.
      34             : 
      35             : * Vital statistics:
      36             : 
      37             :   Supported pointer/size_t representation:       4 or 8 bytes
      38             :        size_t MUST be an unsigned type of the same width as
      39             :        pointers. (If you are using an ancient system that declares
      40             :        size_t as a signed type, or need it to be a different width
      41             :        than pointers, you can use a previous release of this malloc
      42             :        (e.g. 2.7.2) supporting these.)
      43             : 
      44             :   Alignment:                                     8 bytes (default)
      45             :        This suffices for nearly all current machines and C compilers.
      46             :        However, you can define MALLOC_ALIGNMENT to be wider than this
      47             :        if necessary (up to 128bytes), at the expense of using more space.
      48             : 
      49             :   Minimum overhead per allocated chunk:   4 or  8 bytes (if 4byte sizes)
      50             :                                           8 or 16 bytes (if 8byte sizes)
      51             :        Each malloced chunk has a hidden word of overhead holding size
      52             :        and status information, and additional cross-check word
      53             :        if FOOTERS is defined.
      54             : 
      55             :   Minimum allocated size: 4-byte ptrs:  16 bytes    (including overhead)
      56             :                           8-byte ptrs:  32 bytes    (including overhead)
      57             : 
      58             :        Even a request for zero bytes (i.e., malloc(0)) returns a
      59             :        pointer to something of the minimum allocatable size.
      60             :        The maximum overhead wastage (i.e., number of extra bytes
      61             :        allocated than were requested in malloc) is less than or equal
      62             :        to the minimum size, except for requests >= mmap_threshold that
      63             :        are serviced via mmap(), where the worst case wastage is about
      64             :        32 bytes plus the remainder from a system page (the minimal
      65             :        mmap unit); typically 4096 or 8192 bytes.
      66             : 
      67             :   Security: static-safe; optionally more or less
      68             :        The "security" of malloc refers to the ability of malicious
      69             :        code to accentuate the effects of errors (for example, freeing
      70             :        space that is not currently malloc'ed or overwriting past the
      71             :        ends of chunks) in code that calls malloc.  This malloc
      72             :        guarantees not to modify any memory locations below the base of
      73             :        heap, i.e., static variables, even in the presence of usage
      74             :        errors.  The routines additionally detect most improper frees
      75             :        and reallocs.  All this holds as long as the static bookkeeping
      76             :        for malloc itself is not corrupted by some other means.  This
      77             :        is only one aspect of security -- these checks do not, and
      78             :        cannot, detect all possible programming errors.
      79             : 
      80             :        If FOOTERS is defined nonzero, then each allocated chunk
      81             :        carries an additional check word to verify that it was malloced
      82             :        from its space.  These check words are the same within each
      83             :        execution of a program using malloc, but differ across
      84             :        executions, so externally crafted fake chunks cannot be
      85             :        freed. This improves security by rejecting frees/reallocs that
      86             :        could corrupt heap memory, in addition to the checks preventing
      87             :        writes to statics that are always on.  This may further improve
      88             :        security at the expense of time and space overhead.  (Note that
      89             :        FOOTERS may also be worth using with MSPACES.)
      90             : 
      91             :        By default detected errors cause the program to abort (calling
      92             :        "abort()"). You can override this to instead proceed past
      93             :        errors by defining PROCEED_ON_ERROR.  In this case, a bad free
      94             :        has no effect, and a malloc that encounters a bad address
      95             :        caused by user overwrites will ignore the bad address by
      96             :        dropping pointers and indices to all known memory. This may
      97             :        be appropriate for programs that should continue if at all
      98             :        possible in the face of programming errors, although they may
      99             :        run out of memory because dropped memory is never reclaimed.
     100             : 
     101             :        If you don't like either of these options, you can define
     102             :        CORRUPTION_ERROR_ACTION and USAGE_ERROR_ACTION to do anything
     103             :        else. And if if you are sure that your program using malloc has
     104             :        no errors or vulnerabilities, you can define INSECURE to 1,
     105             :        which might (or might not) provide a small performance improvement.
     106             : 
     107             :   Thread-safety: NOT thread-safe unless USE_LOCKS defined
     108             :        When USE_LOCKS is defined, each public call to malloc, free,
     109             :        etc is surrounded with either a pthread mutex or a win32
     110             :        spinlock (depending on WIN32). This is not especially fast, and
     111             :        can be a major bottleneck.  It is designed only to provide
     112             :        minimal protection in concurrent environments, and to provide a
     113             :        basis for extensions.  If you are using malloc in a concurrent
     114             :        program, consider instead using ptmalloc, which is derived from
     115             :        a version of this malloc. (See http://www.malloc.de).
     116             : 
     117             :   System requirements: Any combination of MORECORE and/or MMAP/MUNMAP
     118             :        This malloc can use unix sbrk or any emulation (invoked using
     119             :        the CALL_MORECORE macro) and/or mmap/munmap or any emulation
     120             :        (invoked using CALL_MMAP/CALL_MUNMAP) to get and release system
     121             :        memory.  On most unix systems, it tends to work best if both
     122             :        MORECORE and MMAP are enabled.  On Win32, it uses emulations
     123             :        based on VirtualAlloc. It also uses common C library functions
     124             :        like memset.
     125             : 
     126             :   Compliance: I believe it is compliant with the Single Unix Specification
     127             :        (See http://www.unix.org). Also SVID/XPG, ANSI C, and probably
     128             :        others as well.
     129             : 
     130             : * Overview of algorithms
     131             : 
     132             :   This is not the fastest, most space-conserving, most portable, or
     133             :   most tunable malloc ever written. However it is among the fastest
     134             :   while also being among the most space-conserving, portable and
     135             :   tunable.  Consistent balance across these factors results in a good
     136             :   general-purpose allocator for malloc-intensive programs.
     137             : 
     138             :   In most ways, this malloc is a best-fit allocator. Generally, it
     139             :   chooses the best-fitting existing chunk for a request, with ties
     140             :   broken in approximately least-recently-used order. (This strategy
     141             :   normally maintains low fragmentation.) However, for requests less
     142             :   than 256bytes, it deviates from best-fit when there is not an
     143             :   exactly fitting available chunk by preferring to use space adjacent
     144             :   to that used for the previous small request, as well as by breaking
     145             :   ties in approximately most-recently-used order. (These enhance
     146             :   locality of series of small allocations.)  And for very large requests
     147             :   (>= 256Kb by default), it relies on system memory mapping
     148             :   facilities, if supported.  (This helps avoid carrying around and
     149             :   possibly fragmenting memory used only for large chunks.)
     150             : 
     151             :   All operations (except malloc_stats and mallinfo) have execution
     152             :   times that are bounded by a constant factor of the number of bits in
     153             :   a size_t, not counting any clearing in calloc or copying in realloc,
     154             :   or actions surrounding MORECORE and MMAP that have times
     155             :   proportional to the number of non-contiguous regions returned by
     156             :   system allocation routines, which is often just 1.
     157             : 
     158             :   The implementation is not very modular and seriously overuses
     159             :   macros. Perhaps someday all C compilers will do as good a job
     160             :   inlining modular code as can now be done by brute-force expansion,
     161             :   but now, enough of them seem not to.
     162             : 
     163             :   Some compilers issue a lot of warnings about code that is
     164             :   dead/unreachable only on some platforms, and also about intentional
     165             :   uses of negation on unsigned types. All known cases of each can be
     166             :   ignored.
     167             : 
     168             :   For a longer but out of date high-level description, see
     169             :      http://gee.cs.oswego.edu/dl/html/malloc.html
     170             : 
     171             : * MSPACES
     172             :   If MSPACES is defined, then in addition to malloc, free, etc.,
     173             :   this file also defines mspace_malloc, mspace_free, etc. These
     174             :   are versions of malloc routines that take an "mspace" argument
     175             :   obtained using create_mspace, to control all internal bookkeeping.
     176             :   If ONLY_MSPACES is defined, only these versions are compiled.
     177             :   So if you would like to use this allocator for only some allocations,
     178             :   and your system malloc for others, you can compile with
     179             :   ONLY_MSPACES and then do something like...
     180             :     static mspace mymspace = create_mspace(0,0); // for example
     181             :     #define mymalloc(bytes)  mspace_malloc(mymspace, bytes)
     182             : 
     183             :   (Note: If you only need one instance of an mspace, you can instead
     184             :   use "USE_DL_PREFIX" to relabel the global malloc.)
     185             : 
     186             :   You can similarly create thread-local allocators by storing
     187             :   mspaces as thread-locals. For example:
     188             :     static __thread mspace tlms = 0;
     189             :     void*  tlmalloc(size_t bytes) {
     190             :       if (tlms == 0) tlms = create_mspace(0, 0);
     191             :       return mspace_malloc(tlms, bytes);
     192             :     }
     193             :     void  tlfree(void* mem) { mspace_free(tlms, mem); }
     194             : 
     195             :   Unless FOOTERS is defined, each mspace is completely independent.
     196             :   You cannot allocate from one and free to another (although
     197             :   conformance is only weakly checked, so usage errors are not always
     198             :   caught). If FOOTERS is defined, then each chunk carries around a tag
     199             :   indicating its originating mspace, and frees are directed to their
     200             :   originating spaces.
     201             : 
     202             :  -------------------------  Compile-time options ---------------------------
     203             : 
     204             : Be careful in setting #define values for numerical constants of type
     205             : size_t. On some systems, literal values are not automatically extended
     206             : to size_t precision unless they are explicitly casted.
     207             : 
     208             : WIN32                    default: defined if _WIN32 defined
     209             :   Defining WIN32 sets up defaults for MS environment and compilers.
     210             :   Otherwise defaults are for unix.
     211             : 
     212             : MALLOC_ALIGNMENT         default: (size_t)8
     213             :   Controls the minimum alignment for malloc'ed chunks.  It must be a
     214             :   power of two and at least 8, even on machines for which smaller
     215             :   alignments would suffice. It may be defined as larger than this
     216             :   though. Note however that code and data structures are optimized for
     217             :   the case of 8-byte alignment.
     218             : 
     219             : MSPACES                  default: 0 (false)
     220             :   If true, compile in support for independent allocation spaces.
     221             :   This is only supported if HAVE_MMAP is true.
     222             : 
     223             : ONLY_MSPACES             default: 0 (false)
     224             :   If true, only compile in mspace versions, not regular versions.
     225             : 
     226             : USE_LOCKS                default: 0 (false)
     227             :   Causes each call to each public routine to be surrounded with
     228             :   pthread or WIN32 mutex lock/unlock. (If set true, this can be
     229             :   overridden on a per-mspace basis for mspace versions.)
     230             : 
     231             : FOOTERS                  default: 0
     232             :   If true, provide extra checking and dispatching by placing
     233             :   information in the footers of allocated chunks. This adds
     234             :   space and time overhead.
     235             : 
     236             : INSECURE                 default: 0
     237             :   If true, omit checks for usage errors and heap space overwrites.
     238             : 
     239             : USE_DL_PREFIX            default: NOT defined
     240             :   Causes compiler to prefix all public routines with the string 'dl'.
     241             :   This can be useful when you only want to use this malloc in one part
     242             :   of a program, using your regular system malloc elsewhere.
     243             : 
     244             : ABORT                    default: defined as abort()
     245             :   Defines how to abort on failed checks.  On most systems, a failed
     246             :   check cannot die with an "assert" or even print an informative
     247             :   message, because the underlying print routines in turn call malloc,
     248             :   which will fail again.  Generally, the best policy is to simply call
     249             :   abort(). It's not very useful to do more than this because many
     250             :   errors due to overwriting will show up as address faults (null, odd
     251             :   addresses etc) rather than malloc-triggered checks, so will also
     252             :   abort.  Also, most compilers know that abort() does not return, so
     253             :   can better optimize code conditionally calling it.
     254             : 
     255             : PROCEED_ON_ERROR           default: defined as 0 (false)
     256             :   Controls whether detected bad addresses cause them to bypassed
     257             :   rather than aborting. If set, detected bad arguments to free and
     258             :   realloc are ignored. And all bookkeeping information is zeroed out
     259             :   upon a detected overwrite of freed heap space, thus losing the
     260             :   ability to ever return it from malloc again, but enabling the
     261             :   application to proceed. If PROCEED_ON_ERROR is defined, the
     262             :   static variable malloc_corruption_error_count is compiled in
     263             :   and can be examined to see if errors have occurred. This option
     264             :   generates slower code than the default abort policy.
     265             : 
     266             : DEBUG                    default: NOT defined
     267             :   The DEBUG setting is mainly intended for people trying to modify
     268             :   this code or diagnose problems when porting to new platforms.
     269             :   However, it may also be able to better isolate user errors than just
     270             :   using runtime checks.  The assertions in the check routines spell
     271             :   out in more detail the assumptions and invariants underlying the
     272             :   algorithms.  The checking is fairly extensive, and will slow down
     273             :   execution noticeably. Calling malloc_stats or mallinfo with DEBUG
     274             :   set will attempt to check every non-mmapped allocated and free chunk
     275             :   in the course of computing the summaries.
     276             : 
     277             : ABORT_ON_ASSERT_FAILURE   default: defined as 1 (true)
     278             :   Debugging assertion failures can be nearly impossible if your
     279             :   version of the assert macro causes malloc to be called, which will
     280             :   lead to a cascade of further failures, blowing the runtime stack.
     281             :   ABORT_ON_ASSERT_FAILURE cause assertions failures to call abort(),
     282             :   which will usually make debugging easier.
     283             : 
     284             : MALLOC_FAILURE_ACTION     default: sets errno to ENOMEM, or no-op on win32
     285             :   The action to take before "return 0" when malloc fails to be able to
     286             :   return memory because there is none available.
     287             : 
     288             : HAVE_MORECORE             default: 1 (true) unless win32 or ONLY_MSPACES
     289             :   True if this system supports sbrk or an emulation of it.
     290             : 
     291             : MORECORE                  default: sbrk
     292             :   The name of the sbrk-style system routine to call to obtain more
     293             :   memory.  See below for guidance on writing custom MORECORE
     294             :   functions. The type of the argument to sbrk/MORECORE varies across
     295             :   systems.  It cannot be size_t, because it supports negative
     296             :   arguments, so it is normally the signed type of the same width as
     297             :   size_t (sometimes declared as "intptr_t").  It doesn't much matter
     298             :   though. Internally, we only call it with arguments less than half
     299             :   the max value of a size_t, which should work across all reasonable
     300             :   possibilities, although sometimes generating compiler warnings.  See
     301             :   near the end of this file for guidelines for creating a custom
     302             :   version of MORECORE.
     303             : 
     304             : MORECORE_CONTIGUOUS       default: 1 (true)
     305             :   If true, take advantage of fact that consecutive calls to MORECORE
     306             :   with positive arguments always return contiguous increasing
     307             :   addresses.  This is true of unix sbrk. It does not hurt too much to
     308             :   set it true anyway, since malloc copes with non-contiguities.
     309             :   Setting it false when definitely non-contiguous saves time
     310             :   and possibly wasted space it would take to discover this though.
     311             : 
     312             : MORECORE_CANNOT_TRIM      default: NOT defined
     313             :   True if MORECORE cannot release space back to the system when given
     314             :   negative arguments. This is generally necessary only if you are
     315             :   using a hand-crafted MORECORE function that cannot handle negative
     316             :   arguments.
     317             : 
     318             : HAVE_MMAP                 default: 1 (true)
     319             :   True if this system supports mmap or an emulation of it.  If so, and
     320             :   HAVE_MORECORE is not true, MMAP is used for all system
     321             :   allocation. If set and HAVE_MORECORE is true as well, MMAP is
     322             :   primarily used to directly allocate very large blocks. It is also
     323             :   used as a backup strategy in cases where MORECORE fails to provide
     324             :   space from system. Note: A single call to MUNMAP is assumed to be
     325             :   able to unmap memory that may have be allocated using multiple calls
     326             :   to MMAP, so long as they are adjacent.
     327             : 
     328             : HAVE_MREMAP               default: 1 on linux, else 0
     329             :   If true realloc() uses mremap() to re-allocate large blocks and
     330             :   extend or shrink allocation spaces.
     331             : 
     332             : MMAP_CLEARS               default: 1 on unix
     333             :   True if mmap clears memory so calloc doesn't need to. This is true
     334             :   for standard unix mmap using /dev/zero.
     335             : 
     336             : USE_BUILTIN_FFS            default: 0 (i.e., not used)
     337             :   Causes malloc to use the builtin ffs() function to compute indices.
     338             :   Some compilers may recognize and intrinsify ffs to be faster than the
     339             :   supplied C version. Also, the case of x86 using gcc is special-cased
     340             :   to an asm instruction, so is already as fast as it can be, and so
     341             :   this setting has no effect. (On most x86s, the asm version is only
     342             :   slightly faster than the C version.)
     343             : 
     344             : malloc_getpagesize         default: derive from system includes, or 4096.
     345             :   The system page size. To the extent possible, this malloc manages
     346             :   memory from the system in page-size units.  This may be (and
     347             :   usually is) a function rather than a constant. This is ignored
     348             :   if WIN32, where page size is determined using getSystemInfo during
     349             :   initialization.
     350             : 
     351             : USE_DEV_RANDOM             default: 0 (i.e., not used)
     352             :   Causes malloc to use /dev/random to initialize secure magic seed for
     353             :   stamping footers. Otherwise, the current time is used.
     354             : 
     355             : NO_MALLINFO                default: 0
     356             :   If defined, don't compile "mallinfo". This can be a simple way
     357             :   of dealing with mismatches between system declarations and
     358             :   those in this file.
     359             : 
     360             : MALLINFO_FIELD_TYPE        default: size_t
     361             :   The type of the fields in the mallinfo struct. This was originally
     362             :   defined as "int" in SVID etc, but is more usefully defined as
     363             :   size_t. The value is used only if  HAVE_USR_INCLUDE_MALLOC_H is not set
     364             : 
     365             : REALLOC_ZERO_BYTES_FREES    default: not defined
     366             :   This should be set if a call to realloc with zero bytes should 
     367             :   be the same as a call to free. Some people think it should. Otherwise, 
     368             :   since this malloc returns a unique pointer for malloc(0), so does 
     369             :   realloc(p, 0).
     370             : 
     371             : LACKS_UNISTD_H, LACKS_FCNTL_H, LACKS_SYS_PARAM_H, LACKS_SYS_MMAN_H
     372             : LACKS_STRINGS_H, LACKS_STRING_H, LACKS_SYS_TYPES_H,  LACKS_ERRNO_H
     373             : LACKS_STDLIB_H                default: NOT defined unless on WIN32
     374             :   Define these if your system does not have these header files.
     375             :   You might need to manually insert some of the declarations they provide.
     376             : 
     377             : DEFAULT_GRANULARITY        default: page size if MORECORE_CONTIGUOUS,
     378             :                                 system_info.dwAllocationGranularity in WIN32,
     379             :                                 otherwise 64K.
     380             :       Also settable using mallopt(M_GRANULARITY, x)
     381             :   The unit for allocating and deallocating memory from the system.  On
     382             :   most systems with contiguous MORECORE, there is no reason to
     383             :   make this more than a page. However, systems with MMAP tend to
     384             :   either require or encourage larger granularities.  You can increase
     385             :   this value to prevent system allocation functions to be called so
     386             :   often, especially if they are slow.  The value must be at least one
     387             :   page and must be a power of two.  Setting to 0 causes initialization
     388             :   to either page size or win32 region size.  (Note: In previous
     389             :   versions of malloc, the equivalent of this option was called
     390             :   "TOP_PAD")
     391             : 
     392             : DEFAULT_TRIM_THRESHOLD    default: 2MB
     393             :       Also settable using mallopt(M_TRIM_THRESHOLD, x)
     394             :   The maximum amount of unused top-most memory to keep before
     395             :   releasing via malloc_trim in free().  Automatic trimming is mainly
     396             :   useful in long-lived programs using contiguous MORECORE.  Because
     397             :   trimming via sbrk can be slow on some systems, and can sometimes be
     398             :   wasteful (in cases where programs immediately afterward allocate
     399             :   more large chunks) the value should be high enough so that your
     400             :   overall system performance would improve by releasing this much
     401             :   memory.  As a rough guide, you might set to a value close to the
     402             :   average size of a process (program) running on your system.
     403             :   Releasing this much memory would allow such a process to run in
     404             :   memory.  Generally, it is worth tuning trim thresholds when a
     405             :   program undergoes phases where several large chunks are allocated
     406             :   and released in ways that can reuse each other's storage, perhaps
     407             :   mixed with phases where there are no such chunks at all. The trim
     408             :   value must be greater than page size to have any useful effect.  To
     409             :   disable trimming completely, you can set to MAX_SIZE_T. Note that the trick
     410             :   some people use of mallocing a huge space and then freeing it at
     411             :   program startup, in an attempt to reserve system memory, doesn't
     412             :   have the intended effect under automatic trimming, since that memory
     413             :   will immediately be returned to the system.
     414             : 
     415             : DEFAULT_MMAP_THRESHOLD       default: 256K
     416             :       Also settable using mallopt(M_MMAP_THRESHOLD, x)
     417             :   The request size threshold for using MMAP to directly service a
     418             :   request. Requests of at least this size that cannot be allocated
     419             :   using already-existing space will be serviced via mmap.  (If enough
     420             :   normal freed space already exists it is used instead.)  Using mmap
     421             :   segregates relatively large chunks of memory so that they can be
     422             :   individually obtained and released from the host system. A request
     423             :   serviced through mmap is never reused by any other request (at least
     424             :   not directly; the system may just so happen to remap successive
     425             :   requests to the same locations).  Segregating space in this way has
     426             :   the benefits that: Mmapped space can always be individually released
     427             :   back to the system, which helps keep the system level memory demands
     428             :   of a long-lived program low.  Also, mapped memory doesn't become
     429             :   `locked' between other chunks, as can happen with normally allocated
     430             :   chunks, which means that even trimming via malloc_trim would not
     431             :   release them.  However, it has the disadvantage that the space
     432             :   cannot be reclaimed, consolidated, and then used to service later
     433             :   requests, as happens with normal chunks.  The advantages of mmap
     434             :   nearly always outweigh disadvantages for "large" chunks, but the
     435             :   value of "large" may vary across systems.  The default is an
     436             :   empirically derived value that works well in most systems. You can
     437             :   disable mmap by setting to MAX_SIZE_T.
     438             : 
     439             : */
     440             : 
     441             : #ifndef WIN32
     442             : #ifdef _WIN32
     443             : #define WIN32 1
     444             : #endif  /* _WIN32 */
     445             : #endif  /* WIN32 */
     446             : #ifdef WIN32
     447             : #define WIN32_LEAN_AND_MEAN
     448             : #include <windows.h>
     449             : #define HAVE_MMAP 1
     450             : #define HAVE_MORECORE 0
     451             : #define LACKS_UNISTD_H
     452             : #define LACKS_SYS_PARAM_H
     453             : #define LACKS_SYS_MMAN_H
     454             : #define LACKS_STRING_H
     455             : #define LACKS_STRINGS_H
     456             : #define LACKS_SYS_TYPES_H
     457             : #define LACKS_ERRNO_H
     458             : #define MALLOC_FAILURE_ACTION
     459             : #define MMAP_CLEARS 0 /* WINCE and some others apparently don't clear */
     460             : #elif !defined _GNU_SOURCE
     461             : /* mremap() on Linux requires this via sys/mman.h
     462             :  * See roundup issue 10309
     463             :  */
     464             : #define _GNU_SOURCE 1
     465             : #endif  /* WIN32 */
     466             : 
     467             : #ifdef __OS2__
     468             : #define INCL_DOS
     469             : #include <os2.h>
     470             : #define HAVE_MMAP 1
     471             : #define HAVE_MORECORE 0
     472             : #define LACKS_SYS_MMAN_H
     473             : #endif  /* __OS2__ */
     474             : 
     475             : #if defined(DARWIN) || defined(_DARWIN)
     476             : /* Mac OSX docs advise not to use sbrk; it seems better to use mmap */
     477             : #ifndef HAVE_MORECORE
     478             : #define HAVE_MORECORE 0
     479             : #define HAVE_MMAP 1
     480             : #endif  /* HAVE_MORECORE */
     481             : #endif  /* DARWIN */
     482             : 
     483             : #ifndef LACKS_SYS_TYPES_H
     484             : #include <sys/types.h>  /* For size_t */
     485             : #endif  /* LACKS_SYS_TYPES_H */
     486             : 
     487             : /* The maximum possible size_t value has all bits set */
     488             : #define MAX_SIZE_T           (~(size_t)0)
     489             : 
     490             : #ifndef ONLY_MSPACES
     491             : #define ONLY_MSPACES 0
     492             : #endif  /* ONLY_MSPACES */
     493             : #ifndef MSPACES
     494             : #if ONLY_MSPACES
     495             : #define MSPACES 1
     496             : #else   /* ONLY_MSPACES */
     497             : #define MSPACES 0
     498             : #endif  /* ONLY_MSPACES */
     499             : #endif  /* MSPACES */
     500             : #ifndef MALLOC_ALIGNMENT
     501             : #define MALLOC_ALIGNMENT ((size_t)8U)
     502             : #endif  /* MALLOC_ALIGNMENT */
     503             : #ifndef FOOTERS
     504             : #define FOOTERS 0
     505             : #endif  /* FOOTERS */
     506             : #ifndef ABORT
     507             : #define ABORT  abort()
     508             : #endif  /* ABORT */
     509             : #ifndef ABORT_ON_ASSERT_FAILURE
     510             : #define ABORT_ON_ASSERT_FAILURE 1
     511             : #endif  /* ABORT_ON_ASSERT_FAILURE */
     512             : #ifndef PROCEED_ON_ERROR
     513             : #define PROCEED_ON_ERROR 0
     514             : #endif  /* PROCEED_ON_ERROR */
     515             : #ifndef USE_LOCKS
     516             : #define USE_LOCKS 0
     517             : #endif  /* USE_LOCKS */
     518             : #ifndef INSECURE
     519             : #define INSECURE 0
     520             : #endif  /* INSECURE */
     521             : #ifndef HAVE_MMAP
     522             : #define HAVE_MMAP 1
     523             : #endif  /* HAVE_MMAP */
     524             : #ifndef MMAP_CLEARS
     525             : #define MMAP_CLEARS 1
     526             : #endif  /* MMAP_CLEARS */
     527             : #ifndef HAVE_MREMAP
     528             : #ifdef linux
     529             : #define HAVE_MREMAP 1
     530             : #else   /* linux */
     531             : #define HAVE_MREMAP 0
     532             : #endif  /* linux */
     533             : #endif  /* HAVE_MREMAP */
     534             : #ifndef MALLOC_FAILURE_ACTION
     535             : #define MALLOC_FAILURE_ACTION  errno = ENOMEM;
     536             : #endif  /* MALLOC_FAILURE_ACTION */
     537             : #ifndef HAVE_MORECORE
     538             : #if ONLY_MSPACES
     539             : #define HAVE_MORECORE 0
     540             : #else   /* ONLY_MSPACES */
     541             : #define HAVE_MORECORE 1
     542             : #endif  /* ONLY_MSPACES */
     543             : #endif  /* HAVE_MORECORE */
     544             : #if !HAVE_MORECORE
     545             : #define MORECORE_CONTIGUOUS 0
     546             : #else   /* !HAVE_MORECORE */
     547             : #ifndef MORECORE
     548             : #define MORECORE sbrk
     549             : #endif  /* MORECORE */
     550             : #ifndef MORECORE_CONTIGUOUS
     551             : #define MORECORE_CONTIGUOUS 1
     552             : #endif  /* MORECORE_CONTIGUOUS */
     553             : #endif  /* HAVE_MORECORE */
     554             : #ifndef DEFAULT_GRANULARITY
     555             : #if MORECORE_CONTIGUOUS
     556             : #define DEFAULT_GRANULARITY (0)  /* 0 means to compute in init_mparams */
     557             : #else   /* MORECORE_CONTIGUOUS */
     558             : #define DEFAULT_GRANULARITY ((size_t)64U * (size_t)1024U)
     559             : #endif  /* MORECORE_CONTIGUOUS */
     560             : #endif  /* DEFAULT_GRANULARITY */
     561             : #ifndef DEFAULT_TRIM_THRESHOLD
     562             : #ifndef MORECORE_CANNOT_TRIM
     563             : #define DEFAULT_TRIM_THRESHOLD ((size_t)2U * (size_t)1024U * (size_t)1024U)
     564             : #else   /* MORECORE_CANNOT_TRIM */
     565             : #define DEFAULT_TRIM_THRESHOLD MAX_SIZE_T
     566             : #endif  /* MORECORE_CANNOT_TRIM */
     567             : #endif  /* DEFAULT_TRIM_THRESHOLD */
     568             : #ifndef DEFAULT_MMAP_THRESHOLD
     569             : #if HAVE_MMAP
     570             : #define DEFAULT_MMAP_THRESHOLD ((size_t)256U * (size_t)1024U)
     571             : #else   /* HAVE_MMAP */
     572             : #define DEFAULT_MMAP_THRESHOLD MAX_SIZE_T
     573             : #endif  /* HAVE_MMAP */
     574             : #endif  /* DEFAULT_MMAP_THRESHOLD */
     575             : #ifndef USE_BUILTIN_FFS
     576             : #define USE_BUILTIN_FFS 0
     577             : #endif  /* USE_BUILTIN_FFS */
     578             : #ifndef USE_DEV_RANDOM
     579             : #define USE_DEV_RANDOM 0
     580             : #endif  /* USE_DEV_RANDOM */
     581             : #ifndef NO_MALLINFO
     582             : #define NO_MALLINFO 0
     583             : #endif  /* NO_MALLINFO */
     584             : #ifndef MALLINFO_FIELD_TYPE
     585             : #define MALLINFO_FIELD_TYPE size_t
     586             : #endif  /* MALLINFO_FIELD_TYPE */
     587             : 
     588             : /*
     589             :   mallopt tuning options.  SVID/XPG defines four standard parameter
     590             :   numbers for mallopt, normally defined in malloc.h.  None of these
     591             :   are used in this malloc, so setting them has no effect. But this
     592             :   malloc does support the following options.
     593             : */
     594             : 
     595             : #define M_TRIM_THRESHOLD     (-1)
     596             : #define M_GRANULARITY        (-2)
     597             : #define M_MMAP_THRESHOLD     (-3)
     598             : 
     599             : /* ------------------------ Mallinfo declarations ------------------------ */
     600             : 
     601             : #if !NO_MALLINFO
     602             : /*
     603             :   This version of malloc supports the standard SVID/XPG mallinfo
     604             :   routine that returns a struct containing usage properties and
     605             :   statistics. It should work on any system that has a
     606             :   /usr/include/malloc.h defining struct mallinfo.  The main
     607             :   declaration needed is the mallinfo struct that is returned (by-copy)
     608             :   by mallinfo().  The malloinfo struct contains a bunch of fields that
     609             :   are not even meaningful in this version of malloc.  These fields are
     610             :   are instead filled by mallinfo() with other numbers that might be of
     611             :   interest.
     612             : 
     613             :   HAVE_USR_INCLUDE_MALLOC_H should be set if you have a
     614             :   /usr/include/malloc.h file that includes a declaration of struct
     615             :   mallinfo.  If so, it is included; else a compliant version is
     616             :   declared below.  These must be precisely the same for mallinfo() to
     617             :   work.  The original SVID version of this struct, defined on most
     618             :   systems with mallinfo, declares all fields as ints. But some others
     619             :   define as unsigned long. If your system defines the fields using a
     620             :   type of different width than listed here, you MUST #include your
     621             :   system version and #define HAVE_USR_INCLUDE_MALLOC_H.
     622             : */
     623             : 
     624             : /* #define HAVE_USR_INCLUDE_MALLOC_H */
     625             : 
     626             : #ifdef HAVE_USR_INCLUDE_MALLOC_H
     627             : #include "/usr/include/malloc.h"
     628             : #else /* HAVE_USR_INCLUDE_MALLOC_H */
     629             : 
     630             : /* HP-UX's stdlib.h redefines mallinfo unless _STRUCT_MALLINFO is defined */
     631             : #define _STRUCT_MALLINFO
     632             : 
     633             : struct mallinfo {
     634             :   MALLINFO_FIELD_TYPE arena;    /* non-mmapped space allocated from system */
     635             :   MALLINFO_FIELD_TYPE ordblks;  /* number of free chunks */
     636             :   MALLINFO_FIELD_TYPE smblks;   /* always 0 */
     637             :   MALLINFO_FIELD_TYPE hblks;    /* always 0 */
     638             :   MALLINFO_FIELD_TYPE hblkhd;   /* space in mmapped regions */
     639             :   MALLINFO_FIELD_TYPE usmblks;  /* maximum total allocated space */
     640             :   MALLINFO_FIELD_TYPE fsmblks;  /* always 0 */
     641             :   MALLINFO_FIELD_TYPE uordblks; /* total allocated space */
     642             :   MALLINFO_FIELD_TYPE fordblks; /* total free space */
     643             :   MALLINFO_FIELD_TYPE keepcost; /* releasable (via malloc_trim) space */
     644             : };
     645             : 
     646             : #endif /* HAVE_USR_INCLUDE_MALLOC_H */
     647             : #endif /* NO_MALLINFO */
     648             : 
     649             : #ifdef __cplusplus
     650             : extern "C" {
     651             : #endif /* __cplusplus */
     652             : 
     653             : #if !ONLY_MSPACES
     654             : 
     655             : /* ------------------- Declarations of public routines ------------------- */
     656             : 
     657             : #ifndef USE_DL_PREFIX
     658             : #define dlcalloc               calloc
     659             : #define dlfree                 free
     660             : #define dlmalloc               malloc
     661             : #define dlmemalign             memalign
     662             : #define dlrealloc              realloc
     663             : #define dlvalloc               valloc
     664             : #define dlpvalloc              pvalloc
     665             : #define dlmallinfo             mallinfo
     666             : #define dlmallopt              mallopt
     667             : #define dlmalloc_trim          malloc_trim
     668             : #define dlmalloc_stats         malloc_stats
     669             : #define dlmalloc_usable_size   malloc_usable_size
     670             : #define dlmalloc_footprint     malloc_footprint
     671             : #define dlmalloc_max_footprint malloc_max_footprint
     672             : #define dlindependent_calloc   independent_calloc
     673             : #define dlindependent_comalloc independent_comalloc
     674             : #endif /* USE_DL_PREFIX */
     675             : 
     676             : 
     677             : /*
     678             :   malloc(size_t n)
     679             :   Returns a pointer to a newly allocated chunk of at least n bytes, or
     680             :   null if no space is available, in which case errno is set to ENOMEM
     681             :   on ANSI C systems.
     682             : 
     683             :   If n is zero, malloc returns a minimum-sized chunk. (The minimum
     684             :   size is 16 bytes on most 32bit systems, and 32 bytes on 64bit
     685             :   systems.)  Note that size_t is an unsigned type, so calls with
     686             :   arguments that would be negative if signed are interpreted as
     687             :   requests for huge amounts of space, which will often fail. The
     688             :   maximum supported value of n differs across systems, but is in all
     689             :   cases less than the maximum representable value of a size_t.
     690             : */
     691             : void* dlmalloc(size_t);
     692             : 
     693             : /*
     694             :   free(void* p)
     695             :   Releases the chunk of memory pointed to by p, that had been previously
     696             :   allocated using malloc or a related routine such as realloc.
     697             :   It has no effect if p is null. If p was not malloced or already
     698             :   freed, free(p) will by default cause the current program to abort.
     699             : */
     700             : void  dlfree(void*);
     701             : 
     702             : /*
     703             :   calloc(size_t n_elements, size_t element_size);
     704             :   Returns a pointer to n_elements * element_size bytes, with all locations
     705             :   set to zero.
     706             : */
     707             : void* dlcalloc(size_t, size_t);
     708             : 
     709             : /*
     710             :   realloc(void* p, size_t n)
     711             :   Returns a pointer to a chunk of size n that contains the same data
     712             :   as does chunk p up to the minimum of (n, p's size) bytes, or null
     713             :   if no space is available.
     714             : 
     715             :   The returned pointer may or may not be the same as p. The algorithm
     716             :   prefers extending p in most cases when possible, otherwise it
     717             :   employs the equivalent of a malloc-copy-free sequence.
     718             : 
     719             :   If p is null, realloc is equivalent to malloc.
     720             : 
     721             :   If space is not available, realloc returns null, errno is set (if on
     722             :   ANSI) and p is NOT freed.
     723             : 
     724             :   if n is for fewer bytes than already held by p, the newly unused
     725             :   space is lopped off and freed if possible.  realloc with a size
     726             :   argument of zero (re)allocates a minimum-sized chunk.
     727             : 
     728             :   The old unix realloc convention of allowing the last-free'd chunk
     729             :   to be used as an argument to realloc is not supported.
     730             : */
     731             : 
     732             : void* dlrealloc(void*, size_t);
     733             : 
     734             : /*
     735             :   memalign(size_t alignment, size_t n);
     736             :   Returns a pointer to a newly allocated chunk of n bytes, aligned
     737             :   in accord with the alignment argument.
     738             : 
     739             :   The alignment argument should be a power of two. If the argument is
     740             :   not a power of two, the nearest greater power is used.
     741             :   8-byte alignment is guaranteed by normal malloc calls, so don't
     742             :   bother calling memalign with an argument of 8 or less.
     743             : 
     744             :   Overreliance on memalign is a sure way to fragment space.
     745             : */
     746             : void* dlmemalign(size_t, size_t);
     747             : 
     748             : /*
     749             :   valloc(size_t n);
     750             :   Equivalent to memalign(pagesize, n), where pagesize is the page
     751             :   size of the system. If the pagesize is unknown, 4096 is used.
     752             : */
     753             : void* dlvalloc(size_t);
     754             : 
     755             : /*
     756             :   mallopt(int parameter_number, int parameter_value)
     757             :   Sets tunable parameters The format is to provide a
     758             :   (parameter-number, parameter-value) pair.  mallopt then sets the
     759             :   corresponding parameter to the argument value if it can (i.e., so
     760             :   long as the value is meaningful), and returns 1 if successful else
     761             :   0.  SVID/XPG/ANSI defines four standard param numbers for mallopt,
     762             :   normally defined in malloc.h.  None of these are use in this malloc,
     763             :   so setting them has no effect. But this malloc also supports other
     764             :   options in mallopt. See below for details.  Briefly, supported
     765             :   parameters are as follows (listed defaults are for "typical"
     766             :   configurations).
     767             : 
     768             :   Symbol            param #  default    allowed param values
     769             :   M_TRIM_THRESHOLD     -1   2*1024*1024   any   (MAX_SIZE_T disables)
     770             :   M_GRANULARITY        -2     page size   any power of 2 >= page size
     771             :   M_MMAP_THRESHOLD     -3      256*1024   any   (or 0 if no MMAP support)
     772             : */
     773             : int dlmallopt(int, int);
     774             : 
     775             : /*
     776             :   malloc_footprint();
     777             :   Returns the number of bytes obtained from the system.  The total
     778             :   number of bytes allocated by malloc, realloc etc., is less than this
     779             :   value. Unlike mallinfo, this function returns only a precomputed
     780             :   result, so can be called frequently to monitor memory consumption.
     781             :   Even if locks are otherwise defined, this function does not use them,
     782             :   so results might not be up to date.
     783             : */
     784             : size_t dlmalloc_footprint(void);
     785             : 
     786             : /*
     787             :   malloc_max_footprint();
     788             :   Returns the maximum number of bytes obtained from the system. This
     789             :   value will be greater than current footprint if deallocated space
     790             :   has been reclaimed by the system. The peak number of bytes allocated
     791             :   by malloc, realloc etc., is less than this value. Unlike mallinfo,
     792             :   this function returns only a precomputed result, so can be called
     793             :   frequently to monitor memory consumption.  Even if locks are
     794             :   otherwise defined, this function does not use them, so results might
     795             :   not be up to date.
     796             : */
     797             : size_t dlmalloc_max_footprint(void);
     798             : 
     799             : #if !NO_MALLINFO
     800             : /*
     801             :   mallinfo()
     802             :   Returns (by copy) a struct containing various summary statistics:
     803             : 
     804             :   arena:     current total non-mmapped bytes allocated from system
     805             :   ordblks:   the number of free chunks
     806             :   smblks:    always zero.
     807             :   hblks:     current number of mmapped regions
     808             :   hblkhd:    total bytes held in mmapped regions
     809             :   usmblks:   the maximum total allocated space. This will be greater
     810             :                 than current total if trimming has occurred.
     811             :   fsmblks:   always zero
     812             :   uordblks:  current total allocated space (normal or mmapped)
     813             :   fordblks:  total free space
     814             :   keepcost:  the maximum number of bytes that could ideally be released
     815             :                back to system via malloc_trim. ("ideally" means that
     816             :                it ignores page restrictions etc.)
     817             : 
     818             :   Because these fields are ints, but internal bookkeeping may
     819             :   be kept as longs, the reported values may wrap around zero and
     820             :   thus be inaccurate.
     821             : */
     822             : struct mallinfo dlmallinfo(void);
     823             : #endif /* NO_MALLINFO */
     824             : 
     825             : /*
     826             :   independent_calloc(size_t n_elements, size_t element_size, void* chunks[]);
     827             : 
     828             :   independent_calloc is similar to calloc, but instead of returning a
     829             :   single cleared space, it returns an array of pointers to n_elements
     830             :   independent elements that can hold contents of size elem_size, each
     831             :   of which starts out cleared, and can be independently freed,
     832             :   realloc'ed etc. The elements are guaranteed to be adjacently
     833             :   allocated (this is not guaranteed to occur with multiple callocs or
     834             :   mallocs), which may also improve cache locality in some
     835             :   applications.
     836             : 
     837             :   The "chunks" argument is optional (i.e., may be null, which is
     838             :   probably the most typical usage). If it is null, the returned array
     839             :   is itself dynamically allocated and should also be freed when it is
     840             :   no longer needed. Otherwise, the chunks array must be of at least
     841             :   n_elements in length. It is filled in with the pointers to the
     842             :   chunks.
     843             : 
     844             :   In either case, independent_calloc returns this pointer array, or
     845             :   null if the allocation failed.  If n_elements is zero and "chunks"
     846             :   is null, it returns a chunk representing an array with zero elements
     847             :   (which should be freed if not wanted).
     848             : 
     849             :   Each element must be individually freed when it is no longer
     850             :   needed. If you'd like to instead be able to free all at once, you
     851             :   should instead use regular calloc and assign pointers into this
     852             :   space to represent elements.  (In this case though, you cannot
     853             :   independently free elements.)
     854             : 
     855             :   independent_calloc simplifies and speeds up implementations of many
     856             :   kinds of pools.  It may also be useful when constructing large data
     857             :   structures that initially have a fixed number of fixed-sized nodes,
     858             :   but the number is not known at compile time, and some of the nodes
     859             :   may later need to be freed. For example:
     860             : 
     861             :   struct Node { int item; struct Node* next; };
     862             : 
     863             :   struct Node* build_list() {
     864             :     struct Node** pool;
     865             :     int n = read_number_of_nodes_needed();
     866             :     if (n <= 0) return 0;
     867             :     pool = (struct Node**)(independent_calloc(n, sizeof(struct Node), 0);
     868             :     if (pool == 0) die();
     869             :     // organize into a linked list...
     870             :     struct Node* first = pool[0];
     871             :     for (i = 0; i < n-1; ++i)
     872             :       pool[i]->next = pool[i+1];
     873             :     free(pool);     // Can now free the array (or not, if it is needed later)
     874             :     return first;
     875             :   }
     876             : */
     877             : void** dlindependent_calloc(size_t, size_t, void**);
     878             : 
     879             : /*
     880             :   independent_comalloc(size_t n_elements, size_t sizes[], void* chunks[]);
     881             : 
     882             :   independent_comalloc allocates, all at once, a set of n_elements
     883             :   chunks with sizes indicated in the "sizes" array.    It returns
     884             :   an array of pointers to these elements, each of which can be
     885             :   independently freed, realloc'ed etc. The elements are guaranteed to
     886             :   be adjacently allocated (this is not guaranteed to occur with
     887             :   multiple callocs or mallocs), which may also improve cache locality
     888             :   in some applications.
     889             : 
     890             :   The "chunks" argument is optional (i.e., may be null). If it is null
     891             :   the returned array is itself dynamically allocated and should also
     892             :   be freed when it is no longer needed. Otherwise, the chunks array
     893             :   must be of at least n_elements in length. It is filled in with the
     894             :   pointers to the chunks.
     895             : 
     896             :   In either case, independent_comalloc returns this pointer array, or
     897             :   null if the allocation failed.  If n_elements is zero and chunks is
     898             :   null, it returns a chunk representing an array with zero elements
     899             :   (which should be freed if not wanted).
     900             : 
     901             :   Each element must be individually freed when it is no longer
     902             :   needed. If you'd like to instead be able to free all at once, you
     903             :   should instead use a single regular malloc, and assign pointers at
     904             :   particular offsets in the aggregate space. (In this case though, you
     905             :   cannot independently free elements.)
     906             : 
     907             :   independent_comallac differs from independent_calloc in that each
     908             :   element may have a different size, and also that it does not
     909             :   automatically clear elements.
     910             : 
     911             :   independent_comalloc can be used to speed up allocation in cases
     912             :   where several structs or objects must always be allocated at the
     913             :   same time.  For example:
     914             : 
     915             :   struct Head { ... }
     916             :   struct Foot { ... }
     917             : 
     918             :   void send_message(char* msg) {
     919             :     int msglen = strlen(msg);
     920             :     size_t sizes[3] = { sizeof(struct Head), msglen, sizeof(struct Foot) };
     921             :     void* chunks[3];
     922             :     if (independent_comalloc(3, sizes, chunks) == 0)
     923             :       die();
     924             :     struct Head* head = (struct Head*)(chunks[0]);
     925             :     char*        body = (char*)(chunks[1]);
     926             :     struct Foot* foot = (struct Foot*)(chunks[2]);
     927             :     // ...
     928             :   }
     929             : 
     930             :   In general though, independent_comalloc is worth using only for
     931             :   larger values of n_elements. For small values, you probably won't
     932             :   detect enough difference from series of malloc calls to bother.
     933             : 
     934             :   Overuse of independent_comalloc can increase overall memory usage,
     935             :   since it cannot reuse existing noncontiguous small chunks that
     936             :   might be available for some of the elements.
     937             : */
     938             : void** dlindependent_comalloc(size_t, size_t*, void**);
     939             : 
     940             : 
     941             : /*
     942             :   pvalloc(size_t n);
     943             :   Equivalent to valloc(minimum-page-that-holds(n)), that is,
     944             :   round up n to nearest pagesize.
     945             :  */
     946             : void*  dlpvalloc(size_t);
     947             : 
     948             : /*
     949             :   malloc_trim(size_t pad);
     950             : 
     951             :   If possible, gives memory back to the system (via negative arguments
     952             :   to sbrk) if there is unused memory at the `high' end of the malloc
     953             :   pool or in unused MMAP segments. You can call this after freeing
     954             :   large blocks of memory to potentially reduce the system-level memory
     955             :   requirements of a program. However, it cannot guarantee to reduce
     956             :   memory. Under some allocation patterns, some large free blocks of
     957             :   memory will be locked between two used chunks, so they cannot be
     958             :   given back to the system.
     959             : 
     960             :   The `pad' argument to malloc_trim represents the amount of free
     961             :   trailing space to leave untrimmed. If this argument is zero, only
     962             :   the minimum amount of memory to maintain internal data structures
     963             :   will be left. Non-zero arguments can be supplied to maintain enough
     964             :   trailing space to service future expected allocations without having
     965             :   to re-obtain memory from the system.
     966             : 
     967             :   Malloc_trim returns 1 if it actually released any memory, else 0.
     968             : */
     969             : int  dlmalloc_trim(size_t);
     970             : 
     971             : /*
     972             :   malloc_usable_size(void* p);
     973             : 
     974             :   Returns the number of bytes you can actually use in
     975             :   an allocated chunk, which may be more than you requested (although
     976             :   often not) due to alignment and minimum size constraints.
     977             :   You can use this many bytes without worrying about
     978             :   overwriting other allocated objects. This is not a particularly great
     979             :   programming practice. malloc_usable_size can be more useful in
     980             :   debugging and assertions, for example:
     981             : 
     982             :   p = malloc(n);
     983             :   assert(malloc_usable_size(p) >= 256);
     984             : */
     985             : size_t dlmalloc_usable_size(void*);
     986             : 
     987             : /*
     988             :   malloc_stats();
     989             :   Prints on stderr the amount of space obtained from the system (both
     990             :   via sbrk and mmap), the maximum amount (which may be more than
     991             :   current if malloc_trim and/or munmap got called), and the current
     992             :   number of bytes allocated via malloc (or realloc, etc) but not yet
     993             :   freed. Note that this is the number of bytes allocated, not the
     994             :   number requested. It will be larger than the number requested
     995             :   because of alignment and bookkeeping overhead. Because it includes
     996             :   alignment wastage as being in use, this figure may be greater than
     997             :   zero even when no user-level chunks are allocated.
     998             : 
     999             :   The reported current and maximum system memory can be inaccurate if
    1000             :   a program makes other calls to system memory allocation functions
    1001             :   (normally sbrk) outside of malloc.
    1002             : 
    1003             :   malloc_stats prints only the most commonly interesting statistics.
    1004             :   More information can be obtained by calling mallinfo.
    1005             : */
    1006             : void  dlmalloc_stats(void);
    1007             : 
    1008             : #endif /* ONLY_MSPACES */
    1009             : 
    1010             : #if MSPACES
    1011             : 
    1012             : /*
    1013             :   mspace is an opaque type representing an independent
    1014             :   region of space that supports mspace_malloc, etc.
    1015             : */
    1016             : typedef void* mspace;
    1017             : 
    1018             : /*
    1019             :   create_mspace creates and returns a new independent space with the
    1020             :   given initial capacity, or, if 0, the default granularity size.  It
    1021             :   returns null if there is no system memory available to create the
    1022             :   space.  If argument locked is non-zero, the space uses a separate
    1023             :   lock to control access. The capacity of the space will grow
    1024             :   dynamically as needed to service mspace_malloc requests.  You can
    1025             :   control the sizes of incremental increases of this space by
    1026             :   compiling with a different DEFAULT_GRANULARITY or dynamically
    1027             :   setting with mallopt(M_GRANULARITY, value).
    1028             : */
    1029             : mspace create_mspace(size_t capacity, int locked);
    1030             : 
    1031             : /*
    1032             :   destroy_mspace destroys the given space, and attempts to return all
    1033             :   of its memory back to the system, returning the total number of
    1034             :   bytes freed. After destruction, the results of access to all memory
    1035             :   used by the space become undefined.
    1036             : */
    1037             : size_t destroy_mspace(mspace msp);
    1038             : 
    1039             : /*
    1040             :   create_mspace_with_base uses the memory supplied as the initial base
    1041             :   of a new mspace. Part (less than 128*sizeof(size_t) bytes) of this
    1042             :   space is used for bookkeeping, so the capacity must be at least this
    1043             :   large. (Otherwise 0 is returned.) When this initial space is
    1044             :   exhausted, additional memory will be obtained from the system.
    1045             :   Destroying this space will deallocate all additionally allocated
    1046             :   space (if possible) but not the initial base.
    1047             : */
    1048             : mspace create_mspace_with_base(void* base, size_t capacity, int locked);
    1049             : 
    1050             : /*
    1051             :   mspace_malloc behaves as malloc, but operates within
    1052             :   the given space.
    1053             : */
    1054             : void* mspace_malloc(mspace msp, size_t bytes);
    1055             : 
    1056             : /*
    1057             :   mspace_free behaves as free, but operates within
    1058             :   the given space.
    1059             : 
    1060             :   If compiled with FOOTERS==1, mspace_free is not actually needed.
    1061             :   free may be called instead of mspace_free because freed chunks from
    1062             :   any space are handled by their originating spaces.
    1063             : */
    1064             : void mspace_free(mspace msp, void* mem);
    1065             : 
    1066             : /*
    1067             :   mspace_realloc behaves as realloc, but operates within
    1068             :   the given space.
    1069             : 
    1070             :   If compiled with FOOTERS==1, mspace_realloc is not actually
    1071             :   needed.  realloc may be called instead of mspace_realloc because
    1072             :   realloced chunks from any space are handled by their originating
    1073             :   spaces.
    1074             : */
    1075             : void* mspace_realloc(mspace msp, void* mem, size_t newsize);
    1076             : 
    1077             : /*
    1078             :   mspace_calloc behaves as calloc, but operates within
    1079             :   the given space.
    1080             : */
    1081             : void* mspace_calloc(mspace msp, size_t n_elements, size_t elem_size);
    1082             : 
    1083             : /*
    1084             :   mspace_memalign behaves as memalign, but operates within
    1085             :   the given space.
    1086             : */
    1087             : void* mspace_memalign(mspace msp, size_t alignment, size_t bytes);
    1088             : 
    1089             : /*
    1090             :   mspace_independent_calloc behaves as independent_calloc, but
    1091             :   operates within the given space.
    1092             : */
    1093             : void** mspace_independent_calloc(mspace msp, size_t n_elements,
    1094             :                                  size_t elem_size, void* chunks[]);
    1095             : 
    1096             : /*
    1097             :   mspace_independent_comalloc behaves as independent_comalloc, but
    1098             :   operates within the given space.
    1099             : */
    1100             : void** mspace_independent_comalloc(mspace msp, size_t n_elements,
    1101             :                                    size_t sizes[], void* chunks[]);
    1102             : 
    1103             : /*
    1104             :   mspace_footprint() returns the number of bytes obtained from the
    1105             :   system for this space.
    1106             : */
    1107             : size_t mspace_footprint(mspace msp);
    1108             : 
    1109             : /*
    1110             :   mspace_max_footprint() returns the peak number of bytes obtained from the
    1111             :   system for this space.
    1112             : */
    1113             : size_t mspace_max_footprint(mspace msp);
    1114             : 
    1115             : 
    1116             : #if !NO_MALLINFO
    1117             : /*
    1118             :   mspace_mallinfo behaves as mallinfo, but reports properties of
    1119             :   the given space.
    1120             : */
    1121             : struct mallinfo mspace_mallinfo(mspace msp);
    1122             : #endif /* NO_MALLINFO */
    1123             : 
    1124             : /*
    1125             :   mspace_malloc_stats behaves as malloc_stats, but reports
    1126             :   properties of the given space.
    1127             : */
    1128             : void mspace_malloc_stats(mspace msp);
    1129             : 
    1130             : /*
    1131             :   mspace_trim behaves as malloc_trim, but
    1132             :   operates within the given space.
    1133             : */
    1134             : int mspace_trim(mspace msp, size_t pad);
    1135             : 
    1136             : /*
    1137             :   An alias for mallopt.
    1138             : */
    1139             : int mspace_mallopt(int, int);
    1140             : 
    1141             : #endif /* MSPACES */
    1142             : 
    1143             : #ifdef __cplusplus
    1144             : };  /* end of extern "C" */
    1145             : #endif /* __cplusplus */
    1146             : 
    1147             : /*
    1148             :   ========================================================================
    1149             :   To make a fully customizable malloc.h header file, cut everything
    1150             :   above this line, put into file malloc.h, edit to suit, and #include it
    1151             :   on the next line, as well as in programs that use this malloc.
    1152             :   ========================================================================
    1153             : */
    1154             : 
    1155             : /* #include "malloc.h" */
    1156             : 
    1157             : /*------------------------------ internal #includes ---------------------- */
    1158             : 
    1159             : #ifdef _MSC_VER
    1160             : #pragma warning( disable : 4146 ) /* no "unsigned" warnings */
    1161             : #endif /* _MSC_VER */
    1162             : 
    1163             : #include <stdio.h>       /* for printing in malloc_stats */
    1164             : 
    1165             : #ifndef LACKS_ERRNO_H
    1166             : #include <errno.h>       /* for MALLOC_FAILURE_ACTION */
    1167             : #endif /* LACKS_ERRNO_H */
    1168             : #if FOOTERS
    1169             : #include <time.h>        /* for magic initialization */
    1170             : #endif /* FOOTERS */
    1171             : #ifndef LACKS_STDLIB_H
    1172             : #include <stdlib.h>      /* for abort() */
    1173             : #endif /* LACKS_STDLIB_H */
    1174             : #ifdef DEBUG
    1175             : #if ABORT_ON_ASSERT_FAILURE
    1176             : #define assert(x) if(!(x)) ABORT
    1177             : #else /* ABORT_ON_ASSERT_FAILURE */
    1178             : #include <assert.h>
    1179             : #endif /* ABORT_ON_ASSERT_FAILURE */
    1180             : #else  /* DEBUG */
    1181             : #define assert(x)
    1182             : #endif /* DEBUG */
    1183             : #ifndef LACKS_STRING_H
    1184             : #include <string.h>      /* for memset etc */
    1185             : #endif  /* LACKS_STRING_H */
    1186             : #if USE_BUILTIN_FFS
    1187             : #ifndef LACKS_STRINGS_H
    1188             : #include <strings.h>     /* for ffs */
    1189             : #endif /* LACKS_STRINGS_H */
    1190             : #endif /* USE_BUILTIN_FFS */
    1191             : #if HAVE_MMAP
    1192             : #ifndef LACKS_SYS_MMAN_H
    1193             : #include <sys/mman.h>    /* for mmap */
    1194             : #endif /* LACKS_SYS_MMAN_H */
    1195             : #ifndef LACKS_FCNTL_H
    1196             : #include <fcntl.h>
    1197             : #endif /* LACKS_FCNTL_H */
    1198             : #endif /* HAVE_MMAP */
    1199             : #if HAVE_MORECORE
    1200             : #ifndef LACKS_UNISTD_H
    1201             : #include <unistd.h>     /* for sbrk */
    1202             : #else /* LACKS_UNISTD_H */
    1203             : #if !defined(__FreeBSD__) && !defined(__OpenBSD__) && !defined(__NetBSD__)
    1204             : extern void*     sbrk(ptrdiff_t);
    1205             : #endif /* FreeBSD etc */
    1206             : #endif /* LACKS_UNISTD_H */
    1207             : #endif /* HAVE_MMAP */
    1208             : 
    1209             : #ifndef WIN32
    1210             : #ifndef malloc_getpagesize
    1211             : #  ifdef _SC_PAGESIZE         /* some SVR4 systems omit an underscore */
    1212             : #    ifndef _SC_PAGE_SIZE
    1213             : #      define _SC_PAGE_SIZE _SC_PAGESIZE
    1214             : #    endif
    1215             : #  endif
    1216             : #  ifdef _SC_PAGE_SIZE
    1217             : #    define malloc_getpagesize sysconf(_SC_PAGE_SIZE)
    1218             : #  else
    1219             : #    if defined(BSD) || defined(DGUX) || defined(HAVE_GETPAGESIZE)
    1220             :        extern size_t getpagesize();
    1221             : #      define malloc_getpagesize getpagesize()
    1222             : #    else
    1223             : #      ifdef WIN32 /* use supplied emulation of getpagesize */
    1224             : #        define malloc_getpagesize getpagesize()
    1225             : #      else
    1226             : #        ifndef LACKS_SYS_PARAM_H
    1227             : #          include <sys/param.h>
    1228             : #        endif
    1229             : #        ifdef EXEC_PAGESIZE
    1230             : #          define malloc_getpagesize EXEC_PAGESIZE
    1231             : #        else
    1232             : #          ifdef NBPG
    1233             : #            ifndef CLSIZE
    1234             : #              define malloc_getpagesize NBPG
    1235             : #            else
    1236             : #              define malloc_getpagesize (NBPG * CLSIZE)
    1237             : #            endif
    1238             : #          else
    1239             : #            ifdef NBPC
    1240             : #              define malloc_getpagesize NBPC
    1241             : #            else
    1242             : #              ifdef PAGESIZE
    1243             : #                define malloc_getpagesize PAGESIZE
    1244             : #              else /* just guess */
    1245             : #                define malloc_getpagesize ((size_t)4096U)
    1246             : #              endif
    1247             : #            endif
    1248             : #          endif
    1249             : #        endif
    1250             : #      endif
    1251             : #    endif
    1252             : #  endif
    1253             : #endif
    1254             : #endif
    1255             : 
    1256             : /* ------------------- size_t and alignment properties -------------------- */
    1257             : 
    1258             : /* The byte and bit size of a size_t */
    1259             : #define SIZE_T_SIZE         (sizeof(size_t))
    1260             : #define SIZE_T_BITSIZE      (sizeof(size_t) << 3)
    1261             : 
    1262             : /* Some constants coerced to size_t */
    1263             : /* Annoying but necessary to avoid errors on some plaftorms */
    1264             : #define SIZE_T_ZERO         ((size_t)0)
    1265             : #define SIZE_T_ONE          ((size_t)1)
    1266             : #define SIZE_T_TWO          ((size_t)2)
    1267             : #define TWO_SIZE_T_SIZES    (SIZE_T_SIZE<<1)
    1268             : #define FOUR_SIZE_T_SIZES   (SIZE_T_SIZE<<2)
    1269             : #define SIX_SIZE_T_SIZES    (FOUR_SIZE_T_SIZES+TWO_SIZE_T_SIZES)
    1270             : #define HALF_MAX_SIZE_T     (MAX_SIZE_T / 2U)
    1271             : 
    1272             : /* The bit mask value corresponding to MALLOC_ALIGNMENT */
    1273             : #define CHUNK_ALIGN_MASK    (MALLOC_ALIGNMENT - SIZE_T_ONE)
    1274             : 
    1275             : /* True if address a has acceptable alignment */
    1276             : #define is_aligned(A)       (((size_t)((A)) & (CHUNK_ALIGN_MASK)) == 0)
    1277             : 
    1278             : /* the number of bytes to offset an address to align it */
    1279             : #define align_offset(A)\
    1280             :  ((((size_t)(A) & CHUNK_ALIGN_MASK) == 0)? 0 :\
    1281             :   ((MALLOC_ALIGNMENT - ((size_t)(A) & CHUNK_ALIGN_MASK)) & CHUNK_ALIGN_MASK))
    1282             : 
    1283             : /* -------------------------- MMAP preliminaries ------------------------- */
    1284             : 
    1285             : /*
    1286             :    If HAVE_MORECORE or HAVE_MMAP are false, we just define calls and
    1287             :    checks to fail so compiler optimizer can delete code rather than
    1288             :    using so many "#if"s.
    1289             : */
    1290             : 
    1291             : 
    1292             : /* MORECORE and MMAP must return MFAIL on failure */
    1293             : #define MFAIL                ((void*)(MAX_SIZE_T))
    1294             : #define CMFAIL               ((char*)(MFAIL)) /* defined for convenience */
    1295             : 
    1296             : #if !HAVE_MMAP
    1297             : #define IS_MMAPPED_BIT       (SIZE_T_ZERO)
    1298             : #define USE_MMAP_BIT         (SIZE_T_ZERO)
    1299             : #define CALL_MMAP(s)         MFAIL
    1300             : #define CALL_MUNMAP(a, s)    (-1)
    1301             : #define DIRECT_MMAP(s)       MFAIL
    1302             : 
    1303             : #else /* HAVE_MMAP */
    1304             : #define IS_MMAPPED_BIT       (SIZE_T_ONE)
    1305             : #define USE_MMAP_BIT         (SIZE_T_ONE)
    1306             : 
    1307             : #if !defined(WIN32) && !defined (__OS2__)
    1308             : #define CALL_MUNMAP(a, s)    munmap((a), (s))
    1309             : #define MMAP_PROT            (PROT_READ|PROT_WRITE)
    1310             : #if !defined(MAP_ANONYMOUS) && defined(MAP_ANON)
    1311             : #define MAP_ANONYMOUS        MAP_ANON
    1312             : #endif /* MAP_ANON */
    1313             : #ifdef MAP_ANONYMOUS
    1314             : #define MMAP_FLAGS           (MAP_PRIVATE|MAP_ANONYMOUS)
    1315             : #define CALL_MMAP(s)         mmap(0, (s), MMAP_PROT, MMAP_FLAGS, -1, 0)
    1316             : #else /* MAP_ANONYMOUS */
    1317             : /*
    1318             :    Nearly all versions of mmap support MAP_ANONYMOUS, so the following
    1319             :    is unlikely to be needed, but is supplied just in case.
    1320             : */
    1321             : #define MMAP_FLAGS           (MAP_PRIVATE)
    1322             : static int dev_zero_fd = -1; /* Cached file descriptor for /dev/zero. */
    1323             : #define CALL_MMAP(s) ((dev_zero_fd < 0) ? \
    1324             :            (dev_zero_fd = open("/dev/zero", O_RDWR), \
    1325             :             mmap(0, (s), MMAP_PROT, MMAP_FLAGS, dev_zero_fd, 0)) : \
    1326             :             mmap(0, (s), MMAP_PROT, MMAP_FLAGS, dev_zero_fd, 0))
    1327             : #endif /* MAP_ANONYMOUS */
    1328             : 
    1329             : #define DIRECT_MMAP(s)       CALL_MMAP(s)
    1330             : 
    1331             : #elif defined(__OS2__)
    1332             : 
    1333             : /* OS/2 MMAP via DosAllocMem */
    1334             : static void* os2mmap(size_t size) {
    1335             :   void* ptr;
    1336             :   if (DosAllocMem(&ptr, size, OBJ_ANY|PAG_COMMIT|PAG_READ|PAG_WRITE) &&
    1337             :       DosAllocMem(&ptr, size, PAG_COMMIT|PAG_READ|PAG_WRITE))
    1338             :     return MFAIL;
    1339             :   return ptr;
    1340             : }
    1341             : 
    1342             : #define os2direct_mmap(n)     os2mmap(n)
    1343             : 
    1344             : /* This function supports releasing coalesed segments */
    1345             : static int os2munmap(void* ptr, size_t size) {
    1346             :   while (size) {
    1347             :     ULONG ulSize = size;
    1348             :     ULONG ulFlags = 0;
    1349             :     if (DosQueryMem(ptr, &ulSize, &ulFlags) != 0)
    1350             :       return -1;
    1351             :     if ((ulFlags & PAG_BASE) == 0 ||(ulFlags & PAG_COMMIT) == 0 ||
    1352             :         ulSize > size)
    1353             :       return -1;
    1354             :     if (DosFreeMem(ptr) != 0)
    1355             :       return -1;
    1356             :     ptr = ( void * ) ( ( char * ) ptr + ulSize );
    1357             :     size -= ulSize;
    1358             :   }
    1359             :   return 0;
    1360             : }
    1361             : 
    1362             : #define CALL_MMAP(s)         os2mmap(s)
    1363             : #define CALL_MUNMAP(a, s)    os2munmap((a), (s))
    1364             : #define DIRECT_MMAP(s)       os2direct_mmap(s)
    1365             : 
    1366             : #else /* WIN32 */
    1367             : 
    1368             : /* Win32 MMAP via VirtualAlloc */
    1369             : static void* win32mmap(size_t size) {
    1370             :   void* ptr = VirtualAlloc(0, size, MEM_RESERVE|MEM_COMMIT, PAGE_EXECUTE_READWRITE);
    1371             :   return (ptr != 0)? ptr: MFAIL;
    1372             : }
    1373             : 
    1374             : /* For direct MMAP, use MEM_TOP_DOWN to minimize interference */
    1375             : static void* win32direct_mmap(size_t size) {
    1376             :   void* ptr = VirtualAlloc(0, size, MEM_RESERVE|MEM_COMMIT|MEM_TOP_DOWN,
    1377             :                            PAGE_EXECUTE_READWRITE);
    1378             :   return (ptr != 0)? ptr: MFAIL;
    1379             : }
    1380             : 
    1381             : /* This function supports releasing coalesed segments */
    1382             : static int win32munmap(void* ptr, size_t size) {
    1383             :   MEMORY_BASIC_INFORMATION minfo;
    1384             :   char* cptr = ptr;
    1385             :   while (size) {
    1386             :     if (VirtualQuery(cptr, &minfo, sizeof(minfo)) == 0)
    1387             :       return -1;
    1388             :     if (minfo.BaseAddress != cptr || minfo.AllocationBase != cptr ||
    1389             :         minfo.State != MEM_COMMIT || minfo.RegionSize > size)
    1390             :       return -1;
    1391             :     if (VirtualFree(cptr, 0, MEM_RELEASE) == 0)
    1392             :       return -1;
    1393             :     cptr += minfo.RegionSize;
    1394             :     size -= minfo.RegionSize;
    1395             :   }
    1396             :   return 0;
    1397             : }
    1398             : 
    1399             : #define CALL_MMAP(s)         win32mmap(s)
    1400             : #define CALL_MUNMAP(a, s)    win32munmap((a), (s))
    1401             : #define DIRECT_MMAP(s)       win32direct_mmap(s)
    1402             : #endif /* WIN32 */
    1403             : #endif /* HAVE_MMAP */
    1404             : 
    1405             : #if HAVE_MMAP && HAVE_MREMAP
    1406             : #define CALL_MREMAP(addr, osz, nsz, mv) mremap((addr), (osz), (nsz), (mv))
    1407             : #else  /* HAVE_MMAP && HAVE_MREMAP */
    1408             : #define CALL_MREMAP(addr, osz, nsz, mv) MFAIL
    1409             : #endif /* HAVE_MMAP && HAVE_MREMAP */
    1410             : 
    1411             : #if HAVE_MORECORE
    1412             : #define CALL_MORECORE(S)     MORECORE(S)
    1413             : #else  /* HAVE_MORECORE */
    1414             : #define CALL_MORECORE(S)     MFAIL
    1415             : #endif /* HAVE_MORECORE */
    1416             : 
    1417             : /* mstate bit set if continguous morecore disabled or failed */
    1418             : #define USE_NONCONTIGUOUS_BIT (4U)
    1419             : 
    1420             : /* segment bit set in create_mspace_with_base */
    1421             : #define EXTERN_BIT            (8U)
    1422             : 
    1423             : 
    1424             : /* --------------------------- Lock preliminaries ------------------------ */
    1425             : 
    1426             : #if USE_LOCKS
    1427             : 
    1428             : /*
    1429             :   When locks are defined, there are up to two global locks:
    1430             : 
    1431             :   * If HAVE_MORECORE, morecore_mutex protects sequences of calls to
    1432             :     MORECORE.  In many cases sys_alloc requires two calls, that should
    1433             :     not be interleaved with calls by other threads.  This does not
    1434             :     protect against direct calls to MORECORE by other threads not
    1435             :     using this lock, so there is still code to cope the best we can on
    1436             :     interference.
    1437             : 
    1438             :   * magic_init_mutex ensures that mparams.magic and other
    1439             :     unique mparams values are initialized only once.
    1440             : */
    1441             : 
    1442             : #if !defined(WIN32) && !defined(__OS2__)
    1443             : /* By default use posix locks */
    1444             : #include <pthread.h>
    1445             : #define MLOCK_T pthread_mutex_t
    1446             : #define INITIAL_LOCK(l)      pthread_mutex_init(l, NULL)
    1447             : #define ACQUIRE_LOCK(l)      pthread_mutex_lock(l)
    1448             : #define RELEASE_LOCK(l)      pthread_mutex_unlock(l)
    1449             : 
    1450             : #if HAVE_MORECORE
    1451             : static MLOCK_T morecore_mutex = PTHREAD_MUTEX_INITIALIZER;
    1452             : #endif /* HAVE_MORECORE */
    1453             : 
    1454             : static MLOCK_T magic_init_mutex = PTHREAD_MUTEX_INITIALIZER;
    1455             : 
    1456             : #elif defined(__OS2__)
    1457             : #define MLOCK_T HMTX
    1458             : #define INITIAL_LOCK(l)      DosCreateMutexSem(0, l, 0, FALSE)
    1459             : #define ACQUIRE_LOCK(l)      DosRequestMutexSem(*l, SEM_INDEFINITE_WAIT)
    1460             : #define RELEASE_LOCK(l)      DosReleaseMutexSem(*l)
    1461             : #if HAVE_MORECORE
    1462             : static MLOCK_T morecore_mutex;
    1463             : #endif /* HAVE_MORECORE */
    1464             : static MLOCK_T magic_init_mutex;
    1465             : 
    1466             : #else /* WIN32 */
    1467             : /*
    1468             :    Because lock-protected regions have bounded times, and there
    1469             :    are no recursive lock calls, we can use simple spinlocks.
    1470             : */
    1471             : 
    1472             : #define MLOCK_T long
    1473             : static int win32_acquire_lock (MLOCK_T *sl) {
    1474             :   for (;;) {
    1475             : #ifdef InterlockedCompareExchangePointer
    1476             :     if (!InterlockedCompareExchange(sl, 1, 0))
    1477             :       return 0;
    1478             : #else  /* Use older void* version */
    1479             :     if (!InterlockedCompareExchange((void**)sl, (void*)1, (void*)0))
    1480             :       return 0;
    1481             : #endif /* InterlockedCompareExchangePointer */
    1482             :     Sleep (0);
    1483             :   }
    1484             : }
    1485             : 
    1486             : static void win32_release_lock (MLOCK_T *sl) {
    1487             :   InterlockedExchange (sl, 0);
    1488             : }
    1489             : 
    1490             : #define INITIAL_LOCK(l)      *(l)=0
    1491             : #define ACQUIRE_LOCK(l)      win32_acquire_lock(l)
    1492             : #define RELEASE_LOCK(l)      win32_release_lock(l)
    1493             : #if HAVE_MORECORE
    1494             : static MLOCK_T morecore_mutex;
    1495             : #endif /* HAVE_MORECORE */
    1496             : static MLOCK_T magic_init_mutex;
    1497             : #endif /* WIN32 */
    1498             : 
    1499             : #define USE_LOCK_BIT               (2U)
    1500             : #else  /* USE_LOCKS */
    1501             : #define USE_LOCK_BIT               (0U)
    1502             : #define INITIAL_LOCK(l)
    1503             : #endif /* USE_LOCKS */
    1504             : 
    1505             : #if USE_LOCKS && HAVE_MORECORE
    1506             : #define ACQUIRE_MORECORE_LOCK()    ACQUIRE_LOCK(&morecore_mutex);
    1507             : #define RELEASE_MORECORE_LOCK()    RELEASE_LOCK(&morecore_mutex);
    1508             : #else /* USE_LOCKS && HAVE_MORECORE */
    1509             : #define ACQUIRE_MORECORE_LOCK()
    1510             : #define RELEASE_MORECORE_LOCK()
    1511             : #endif /* USE_LOCKS && HAVE_MORECORE */
    1512             : 
    1513             : #if USE_LOCKS
    1514             : #define ACQUIRE_MAGIC_INIT_LOCK()  ACQUIRE_LOCK(&magic_init_mutex);
    1515             : #define RELEASE_MAGIC_INIT_LOCK()  RELEASE_LOCK(&magic_init_mutex);
    1516             : #else  /* USE_LOCKS */
    1517             : #define ACQUIRE_MAGIC_INIT_LOCK()
    1518             : #define RELEASE_MAGIC_INIT_LOCK()
    1519             : #endif /* USE_LOCKS */
    1520             : 
    1521             : 
    1522             : /* -----------------------  Chunk representations ------------------------ */
    1523             : 
    1524             : /*
    1525             :   (The following includes lightly edited explanations by Colin Plumb.)
    1526             : 
    1527             :   The malloc_chunk declaration below is misleading (but accurate and
    1528             :   necessary).  It declares a "view" into memory allowing access to
    1529             :   necessary fields at known offsets from a given base.
    1530             : 
    1531             :   Chunks of memory are maintained using a `boundary tag' method as
    1532             :   originally described by Knuth.  (See the paper by Paul Wilson
    1533             :   ftp://ftp.cs.utexas.edu/pub/garbage/allocsrv.ps for a survey of such
    1534             :   techniques.)  Sizes of free chunks are stored both in the front of
    1535             :   each chunk and at the end.  This makes consolidating fragmented
    1536             :   chunks into bigger chunks fast.  The head fields also hold bits
    1537             :   representing whether chunks are free or in use.
    1538             : 
    1539             :   Here are some pictures to make it clearer.  They are "exploded" to
    1540             :   show that the state of a chunk can be thought of as extending from
    1541             :   the high 31 bits of the head field of its header through the
    1542             :   prev_foot and PINUSE_BIT bit of the following chunk header.
    1543             : 
    1544             :   A chunk that's in use looks like:
    1545             : 
    1546             :    chunk-> +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
    1547             :            | Size of previous chunk (if P = 1)                             |
    1548             :            +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
    1549             :          +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ |P|
    1550             :          | Size of this chunk                                         1| +-+
    1551             :    mem-> +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
    1552             :          |                                                               |
    1553             :          +-                                                             -+
    1554             :          |                                                               |
    1555             :          +-                                                             -+
    1556             :          |                                                               :
    1557             :          +-      size - sizeof(size_t) available payload bytes          -+
    1558             :          :                                                               |
    1559             :  chunk-> +-                                                             -+
    1560             :          |                                                               |
    1561             :          +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
    1562             :        +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ |1|
    1563             :        | Size of next chunk (may or may not be in use)               | +-+
    1564             :  mem-> +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
    1565             : 
    1566             :     And if it's free, it looks like this:
    1567             : 
    1568             :    chunk-> +-                                                             -+
    1569             :            | User payload (must be in use, or we would have merged!)       |
    1570             :            +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
    1571             :          +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ |P|
    1572             :          | Size of this chunk                                         0| +-+
    1573             :    mem-> +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
    1574             :          | Next pointer                                                  |
    1575             :          +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
    1576             :          | Prev pointer                                                  |
    1577             :          +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
    1578             :          |                                                               :
    1579             :          +-      size - sizeof(struct chunk) unused bytes               -+
    1580             :          :                                                               |
    1581             :  chunk-> +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
    1582             :          | Size of this chunk                                            |
    1583             :          +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
    1584             :        +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ |0|
    1585             :        | Size of next chunk (must be in use, or we would have merged)| +-+
    1586             :  mem-> +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
    1587             :        |                                                               :
    1588             :        +- User payload                                                -+
    1589             :        :                                                               |
    1590             :        +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
    1591             :                                                                      |0|
    1592             :                                                                      +-+
    1593             :   Note that since we always merge adjacent free chunks, the chunks
    1594             :   adjacent to a free chunk must be in use.
    1595             : 
    1596             :   Given a pointer to a chunk (which can be derived trivially from the
    1597             :   payload pointer) we can, in O(1) time, find out whether the adjacent
    1598             :   chunks are free, and if so, unlink them from the lists that they
    1599             :   are on and merge them with the current chunk.
    1600             : 
    1601             :   Chunks always begin on even word boundaries, so the mem portion
    1602             :   (which is returned to the user) is also on an even word boundary, and
    1603             :   thus at least double-word aligned.
    1604             : 
    1605             :   The P (PINUSE_BIT) bit, stored in the unused low-order bit of the
    1606             :   chunk size (which is always a multiple of two words), is an in-use
    1607             :   bit for the *previous* chunk.  If that bit is *clear*, then the
    1608             :   word before the current chunk size contains the previous chunk
    1609             :   size, and can be used to find the front of the previous chunk.
    1610             :   The very first chunk allocated always has this bit set, preventing
    1611             :   access to non-existent (or non-owned) memory. If pinuse is set for
    1612             :   any given chunk, then you CANNOT determine the size of the
    1613             :   previous chunk, and might even get a memory addressing fault when
    1614             :   trying to do so.
    1615             : 
    1616             :   The C (CINUSE_BIT) bit, stored in the unused second-lowest bit of
    1617             :   the chunk size redundantly records whether the current chunk is
    1618             :   inuse. This redundancy enables usage checks within free and realloc,
    1619             :   and reduces indirection when freeing and consolidating chunks.
    1620             : 
    1621             :   Each freshly allocated chunk must have both cinuse and pinuse set.
    1622             :   That is, each allocated chunk borders either a previously allocated
    1623             :   and still in-use chunk, or the base of its memory arena. This is
    1624             :   ensured by making all allocations from the the `lowest' part of any
    1625             :   found chunk.  Further, no free chunk physically borders another one,
    1626             :   so each free chunk is known to be preceded and followed by either
    1627             :   inuse chunks or the ends of memory.
    1628             : 
    1629             :   Note that the `foot' of the current chunk is actually represented
    1630             :   as the prev_foot of the NEXT chunk. This makes it easier to
    1631             :   deal with alignments etc but can be very confusing when trying
    1632             :   to extend or adapt this code.
    1633             : 
    1634             :   The exceptions to all this are
    1635             : 
    1636             :      1. The special chunk `top' is the top-most available chunk (i.e.,
    1637             :         the one bordering the end of available memory). It is treated
    1638             :         specially.  Top is never included in any bin, is used only if
    1639             :         no other chunk is available, and is released back to the
    1640             :         system if it is very large (see M_TRIM_THRESHOLD).  In effect,
    1641             :         the top chunk is treated as larger (and thus less well
    1642             :         fitting) than any other available chunk.  The top chunk
    1643             :         doesn't update its trailing size field since there is no next
    1644             :         contiguous chunk that would have to index off it. However,
    1645             :         space is still allocated for it (TOP_FOOT_SIZE) to enable
    1646             :         separation or merging when space is extended.
    1647             : 
    1648             :      3. Chunks allocated via mmap, which have the lowest-order bit
    1649             :         (IS_MMAPPED_BIT) set in their prev_foot fields, and do not set
    1650             :         PINUSE_BIT in their head fields.  Because they are allocated
    1651             :         one-by-one, each must carry its own prev_foot field, which is
    1652             :         also used to hold the offset this chunk has within its mmapped
    1653             :         region, which is needed to preserve alignment. Each mmapped
    1654             :         chunk is trailed by the first two fields of a fake next-chunk
    1655             :         for sake of usage checks.
    1656             : 
    1657             : */
    1658             : 
    1659             : struct malloc_chunk {
    1660             :   size_t               prev_foot;  /* Size of previous chunk (if free).  */
    1661             :   size_t               head;       /* Size and inuse bits. */
    1662             :   struct malloc_chunk* fd;         /* double links -- used only if free. */
    1663             :   struct malloc_chunk* bk;
    1664             : };
    1665             : 
    1666             : typedef struct malloc_chunk  mchunk;
    1667             : typedef struct malloc_chunk* mchunkptr;
    1668             : typedef struct malloc_chunk* sbinptr;  /* The type of bins of chunks */
    1669             : typedef unsigned int bindex_t;         /* Described below */
    1670             : typedef unsigned int binmap_t;         /* Described below */
    1671             : typedef unsigned int flag_t;           /* The type of various bit flag sets */
    1672             : 
    1673             : /* ------------------- Chunks sizes and alignments ----------------------- */
    1674             : 
    1675             : #define MCHUNK_SIZE         (sizeof(mchunk))
    1676             : 
    1677             : #if FOOTERS
    1678             : #define CHUNK_OVERHEAD      (TWO_SIZE_T_SIZES)
    1679             : #else /* FOOTERS */
    1680             : #define CHUNK_OVERHEAD      (SIZE_T_SIZE)
    1681             : #endif /* FOOTERS */
    1682             : 
    1683             : /* MMapped chunks need a second word of overhead ... */
    1684             : #define MMAP_CHUNK_OVERHEAD (TWO_SIZE_T_SIZES)
    1685             : /* ... and additional padding for fake next-chunk at foot */
    1686             : #define MMAP_FOOT_PAD       (FOUR_SIZE_T_SIZES)
    1687             : 
    1688             : /* The smallest size we can malloc is an aligned minimal chunk */
    1689             : #define MIN_CHUNK_SIZE\
    1690             :   ((MCHUNK_SIZE + CHUNK_ALIGN_MASK) & ~CHUNK_ALIGN_MASK)
    1691             : 
    1692             : /* conversion from malloc headers to user pointers, and back */
    1693             : #define chunk2mem(p)        ((void*)((char*)(p)       + TWO_SIZE_T_SIZES))
    1694             : #define mem2chunk(mem)      ((mchunkptr)((char*)(mem) - TWO_SIZE_T_SIZES))
    1695             : /* chunk associated with aligned address A */
    1696             : #define align_as_chunk(A)   (mchunkptr)((A) + align_offset(chunk2mem(A)))
    1697             : 
    1698             : /* Bounds on request (not chunk) sizes. */
    1699             : #define MAX_REQUEST         ((-MIN_CHUNK_SIZE) << 2)
    1700             : #define MIN_REQUEST         (MIN_CHUNK_SIZE - CHUNK_OVERHEAD - SIZE_T_ONE)
    1701             : 
    1702             : /* pad request bytes into a usable size */
    1703             : #define pad_request(req) \
    1704             :    (((req) + CHUNK_OVERHEAD + CHUNK_ALIGN_MASK) & ~CHUNK_ALIGN_MASK)
    1705             : 
    1706             : /* pad request, checking for minimum (but not maximum) */
    1707             : #define request2size(req) \
    1708             :   (((req) < MIN_REQUEST)? MIN_CHUNK_SIZE : pad_request(req))
    1709             : 
    1710             : 
    1711             : /* ------------------ Operations on head and foot fields ----------------- */
    1712             : 
    1713             : /*
    1714             :   The head field of a chunk is or'ed with PINUSE_BIT when previous
    1715             :   adjacent chunk in use, and or'ed with CINUSE_BIT if this chunk is in
    1716             :   use. If the chunk was obtained with mmap, the prev_foot field has
    1717             :   IS_MMAPPED_BIT set, otherwise holding the offset of the base of the
    1718             :   mmapped region to the base of the chunk.
    1719             : */
    1720             : 
    1721             : #define PINUSE_BIT          (SIZE_T_ONE)
    1722             : #define CINUSE_BIT          (SIZE_T_TWO)
    1723             : #define INUSE_BITS          (PINUSE_BIT|CINUSE_BIT)
    1724             : 
    1725             : /* Head value for fenceposts */
    1726             : #define FENCEPOST_HEAD      (INUSE_BITS|SIZE_T_SIZE)
    1727             : 
    1728             : /* extraction of fields from head words */
    1729             : #define cinuse(p)           ((p)->head & CINUSE_BIT)
    1730             : #define pinuse(p)           ((p)->head & PINUSE_BIT)
    1731             : #define chunksize(p)        ((p)->head & ~(INUSE_BITS))
    1732             : 
    1733             : #define clear_pinuse(p)     ((p)->head &= ~PINUSE_BIT)
    1734             : #define clear_cinuse(p)     ((p)->head &= ~CINUSE_BIT)
    1735             : 
    1736             : /* Treat space at ptr +/- offset as a chunk */
    1737             : #define chunk_plus_offset(p, s)  ((mchunkptr)(((char*)(p)) + (s)))
    1738             : #define chunk_minus_offset(p, s) ((mchunkptr)(((char*)(p)) - (s)))
    1739             : 
    1740             : /* Ptr to next or previous physical malloc_chunk. */
    1741             : #define next_chunk(p) ((mchunkptr)( ((char*)(p)) + ((p)->head & ~INUSE_BITS)))
    1742             : #define prev_chunk(p) ((mchunkptr)( ((char*)(p)) - ((p)->prev_foot) ))
    1743             : 
    1744             : /* extract next chunk's pinuse bit */
    1745             : #define next_pinuse(p)  ((next_chunk(p)->head) & PINUSE_BIT)
    1746             : 
    1747             : /* Get/set size at footer */
    1748             : #define get_foot(p, s)  (((mchunkptr)((char*)(p) + (s)))->prev_foot)
    1749             : #define set_foot(p, s)  (((mchunkptr)((char*)(p) + (s)))->prev_foot = (s))
    1750             : 
    1751             : /* Set size, pinuse bit, and foot */
    1752             : #define set_size_and_pinuse_of_free_chunk(p, s)\
    1753             :   ((p)->head = (s|PINUSE_BIT), set_foot(p, s))
    1754             : 
    1755             : /* Set size, pinuse bit, foot, and clear next pinuse */
    1756             : #define set_free_with_pinuse(p, s, n)\
    1757             :   (clear_pinuse(n), set_size_and_pinuse_of_free_chunk(p, s))
    1758             : 
    1759             : #define is_mmapped(p)\
    1760             :   (!((p)->head & PINUSE_BIT) && ((p)->prev_foot & IS_MMAPPED_BIT))
    1761             : 
    1762             : /* Get the internal overhead associated with chunk p */
    1763             : #define overhead_for(p)\
    1764             :  (is_mmapped(p)? MMAP_CHUNK_OVERHEAD : CHUNK_OVERHEAD)
    1765             : 
    1766             : /* Return true if malloced space is not necessarily cleared */
    1767             : #if MMAP_CLEARS
    1768             : #define calloc_must_clear(p) (!is_mmapped(p))
    1769             : #else /* MMAP_CLEARS */
    1770             : #define calloc_must_clear(p) (1)
    1771             : #endif /* MMAP_CLEARS */
    1772             : 
    1773             : /* ---------------------- Overlaid data structures ----------------------- */
    1774             : 
    1775             : /*
    1776             :   When chunks are not in use, they are treated as nodes of either
    1777             :   lists or trees.
    1778             : 
    1779             :   "Small"  chunks are stored in circular doubly-linked lists, and look
    1780             :   like this:
    1781             : 
    1782             :     chunk-> +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
    1783             :             |             Size of previous chunk                            |
    1784             :             +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
    1785             :     `head:' |             Size of chunk, in bytes                         |P|
    1786             :       mem-> +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
    1787             :             |             Forward pointer to next chunk in list             |
    1788             :             +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
    1789             :             |             Back pointer to previous chunk in list            |
    1790             :             +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
    1791             :             |             Unused space (may be 0 bytes long)                .
    1792             :             .                                                               .
    1793             :             .                                                               |
    1794             : nextchunk-> +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
    1795             :     `foot:' |             Size of chunk, in bytes                           |
    1796             :             +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
    1797             : 
    1798             :   Larger chunks are kept in a form of bitwise digital trees (aka
    1799             :   tries) keyed on chunksizes.  Because malloc_tree_chunks are only for
    1800             :   free chunks greater than 256 bytes, their size doesn't impose any
    1801             :   constraints on user chunk sizes.  Each node looks like:
    1802             : 
    1803             :     chunk-> +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
    1804             :             |             Size of previous chunk                            |
    1805             :             +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
    1806             :     `head:' |             Size of chunk, in bytes                         |P|
    1807             :       mem-> +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
    1808             :             |             Forward pointer to next chunk of same size        |
    1809             :             +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
    1810             :             |             Back pointer to previous chunk of same size       |
    1811             :             +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
    1812             :             |             Pointer to left child (child[0])                  |
    1813             :             +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
    1814             :             |             Pointer to right child (child[1])                 |
    1815             :             +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
    1816             :             |             Pointer to parent                                 |
    1817             :             +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
    1818             :             |             bin index of this chunk                           |
    1819             :             +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
    1820             :             |             Unused space                                      .
    1821             :             .                                                               |
    1822             : nextchunk-> +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
    1823             :     `foot:' |             Size of chunk, in bytes                           |
    1824             :             +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
    1825             : 
    1826             :   Each tree holding treenodes is a tree of unique chunk sizes.  Chunks
    1827             :   of the same size are arranged in a circularly-linked list, with only
    1828             :   the oldest chunk (the next to be used, in our FIFO ordering)
    1829             :   actually in the tree.  (Tree members are distinguished by a non-null
    1830             :   parent pointer.)  If a chunk with the same size an an existing node
    1831             :   is inserted, it is linked off the existing node using pointers that
    1832             :   work in the same way as fd/bk pointers of small chunks.
    1833             : 
    1834             :   Each tree contains a power of 2 sized range of chunk sizes (the
    1835             :   smallest is 0x100 <= x < 0x180), which is is divided in half at each
    1836             :   tree level, with the chunks in the smaller half of the range (0x100
    1837             :   <= x < 0x140 for the top nose) in the left subtree and the larger
    1838             :   half (0x140 <= x < 0x180) in the right subtree.  This is, of course,
    1839             :   done by inspecting individual bits.
    1840             : 
    1841             :   Using these rules, each node's left subtree contains all smaller
    1842             :   sizes than its right subtree.  However, the node at the root of each
    1843             :   subtree has no particular ordering relationship to either.  (The
    1844             :   dividing line between the subtree sizes is based on trie relation.)
    1845             :   If we remove the last chunk of a given size from the interior of the
    1846             :   tree, we need to replace it with a leaf node.  The tree ordering
    1847             :   rules permit a node to be replaced by any leaf below it.
    1848             : 
    1849             :   The smallest chunk in a tree (a common operation in a best-fit
    1850             :   allocator) can be found by walking a path to the leftmost leaf in
    1851             :   the tree.  Unlike a usual binary tree, where we follow left child
    1852             :   pointers until we reach a null, here we follow the right child
    1853             :   pointer any time the left one is null, until we reach a leaf with
    1854             :   both child pointers null. The smallest chunk in the tree will be
    1855             :   somewhere along that path.
    1856             : 
    1857             :   The worst case number of steps to add, find, or remove a node is
    1858             :   bounded by the number of bits differentiating chunks within
    1859             :   bins. Under current bin calculations, this ranges from 6 up to 21
    1860             :   (for 32 bit sizes) or up to 53 (for 64 bit sizes). The typical case
    1861             :   is of course much better.
    1862             : */
    1863             : 
    1864             : struct malloc_tree_chunk {
    1865             :   /* The first four fields must be compatible with malloc_chunk */
    1866             :   size_t                    prev_foot;
    1867             :   size_t                    head;
    1868             :   struct malloc_tree_chunk* fd;
    1869             :   struct malloc_tree_chunk* bk;
    1870             : 
    1871             :   struct malloc_tree_chunk* child[2];
    1872             :   struct malloc_tree_chunk* parent;
    1873             :   bindex_t                  index;
    1874             : };
    1875             : 
    1876             : typedef struct malloc_tree_chunk  tchunk;
    1877             : typedef struct malloc_tree_chunk* tchunkptr;
    1878             : typedef struct malloc_tree_chunk* tbinptr; /* The type of bins of trees */
    1879             : 
    1880             : /* A little helper macro for trees */
    1881             : #define leftmost_child(t) ((t)->child[0] != 0? (t)->child[0] : (t)->child[1])
    1882             : 
    1883             : /* ----------------------------- Segments -------------------------------- */
    1884             : 
    1885             : /*
    1886             :   Each malloc space may include non-contiguous segments, held in a
    1887             :   list headed by an embedded malloc_segment record representing the
    1888             :   top-most space. Segments also include flags holding properties of
    1889             :   the space. Large chunks that are directly allocated by mmap are not
    1890             :   included in this list. They are instead independently created and
    1891             :   destroyed without otherwise keeping track of them.
    1892             : 
    1893             :   Segment management mainly comes into play for spaces allocated by
    1894             :   MMAP.  Any call to MMAP might or might not return memory that is
    1895             :   adjacent to an existing segment.  MORECORE normally contiguously
    1896             :   extends the current space, so this space is almost always adjacent,
    1897             :   which is simpler and faster to deal with. (This is why MORECORE is
    1898             :   used preferentially to MMAP when both are available -- see
    1899             :   sys_alloc.)  When allocating using MMAP, we don't use any of the
    1900             :   hinting mechanisms (inconsistently) supported in various
    1901             :   implementations of unix mmap, or distinguish reserving from
    1902             :   committing memory. Instead, we just ask for space, and exploit
    1903             :   contiguity when we get it.  It is probably possible to do
    1904             :   better than this on some systems, but no general scheme seems
    1905             :   to be significantly better.
    1906             : 
    1907             :   Management entails a simpler variant of the consolidation scheme
    1908             :   used for chunks to reduce fragmentation -- new adjacent memory is
    1909             :   normally prepended or appended to an existing segment. However,
    1910             :   there are limitations compared to chunk consolidation that mostly
    1911             :   reflect the fact that segment processing is relatively infrequent
    1912             :   (occurring only when getting memory from system) and that we
    1913             :   don't expect to have huge numbers of segments:
    1914             : 
    1915             :   * Segments are not indexed, so traversal requires linear scans.  (It
    1916             :     would be possible to index these, but is not worth the extra
    1917             :     overhead and complexity for most programs on most platforms.)
    1918             :   * New segments are only appended to old ones when holding top-most
    1919             :     memory; if they cannot be prepended to others, they are held in
    1920             :     different segments.
    1921             : 
    1922             :   Except for the top-most segment of an mstate, each segment record
    1923             :   is kept at the tail of its segment. Segments are added by pushing
    1924             :   segment records onto the list headed by &mstate.seg for the
    1925             :   containing mstate.
    1926             : 
    1927             :   Segment flags control allocation/merge/deallocation policies:
    1928             :   * If EXTERN_BIT set, then we did not allocate this segment,
    1929             :     and so should not try to deallocate or merge with others.
    1930             :     (This currently holds only for the initial segment passed
    1931             :     into create_mspace_with_base.)
    1932             :   * If IS_MMAPPED_BIT set, the segment may be merged with
    1933             :     other surrounding mmapped segments and trimmed/de-allocated
    1934             :     using munmap.
    1935             :   * If neither bit is set, then the segment was obtained using
    1936             :     MORECORE so can be merged with surrounding MORECORE'd segments
    1937             :     and deallocated/trimmed using MORECORE with negative arguments.
    1938             : */
    1939             : 
    1940             : struct malloc_segment {
    1941             :   char*        base;             /* base address */
    1942             :   size_t       size;             /* allocated size */
    1943             :   struct malloc_segment* next;   /* ptr to next segment */
    1944             : #if FFI_MMAP_EXEC_WRIT
    1945             :   /* The mmap magic is supposed to store the address of the executable
    1946             :      segment at the very end of the requested block.  */
    1947             : 
    1948             : # define mmap_exec_offset(b,s) (*(ptrdiff_t*)((b)+(s)-sizeof(ptrdiff_t)))
    1949             : 
    1950             :   /* We can only merge segments if their corresponding executable
    1951             :      segments are at identical offsets.  */
    1952             : # define check_segment_merge(S,b,s) \
    1953             :   (mmap_exec_offset((b),(s)) == (S)->exec_offset)
    1954             : 
    1955             : # define add_segment_exec_offset(p,S) ((char*)(p) + (S)->exec_offset)
    1956             : # define sub_segment_exec_offset(p,S) ((char*)(p) - (S)->exec_offset)
    1957             : 
    1958             :   /* The removal of sflags only works with HAVE_MORECORE == 0.  */
    1959             : 
    1960             : # define get_segment_flags(S)   (IS_MMAPPED_BIT)
    1961             : # define set_segment_flags(S,v) \
    1962             :   (((v) != IS_MMAPPED_BIT) ? (ABORT, (v)) :                             \
    1963             :    (((S)->exec_offset =                                                      \
    1964             :      mmap_exec_offset((S)->base, (S)->size)),                             \
    1965             :     (mmap_exec_offset((S)->base + (S)->exec_offset, (S)->size) !=      \
    1966             :      (S)->exec_offset) ? (ABORT, (v)) :                                      \
    1967             :    (mmap_exec_offset((S)->base, (S)->size) = 0), (v)))
    1968             : 
    1969             :   /* We use an offset here, instead of a pointer, because then, when
    1970             :      base changes, we don't have to modify this.  On architectures
    1971             :      with segmented addresses, this might not work.  */
    1972             :   ptrdiff_t    exec_offset;
    1973             : #else
    1974             : 
    1975             : # define get_segment_flags(S)   ((S)->sflags)
    1976             : # define set_segment_flags(S,v) ((S)->sflags = (v))
    1977             : # define check_segment_merge(S,b,s) (1)
    1978             : 
    1979             :   flag_t       sflags;           /* mmap and extern flag */
    1980             : #endif
    1981             : };
    1982             : 
    1983             : #define is_mmapped_segment(S)  (get_segment_flags(S) & IS_MMAPPED_BIT)
    1984             : #define is_extern_segment(S)   (get_segment_flags(S) & EXTERN_BIT)
    1985             : 
    1986             : typedef struct malloc_segment  msegment;
    1987             : typedef struct malloc_segment* msegmentptr;
    1988             : 
    1989             : /* ---------------------------- malloc_state ----------------------------- */
    1990             : 
    1991             : /*
    1992             :    A malloc_state holds all of the bookkeeping for a space.
    1993             :    The main fields are:
    1994             : 
    1995             :   Top
    1996             :     The topmost chunk of the currently active segment. Its size is
    1997             :     cached in topsize.  The actual size of topmost space is
    1998             :     topsize+TOP_FOOT_SIZE, which includes space reserved for adding
    1999             :     fenceposts and segment records if necessary when getting more
    2000             :     space from the system.  The size at which to autotrim top is
    2001             :     cached from mparams in trim_check, except that it is disabled if
    2002             :     an autotrim fails.
    2003             : 
    2004             :   Designated victim (dv)
    2005             :     This is the preferred chunk for servicing small requests that
    2006             :     don't have exact fits.  It is normally the chunk split off most
    2007             :     recently to service another small request.  Its size is cached in
    2008             :     dvsize. The link fields of this chunk are not maintained since it
    2009             :     is not kept in a bin.
    2010             : 
    2011             :   SmallBins
    2012             :     An array of bin headers for free chunks.  These bins hold chunks
    2013             :     with sizes less than MIN_LARGE_SIZE bytes. Each bin contains
    2014             :     chunks of all the same size, spaced 8 bytes apart.  To simplify
    2015             :     use in double-linked lists, each bin header acts as a malloc_chunk
    2016             :     pointing to the real first node, if it exists (else pointing to
    2017             :     itself).  This avoids special-casing for headers.  But to avoid
    2018             :     waste, we allocate only the fd/bk pointers of bins, and then use
    2019             :     repositioning tricks to treat these as the fields of a chunk.
    2020             : 
    2021             :   TreeBins
    2022             :     Treebins are pointers to the roots of trees holding a range of
    2023             :     sizes. There are 2 equally spaced treebins for each power of two
    2024             :     from TREE_SHIFT to TREE_SHIFT+16. The last bin holds anything
    2025             :     larger.
    2026             : 
    2027             :   Bin maps
    2028             :     There is one bit map for small bins ("smallmap") and one for
    2029             :     treebins ("treemap).  Each bin sets its bit when non-empty, and
    2030             :     clears the bit when empty.  Bit operations are then used to avoid
    2031             :     bin-by-bin searching -- nearly all "search" is done without ever
    2032             :     looking at bins that won't be selected.  The bit maps
    2033             :     conservatively use 32 bits per map word, even if on 64bit system.
    2034             :     For a good description of some of the bit-based techniques used
    2035             :     here, see Henry S. Warren Jr's book "Hacker's Delight" (and
    2036             :     supplement at http://hackersdelight.org/). Many of these are
    2037             :     intended to reduce the branchiness of paths through malloc etc, as
    2038             :     well as to reduce the number of memory locations read or written.
    2039             : 
    2040             :   Segments
    2041             :     A list of segments headed by an embedded malloc_segment record
    2042             :     representing the initial space.
    2043             : 
    2044             :   Address check support
    2045             :     The least_addr field is the least address ever obtained from
    2046             :     MORECORE or MMAP. Attempted frees and reallocs of any address less
    2047             :     than this are trapped (unless INSECURE is defined).
    2048             : 
    2049             :   Magic tag
    2050             :     A cross-check field that should always hold same value as mparams.magic.
    2051             : 
    2052             :   Flags
    2053             :     Bits recording whether to use MMAP, locks, or contiguous MORECORE
    2054             : 
    2055             :   Statistics
    2056             :     Each space keeps track of current and maximum system memory
    2057             :     obtained via MORECORE or MMAP.
    2058             : 
    2059             :   Locking
    2060             :     If USE_LOCKS is defined, the "mutex" lock is acquired and released
    2061             :     around every public call using this mspace.
    2062             : */
    2063             : 
    2064             : /* Bin types, widths and sizes */
    2065             : #define NSMALLBINS        (32U)
    2066             : #define NTREEBINS         (32U)
    2067             : #define SMALLBIN_SHIFT    (3U)
    2068             : #define SMALLBIN_WIDTH    (SIZE_T_ONE << SMALLBIN_SHIFT)
    2069             : #define TREEBIN_SHIFT     (8U)
    2070             : #define MIN_LARGE_SIZE    (SIZE_T_ONE << TREEBIN_SHIFT)
    2071             : #define MAX_SMALL_SIZE    (MIN_LARGE_SIZE - SIZE_T_ONE)
    2072             : #define MAX_SMALL_REQUEST (MAX_SMALL_SIZE - CHUNK_ALIGN_MASK - CHUNK_OVERHEAD)
    2073             : 
    2074             : struct malloc_state {
    2075             :   binmap_t   smallmap;
    2076             :   binmap_t   treemap;
    2077             :   size_t     dvsize;
    2078             :   size_t     topsize;
    2079             :   char*      least_addr;
    2080             :   mchunkptr  dv;
    2081             :   mchunkptr  top;
    2082             :   size_t     trim_check;
    2083             :   size_t     magic;
    2084             :   mchunkptr  smallbins[(NSMALLBINS+1)*2];
    2085             :   tbinptr    treebins[NTREEBINS];
    2086             :   size_t     footprint;
    2087             :   size_t     max_footprint;
    2088             :   flag_t     mflags;
    2089             : #if USE_LOCKS
    2090             :   MLOCK_T    mutex;     /* locate lock among fields that rarely change */
    2091             : #endif /* USE_LOCKS */
    2092             :   msegment   seg;
    2093             : };
    2094             : 
    2095             : typedef struct malloc_state*    mstate;
    2096             : 
    2097             : /* ------------- Global malloc_state and malloc_params ------------------- */
    2098             : 
    2099             : /*
    2100             :   malloc_params holds global properties, including those that can be
    2101             :   dynamically set using mallopt. There is a single instance, mparams,
    2102             :   initialized in init_mparams.
    2103             : */
    2104             : 
    2105             : struct malloc_params {
    2106             :   size_t magic;
    2107             :   size_t page_size;
    2108             :   size_t granularity;
    2109             :   size_t mmap_threshold;
    2110             :   size_t trim_threshold;
    2111             :   flag_t default_mflags;
    2112             : };
    2113             : 
    2114             : static struct malloc_params mparams;
    2115             : 
    2116             : /* The global malloc_state used for all non-"mspace" calls */
    2117             : static struct malloc_state _gm_;
    2118             : #define gm                 (&_gm_)
    2119             : #define is_global(M)       ((M) == &_gm_)
    2120             : #define is_initialized(M)  ((M)->top != 0)
    2121             : 
    2122             : /* -------------------------- system alloc setup ------------------------- */
    2123             : 
    2124             : /* Operations on mflags */
    2125             : 
    2126             : #define use_lock(M)           ((M)->mflags &   USE_LOCK_BIT)
    2127             : #define enable_lock(M)        ((M)->mflags |=  USE_LOCK_BIT)
    2128             : #define disable_lock(M)       ((M)->mflags &= ~USE_LOCK_BIT)
    2129             : 
    2130             : #define use_mmap(M)           ((M)->mflags &   USE_MMAP_BIT)
    2131             : #define enable_mmap(M)        ((M)->mflags |=  USE_MMAP_BIT)
    2132             : #define disable_mmap(M)       ((M)->mflags &= ~USE_MMAP_BIT)
    2133             : 
    2134             : #define use_noncontiguous(M)  ((M)->mflags &   USE_NONCONTIGUOUS_BIT)
    2135             : #define disable_contiguous(M) ((M)->mflags |=  USE_NONCONTIGUOUS_BIT)
    2136             : 
    2137             : #define set_lock(M,L)\
    2138             :  ((M)->mflags = (L)?\
    2139             :   ((M)->mflags | USE_LOCK_BIT) :\
    2140             :   ((M)->mflags & ~USE_LOCK_BIT))
    2141             : 
    2142             : /* page-align a size */
    2143             : #define page_align(S)\
    2144             :  (((S) + (mparams.page_size)) & ~(mparams.page_size - SIZE_T_ONE))
    2145             : 
    2146             : /* granularity-align a size */
    2147             : #define granularity_align(S)\
    2148             :   (((S) + (mparams.granularity)) & ~(mparams.granularity - SIZE_T_ONE))
    2149             : 
    2150             : #define is_page_aligned(S)\
    2151             :    (((size_t)(S) & (mparams.page_size - SIZE_T_ONE)) == 0)
    2152             : #define is_granularity_aligned(S)\
    2153             :    (((size_t)(S) & (mparams.granularity - SIZE_T_ONE)) == 0)
    2154             : 
    2155             : /*  True if segment S holds address A */
    2156             : #define segment_holds(S, A)\
    2157             :   ((char*)(A) >= S->base && (char*)(A) < S->base + S->size)
    2158             : 
    2159             : /* Return segment holding given address */
    2160           0 : static msegmentptr segment_holding(mstate m, char* addr) {
    2161           0 :   msegmentptr sp = &m->seg;
    2162             :   for (;;) {
    2163           0 :     if (addr >= sp->base && addr < sp->base + sp->size)
    2164           0 :       return sp;
    2165           0 :     if ((sp = sp->next) == 0)
    2166           0 :       return 0;
    2167           0 :   }
    2168             : }
    2169             : 
    2170             : /* Return true if segment contains a segment link */
    2171           0 : static int has_segment_link(mstate m, msegmentptr ss) {
    2172           0 :   msegmentptr sp = &m->seg;
    2173             :   for (;;) {
    2174           0 :     if ((char*)sp >= ss->base && (char*)sp < ss->base + ss->size)
    2175           0 :       return 1;
    2176           0 :     if ((sp = sp->next) == 0)
    2177           0 :       return 0;
    2178           0 :   }
    2179             : }
    2180             : 
    2181             : #ifndef MORECORE_CANNOT_TRIM
    2182             : #define should_trim(M,s)  ((s) > (M)->trim_check)
    2183             : #else  /* MORECORE_CANNOT_TRIM */
    2184             : #define should_trim(M,s)  (0)
    2185             : #endif /* MORECORE_CANNOT_TRIM */
    2186             : 
    2187             : /*
    2188             :   TOP_FOOT_SIZE is padding at the end of a segment, including space
    2189             :   that may be needed to place segment records and fenceposts when new
    2190             :   noncontiguous segments are added.
    2191             : */
    2192             : #define TOP_FOOT_SIZE\
    2193             :   (align_offset(chunk2mem(0))+pad_request(sizeof(struct malloc_segment))+MIN_CHUNK_SIZE)
    2194             : 
    2195             : 
    2196             : /* -------------------------------  Hooks -------------------------------- */
    2197             : 
    2198             : /*
    2199             :   PREACTION should be defined to return 0 on success, and nonzero on
    2200             :   failure. If you are not using locking, you can redefine these to do
    2201             :   anything you like.
    2202             : */
    2203             : 
    2204             : #if USE_LOCKS
    2205             : 
    2206             : /* Ensure locks are initialized */
    2207             : #define GLOBALLY_INITIALIZE() (mparams.page_size == 0 && init_mparams())
    2208             : 
    2209             : #define PREACTION(M)  ((GLOBALLY_INITIALIZE() || use_lock(M))? ACQUIRE_LOCK(&(M)->mutex) : 0)
    2210             : #define POSTACTION(M) { if (use_lock(M)) RELEASE_LOCK(&(M)->mutex); }
    2211             : #else /* USE_LOCKS */
    2212             : 
    2213             : #ifndef PREACTION
    2214             : #define PREACTION(M) (0)
    2215             : #endif  /* PREACTION */
    2216             : 
    2217             : #ifndef POSTACTION
    2218             : #define POSTACTION(M)
    2219             : #endif  /* POSTACTION */
    2220             : 
    2221             : #endif /* USE_LOCKS */
    2222             : 
    2223             : /*
    2224             :   CORRUPTION_ERROR_ACTION is triggered upon detected bad addresses.
    2225             :   USAGE_ERROR_ACTION is triggered on detected bad frees and
    2226             :   reallocs. The argument p is an address that might have triggered the
    2227             :   fault. It is ignored by the two predefined actions, but might be
    2228             :   useful in custom actions that try to help diagnose errors.
    2229             : */
    2230             : 
    2231             : #if PROCEED_ON_ERROR
    2232             : 
    2233             : /* A count of the number of corruption errors causing resets */
    2234             : int malloc_corruption_error_count;
    2235             : 
    2236             : /* default corruption action */
    2237             : static void reset_on_error(mstate m);
    2238             : 
    2239             : #define CORRUPTION_ERROR_ACTION(m)  reset_on_error(m)
    2240             : #define USAGE_ERROR_ACTION(m, p)
    2241             : 
    2242             : #else /* PROCEED_ON_ERROR */
    2243             : 
    2244             : #ifndef CORRUPTION_ERROR_ACTION
    2245             : #define CORRUPTION_ERROR_ACTION(m) ABORT
    2246             : #endif /* CORRUPTION_ERROR_ACTION */
    2247             : 
    2248             : #ifndef USAGE_ERROR_ACTION
    2249             : #define USAGE_ERROR_ACTION(m,p) ABORT
    2250             : #endif /* USAGE_ERROR_ACTION */
    2251             : 
    2252             : #endif /* PROCEED_ON_ERROR */
    2253             : 
    2254             : /* -------------------------- Debugging setup ---------------------------- */
    2255             : 
    2256             : #if ! DEBUG
    2257             : 
    2258             : #define check_free_chunk(M,P)
    2259             : #define check_inuse_chunk(M,P)
    2260             : #define check_malloced_chunk(M,P,N)
    2261             : #define check_mmapped_chunk(M,P)
    2262             : #define check_malloc_state(M)
    2263             : #define check_top_chunk(M,P)
    2264             : 
    2265             : #else /* DEBUG */
    2266             : #define check_free_chunk(M,P)       do_check_free_chunk(M,P)
    2267             : #define check_inuse_chunk(M,P)      do_check_inuse_chunk(M,P)
    2268             : #define check_top_chunk(M,P)        do_check_top_chunk(M,P)
    2269             : #define check_malloced_chunk(M,P,N) do_check_malloced_chunk(M,P,N)
    2270             : #define check_mmapped_chunk(M,P)    do_check_mmapped_chunk(M,P)
    2271             : #define check_malloc_state(M)       do_check_malloc_state(M)
    2272             : 
    2273             : static void   do_check_any_chunk(mstate m, mchunkptr p);
    2274             : static void   do_check_top_chunk(mstate m, mchunkptr p);
    2275             : static void   do_check_mmapped_chunk(mstate m, mchunkptr p);
    2276             : static void   do_check_inuse_chunk(mstate m, mchunkptr p);
    2277             : static void   do_check_free_chunk(mstate m, mchunkptr p);
    2278             : static void   do_check_malloced_chunk(mstate m, void* mem, size_t s);
    2279             : static void   do_check_tree(mstate m, tchunkptr t);
    2280             : static void   do_check_treebin(mstate m, bindex_t i);
    2281             : static void   do_check_smallbin(mstate m, bindex_t i);
    2282             : static void   do_check_malloc_state(mstate m);
    2283             : static int    bin_find(mstate m, mchunkptr x);
    2284             : static size_t traverse_and_check(mstate m);
    2285             : #endif /* DEBUG */
    2286             : 
    2287             : /* ---------------------------- Indexing Bins ---------------------------- */
    2288             : 
    2289             : #define is_small(s)         (((s) >> SMALLBIN_SHIFT) < NSMALLBINS)
    2290             : #define small_index(s)      ((s)  >> SMALLBIN_SHIFT)
    2291             : #define small_index2size(i) ((i)  << SMALLBIN_SHIFT)
    2292             : #define MIN_SMALL_INDEX     (small_index(MIN_CHUNK_SIZE))
    2293             : 
    2294             : /* addressing by index. See above about smallbin repositioning */
    2295             : #define smallbin_at(M, i)   ((sbinptr)((char*)&((M)->smallbins[(i)<<1])))
    2296             : #define treebin_at(M,i)     (&((M)->treebins[i]))
    2297             : 
    2298             : /* assign tree index for size S to variable I */
    2299             : #if defined(__GNUC__) && defined(i386)
    2300             : #define compute_tree_index(S, I)\
    2301             : {\
    2302             :   size_t X = S >> TREEBIN_SHIFT;\
    2303             :   if (X == 0)\
    2304             :     I = 0;\
    2305             :   else if (X > 0xFFFF)\
    2306             :     I = NTREEBINS-1;\
    2307             :   else {\
    2308             :     unsigned int K;\
    2309             :     __asm__("bsrl %1,%0\n\t" : "=r" (K) : "rm"  (X));\
    2310             :     I =  (bindex_t)((K << 1) + ((S >> (K + (TREEBIN_SHIFT-1)) & 1)));\
    2311             :   }\
    2312             : }
    2313             : #else /* GNUC */
    2314             : #define compute_tree_index(S, I)\
    2315             : {\
    2316             :   size_t X = S >> TREEBIN_SHIFT;\
    2317             :   if (X == 0)\
    2318             :     I = 0;\
    2319             :   else if (X > 0xFFFF)\
    2320             :     I = NTREEBINS-1;\
    2321             :   else {\
    2322             :     unsigned int Y = (unsigned int)X;\
    2323             :     unsigned int N = ((Y - 0x100) >> 16) & 8;\
    2324             :     unsigned int K = (((Y <<= N) - 0x1000) >> 16) & 4;\
    2325             :     N += K;\
    2326             :     N += K = (((Y <<= K) - 0x4000) >> 16) & 2;\
    2327             :     K = 14 - N + ((Y <<= K) >> 15);\
    2328             :     I = (K << 1) + ((S >> (K + (TREEBIN_SHIFT-1)) & 1));\
    2329             :   }\
    2330             : }
    2331             : #endif /* GNUC */
    2332             : 
    2333             : /* Bit representing maximum resolved size in a treebin at i */
    2334             : #define bit_for_tree_index(i) \
    2335             :    (i == NTREEBINS-1)? (SIZE_T_BITSIZE-1) : (((i) >> 1) + TREEBIN_SHIFT - 2)
    2336             : 
    2337             : /* Shift placing maximum resolved bit in a treebin at i as sign bit */
    2338             : #define leftshift_for_tree_index(i) \
    2339             :    ((i == NTREEBINS-1)? 0 : \
    2340             :     ((SIZE_T_BITSIZE-SIZE_T_ONE) - (((i) >> 1) + TREEBIN_SHIFT - 2)))
    2341             : 
    2342             : /* The size of the smallest chunk held in bin with index i */
    2343             : #define minsize_for_tree_index(i) \
    2344             :    ((SIZE_T_ONE << (((i) >> 1) + TREEBIN_SHIFT)) |  \
    2345             :    (((size_t)((i) & SIZE_T_ONE)) << (((i) >> 1) + TREEBIN_SHIFT - 1)))
    2346             : 
    2347             : 
    2348             : /* ------------------------ Operations on bin maps ----------------------- */
    2349             : 
    2350             : /* bit corresponding to given index */
    2351             : #define idx2bit(i)              ((binmap_t)(1) << (i))
    2352             : 
    2353             : /* Mark/Clear bits with given index */
    2354             : #define mark_smallmap(M,i)      ((M)->smallmap |=  idx2bit(i))
    2355             : #define clear_smallmap(M,i)     ((M)->smallmap &= ~idx2bit(i))
    2356             : #define smallmap_is_marked(M,i) ((M)->smallmap &   idx2bit(i))
    2357             : 
    2358             : #define mark_treemap(M,i)       ((M)->treemap  |=  idx2bit(i))
    2359             : #define clear_treemap(M,i)      ((M)->treemap  &= ~idx2bit(i))
    2360             : #define treemap_is_marked(M,i)  ((M)->treemap  &   idx2bit(i))
    2361             : 
    2362             : /* index corresponding to given bit */
    2363             : 
    2364             : #if defined(__GNUC__) && defined(i386)
    2365             : #define compute_bit2idx(X, I)\
    2366             : {\
    2367             :   unsigned int J;\
    2368             :   __asm__("bsfl %1,%0\n\t" : "=r" (J) : "rm" (X));\
    2369             :   I = (bindex_t)J;\
    2370             : }
    2371             : 
    2372             : #else /* GNUC */
    2373             : #if  USE_BUILTIN_FFS
    2374             : #define compute_bit2idx(X, I) I = ffs(X)-1
    2375             : 
    2376             : #else /* USE_BUILTIN_FFS */
    2377             : #define compute_bit2idx(X, I)\
    2378             : {\
    2379             :   unsigned int Y = X - 1;\
    2380             :   unsigned int K = Y >> (16-4) & 16;\
    2381             :   unsigned int N = K;        Y >>= K;\
    2382             :   N += K = Y >> (8-3) &  8;  Y >>= K;\
    2383             :   N += K = Y >> (4-2) &  4;  Y >>= K;\
    2384             :   N += K = Y >> (2-1) &  2;  Y >>= K;\
    2385             :   N += K = Y >> (1-0) &  1;  Y >>= K;\
    2386             :   I = (bindex_t)(N + Y);\
    2387             : }
    2388             : #endif /* USE_BUILTIN_FFS */
    2389             : #endif /* GNUC */
    2390             : 
    2391             : /* isolate the least set bit of a bitmap */
    2392             : #define least_bit(x)         ((x) & -(x))
    2393             : 
    2394             : /* mask with all bits to left of least bit of x on */
    2395             : #define left_bits(x)         ((x<<1) | -(x<<1))
    2396             : 
    2397             : /* mask with all bits to left of or equal to least bit of x on */
    2398             : #define same_or_left_bits(x) ((x) | -(x))
    2399             : 
    2400             : 
    2401             : /* ----------------------- Runtime Check Support ------------------------- */
    2402             : 
    2403             : /*
    2404             :   For security, the main invariant is that malloc/free/etc never
    2405             :   writes to a static address other than malloc_state, unless static
    2406             :   malloc_state itself has been corrupted, which cannot occur via
    2407             :   malloc (because of these checks). In essence this means that we
    2408             :   believe all pointers, sizes, maps etc held in malloc_state, but
    2409             :   check all of those linked or offsetted from other embedded data
    2410             :   structures.  These checks are interspersed with main code in a way
    2411             :   that tends to minimize their run-time cost.
    2412             : 
    2413             :   When FOOTERS is defined, in addition to range checking, we also
    2414             :   verify footer fields of inuse chunks, which can be used guarantee
    2415             :   that the mstate controlling malloc/free is intact.  This is a
    2416             :   streamlined version of the approach described by William Robertson
    2417             :   et al in "Run-time Detection of Heap-based Overflows" LISA'03
    2418             :   http://www.usenix.org/events/lisa03/tech/robertson.html The footer
    2419             :   of an inuse chunk holds the xor of its mstate and a random seed,
    2420             :   that is checked upon calls to free() and realloc().  This is
    2421             :   (probablistically) unguessable from outside the program, but can be
    2422             :   computed by any code successfully malloc'ing any chunk, so does not
    2423             :   itself provide protection against code that has already broken
    2424             :   security through some other means.  Unlike Robertson et al, we
    2425             :   always dynamically check addresses of all offset chunks (previous,
    2426             :   next, etc). This turns out to be cheaper than relying on hashes.
    2427             : */
    2428             : 
    2429             : #if !INSECURE
    2430             : /* Check if address a is at least as high as any from MORECORE or MMAP */
    2431             : #define ok_address(M, a) ((char*)(a) >= (M)->least_addr)
    2432             : /* Check if address of next chunk n is higher than base chunk p */
    2433             : #define ok_next(p, n)    ((char*)(p) < (char*)(n))
    2434             : /* Check if p has its cinuse bit on */
    2435             : #define ok_cinuse(p)     cinuse(p)
    2436             : /* Check if p has its pinuse bit on */
    2437             : #define ok_pinuse(p)     pinuse(p)
    2438             : 
    2439             : #else /* !INSECURE */
    2440             : #define ok_address(M, a) (1)
    2441             : #define ok_next(b, n)    (1)
    2442             : #define ok_cinuse(p)     (1)
    2443             : #define ok_pinuse(p)     (1)
    2444             : #endif /* !INSECURE */
    2445             : 
    2446             : #if (FOOTERS && !INSECURE)
    2447             : /* Check if (alleged) mstate m has expected magic field */
    2448             : #define ok_magic(M)      ((M)->magic == mparams.magic)
    2449             : #else  /* (FOOTERS && !INSECURE) */
    2450             : #define ok_magic(M)      (1)
    2451             : #endif /* (FOOTERS && !INSECURE) */
    2452             : 
    2453             : 
    2454             : /* In gcc, use __builtin_expect to minimize impact of checks */
    2455             : #if !INSECURE
    2456             : #if defined(__GNUC__) && __GNUC__ >= 3
    2457             : #define RTCHECK(e)  __builtin_expect(e, 1)
    2458             : #else /* GNUC */
    2459             : #define RTCHECK(e)  (e)
    2460             : #endif /* GNUC */
    2461             : #else /* !INSECURE */
    2462             : #define RTCHECK(e)  (1)
    2463             : #endif /* !INSECURE */
    2464             : 
    2465             : /* macros to set up inuse chunks with or without footers */
    2466             : 
    2467             : #if !FOOTERS
    2468             : 
    2469             : #define mark_inuse_foot(M,p,s)
    2470             : 
    2471             : /* Set cinuse bit and pinuse bit of next chunk */
    2472             : #define set_inuse(M,p,s)\
    2473             :   ((p)->head = (((p)->head & PINUSE_BIT)|s|CINUSE_BIT),\
    2474             :   ((mchunkptr)(((char*)(p)) + (s)))->head |= PINUSE_BIT)
    2475             : 
    2476             : /* Set cinuse and pinuse of this chunk and pinuse of next chunk */
    2477             : #define set_inuse_and_pinuse(M,p,s)\
    2478             :   ((p)->head = (s|PINUSE_BIT|CINUSE_BIT),\
    2479             :   ((mchunkptr)(((char*)(p)) + (s)))->head |= PINUSE_BIT)
    2480             : 
    2481             : /* Set size, cinuse and pinuse bit of this chunk */
    2482             : #define set_size_and_pinuse_of_inuse_chunk(M, p, s)\
    2483             :   ((p)->head = (s|PINUSE_BIT|CINUSE_BIT))
    2484             : 
    2485             : #else /* FOOTERS */
    2486             : 
    2487             : /* Set foot of inuse chunk to be xor of mstate and seed */
    2488             : #define mark_inuse_foot(M,p,s)\
    2489             :   (((mchunkptr)((char*)(p) + (s)))->prev_foot = ((size_t)(M) ^ mparams.magic))
    2490             : 
    2491             : #define get_mstate_for(p)\
    2492             :   ((mstate)(((mchunkptr)((char*)(p) +\
    2493             :     (chunksize(p))))->prev_foot ^ mparams.magic))
    2494             : 
    2495             : #define set_inuse(M,p,s)\
    2496             :   ((p)->head = (((p)->head & PINUSE_BIT)|s|CINUSE_BIT),\
    2497             :   (((mchunkptr)(((char*)(p)) + (s)))->head |= PINUSE_BIT), \
    2498             :   mark_inuse_foot(M,p,s))
    2499             : 
    2500             : #define set_inuse_and_pinuse(M,p,s)\
    2501             :   ((p)->head = (s|PINUSE_BIT|CINUSE_BIT),\
    2502             :   (((mchunkptr)(((char*)(p)) + (s)))->head |= PINUSE_BIT),\
    2503             :  mark_inuse_foot(M,p,s))
    2504             : 
    2505             : #define set_size_and_pinuse_of_inuse_chunk(M, p, s)\
    2506             :   ((p)->head = (s|PINUSE_BIT|CINUSE_BIT),\
    2507             :   mark_inuse_foot(M, p, s))
    2508             : 
    2509             : #endif /* !FOOTERS */
    2510             : 
    2511             : /* ---------------------------- setting mparams -------------------------- */
    2512             : 
    2513             : /* Initialize mparams */
    2514           0 : static int init_mparams(void) {
    2515           0 :   if (mparams.page_size == 0) {
    2516             :     size_t s;
    2517             : 
    2518           0 :     mparams.mmap_threshold = DEFAULT_MMAP_THRESHOLD;
    2519           0 :     mparams.trim_threshold = DEFAULT_TRIM_THRESHOLD;
    2520             : #if MORECORE_CONTIGUOUS
    2521           0 :     mparams.default_mflags = USE_LOCK_BIT|USE_MMAP_BIT;
    2522             : #else  /* MORECORE_CONTIGUOUS */
    2523           0 :     mparams.default_mflags = USE_LOCK_BIT|USE_MMAP_BIT|USE_NONCONTIGUOUS_BIT;
    2524             : #endif /* MORECORE_CONTIGUOUS */
    2525             : 
    2526             : #if (FOOTERS && !INSECURE)
    2527             :     {
    2528             : #if USE_DEV_RANDOM
    2529             :       int fd;
    2530             :       unsigned char buf[sizeof(size_t)];
    2531             :       /* Try to use /dev/urandom, else fall back on using time */
    2532             :       if ((fd = open("/dev/urandom", O_RDONLY)) >= 0 &&
    2533             :           read(fd, buf, sizeof(buf)) == sizeof(buf)) {
    2534             :         s = *((size_t *) buf);
    2535             :         close(fd);
    2536             :       }
    2537             :       else
    2538             : #endif /* USE_DEV_RANDOM */
    2539             :         s = (size_t)(time(0) ^ (size_t)0x55555555U);
    2540             : 
    2541             :       s |= (size_t)8U;    /* ensure nonzero */
    2542             :       s &= ~(size_t)7U;   /* improve chances of fault for bad values */
    2543             : 
    2544             :     }
    2545             : #else /* (FOOTERS && !INSECURE) */
    2546           0 :     s = (size_t)0x58585858U;
    2547             : #endif /* (FOOTERS && !INSECURE) */
    2548           0 :     ACQUIRE_MAGIC_INIT_LOCK();
    2549           0 :     if (mparams.magic == 0) {
    2550           0 :       mparams.magic = s;
    2551             :       /* Set up lock for main malloc area */
    2552           0 :       INITIAL_LOCK(&gm->mutex);
    2553           0 :       gm->mflags = mparams.default_mflags;
    2554             :     }
    2555           0 :     RELEASE_MAGIC_INIT_LOCK();
    2556             : 
    2557             : #if !defined(WIN32) && !defined(__OS2__)
    2558           0 :     mparams.page_size = malloc_getpagesize;
    2559           0 :     mparams.granularity = ((DEFAULT_GRANULARITY != 0)?
    2560           0 :                            DEFAULT_GRANULARITY : mparams.page_size);
    2561             : #elif defined (__OS2__)
    2562             :  /* if low-memory is used, os2munmap() would break
    2563             :     if it were anything other than 64k */
    2564             :     mparams.page_size = 4096u;
    2565             :     mparams.granularity = 65536u;
    2566             : #else /* WIN32 */
    2567             :     {
    2568             :       SYSTEM_INFO system_info;
    2569             :       GetSystemInfo(&system_info);
    2570             :       mparams.page_size = system_info.dwPageSize;
    2571             :       mparams.granularity = system_info.dwAllocationGranularity;
    2572             :     }
    2573             : #endif /* WIN32 */
    2574             : 
    2575             :     /* Sanity-check configuration:
    2576             :        size_t must be unsigned and as wide as pointer type.
    2577             :        ints must be at least 4 bytes.
    2578             :        alignment must be at least 8.
    2579             :        Alignment, min chunk size, and page size must all be powers of 2.
    2580             :     */
    2581           0 :     if ((sizeof(size_t) != sizeof(char*)) ||
    2582             :         (MAX_SIZE_T < MIN_CHUNK_SIZE)  ||
    2583             :         (sizeof(int) < 4)  ||
    2584             :         (MALLOC_ALIGNMENT < (size_t)8U) ||
    2585             :         ((MALLOC_ALIGNMENT    & (MALLOC_ALIGNMENT-SIZE_T_ONE))    != 0) ||
    2586             :         ((MCHUNK_SIZE         & (MCHUNK_SIZE-SIZE_T_ONE))         != 0) ||
    2587           0 :         ((mparams.granularity & (mparams.granularity-SIZE_T_ONE)) != 0) ||
    2588           0 :         ((mparams.page_size   & (mparams.page_size-SIZE_T_ONE))   != 0))
    2589           0 :       ABORT;
    2590             :   }
    2591           0 :   return 0;
    2592             : }
    2593             : 
    2594             : /* support for mallopt */
    2595           0 : static int change_mparam(int param_number, int value) {
    2596           0 :   size_t val = (size_t)value;
    2597           0 :   init_mparams();
    2598           0 :   switch(param_number) {
    2599             :   case M_TRIM_THRESHOLD:
    2600           0 :     mparams.trim_threshold = val;
    2601           0 :     return 1;
    2602             :   case M_GRANULARITY:
    2603           0 :     if (val >= mparams.page_size && ((val & (val-1)) == 0)) {
    2604           0 :       mparams.granularity = val;
    2605           0 :       return 1;
    2606             :     }
    2607             :     else
    2608           0 :       return 0;
    2609             :   case M_MMAP_THRESHOLD:
    2610           0 :     mparams.mmap_threshold = val;
    2611           0 :     return 1;
    2612             :   default:
    2613           0 :     return 0;
    2614             :   }
    2615             : }
    2616             : 
    2617             : #if DEBUG
    2618             : /* ------------------------- Debugging Support --------------------------- */
    2619             : 
    2620             : /* Check properties of any chunk, whether free, inuse, mmapped etc  */
    2621             : static void do_check_any_chunk(mstate m, mchunkptr p) {
    2622             :   assert((is_aligned(chunk2mem(p))) || (p->head == FENCEPOST_HEAD));
    2623             :   assert(ok_address(m, p));
    2624             : }
    2625             : 
    2626             : /* Check properties of top chunk */
    2627             : static void do_check_top_chunk(mstate m, mchunkptr p) {
    2628             :   msegmentptr sp = segment_holding(m, (char*)p);
    2629             :   size_t  sz = chunksize(p);
    2630             :   assert(sp != 0);
    2631             :   assert((is_aligned(chunk2mem(p))) || (p->head == FENCEPOST_HEAD));
    2632             :   assert(ok_address(m, p));
    2633             :   assert(sz == m->topsize);
    2634             :   assert(sz > 0);
    2635             :   assert(sz == ((sp->base + sp->size) - (char*)p) - TOP_FOOT_SIZE);
    2636             :   assert(pinuse(p));
    2637             :   assert(!next_pinuse(p));
    2638             : }
    2639             : 
    2640             : /* Check properties of (inuse) mmapped chunks */
    2641             : static void do_check_mmapped_chunk(mstate m, mchunkptr p) {
    2642             :   size_t  sz = chunksize(p);
    2643             :   size_t len = (sz + (p->prev_foot & ~IS_MMAPPED_BIT) + MMAP_FOOT_PAD);
    2644             :   assert(is_mmapped(p));
    2645             :   assert(use_mmap(m));
    2646             :   assert((is_aligned(chunk2mem(p))) || (p->head == FENCEPOST_HEAD));
    2647             :   assert(ok_address(m, p));
    2648             :   assert(!is_small(sz));
    2649             :   assert((len & (mparams.page_size-SIZE_T_ONE)) == 0);
    2650             :   assert(chunk_plus_offset(p, sz)->head == FENCEPOST_HEAD);
    2651             :   assert(chunk_plus_offset(p, sz+SIZE_T_SIZE)->head == 0);
    2652             : }
    2653             : 
    2654             : /* Check properties of inuse chunks */
    2655             : static void do_check_inuse_chunk(mstate m, mchunkptr p) {
    2656             :   do_check_any_chunk(m, p);
    2657             :   assert(cinuse(p));
    2658             :   assert(next_pinuse(p));
    2659             :   /* If not pinuse and not mmapped, previous chunk has OK offset */
    2660             :   assert(is_mmapped(p) || pinuse(p) || next_chunk(prev_chunk(p)) == p);
    2661             :   if (is_mmapped(p))
    2662             :     do_check_mmapped_chunk(m, p);
    2663             : }
    2664             : 
    2665             : /* Check properties of free chunks */
    2666             : static void do_check_free_chunk(mstate m, mchunkptr p) {
    2667             :   size_t sz = p->head & ~(PINUSE_BIT|CINUSE_BIT);
    2668             :   mchunkptr next = chunk_plus_offset(p, sz);
    2669             :   do_check_any_chunk(m, p);
    2670             :   assert(!cinuse(p));
    2671             :   assert(!next_pinuse(p));
    2672             :   assert (!is_mmapped(p));
    2673             :   if (p != m->dv && p != m->top) {
    2674             :     if (sz >= MIN_CHUNK_SIZE) {
    2675             :       assert((sz & CHUNK_ALIGN_MASK) == 0);
    2676             :       assert(is_aligned(chunk2mem(p)));
    2677             :       assert(next->prev_foot == sz);
    2678             :       assert(pinuse(p));
    2679             :       assert (next == m->top || cinuse(next));
    2680             :       assert(p->fd->bk == p);
    2681             :       assert(p->bk->fd == p);
    2682             :     }
    2683             :     else  /* markers are always of size SIZE_T_SIZE */
    2684             :       assert(sz == SIZE_T_SIZE);
    2685             :   }
    2686             : }
    2687             : 
    2688             : /* Check properties of malloced chunks at the point they are malloced */
    2689             : static void do_check_malloced_chunk(mstate m, void* mem, size_t s) {
    2690             :   if (mem != 0) {
    2691             :     mchunkptr p = mem2chunk(mem);
    2692             :     size_t sz = p->head & ~(PINUSE_BIT|CINUSE_BIT);
    2693             :     do_check_inuse_chunk(m, p);
    2694             :     assert((sz & CHUNK_ALIGN_MASK) == 0);
    2695             :     assert(sz >= MIN_CHUNK_SIZE);
    2696             :     assert(sz >= s);
    2697             :     /* unless mmapped, size is less than MIN_CHUNK_SIZE more than request */
    2698             :     assert(is_mmapped(p) || sz < (s + MIN_CHUNK_SIZE));
    2699             :   }
    2700             : }
    2701             : 
    2702             : /* Check a tree and its subtrees.  */
    2703             : static void do_check_tree(mstate m, tchunkptr t) {
    2704             :   tchunkptr head = 0;
    2705             :   tchunkptr u = t;
    2706             :   bindex_t tindex = t->index;
    2707             :   size_t tsize = chunksize(t);
    2708             :   bindex_t idx;
    2709             :   compute_tree_index(tsize, idx);
    2710             :   assert(tindex == idx);
    2711             :   assert(tsize >= MIN_LARGE_SIZE);
    2712             :   assert(tsize >= minsize_for_tree_index(idx));
    2713             :   assert((idx == NTREEBINS-1) || (tsize < minsize_for_tree_index((idx+1))));
    2714             : 
    2715             :   do { /* traverse through chain of same-sized nodes */
    2716             :     do_check_any_chunk(m, ((mchunkptr)u));
    2717             :     assert(u->index == tindex);
    2718             :     assert(chunksize(u) == tsize);
    2719             :     assert(!cinuse(u));
    2720             :     assert(!next_pinuse(u));
    2721             :     assert(u->fd->bk == u);
    2722             :     assert(u->bk->fd == u);
    2723             :     if (u->parent == 0) {
    2724             :       assert(u->child[0] == 0);
    2725             :       assert(u->child[1] == 0);
    2726             :     }
    2727             :     else {
    2728             :       assert(head == 0); /* only one node on chain has parent */
    2729             :       head = u;
    2730             :       assert(u->parent != u);
    2731             :       assert (u->parent->child[0] == u ||
    2732             :               u->parent->child[1] == u ||
    2733             :               *((tbinptr*)(u->parent)) == u);
    2734             :       if (u->child[0] != 0) {
    2735             :         assert(u->child[0]->parent == u);
    2736             :         assert(u->child[0] != u);
    2737             :         do_check_tree(m, u->child[0]);
    2738             :       }
    2739             :       if (u->child[1] != 0) {
    2740             :         assert(u->child[1]->parent == u);
    2741             :         assert(u->child[1] != u);
    2742             :         do_check_tree(m, u->child[1]);
    2743             :       }
    2744             :       if (u->child[0] != 0 && u->child[1] != 0) {
    2745             :         assert(chunksize(u->child[0]) < chunksize(u->child[1]));
    2746             :       }
    2747             :     }
    2748             :     u = u->fd;
    2749             :   } while (u != t);
    2750             :   assert(head != 0);
    2751             : }
    2752             : 
    2753             : /*  Check all the chunks in a treebin.  */
    2754             : static void do_check_treebin(mstate m, bindex_t i) {
    2755             :   tbinptr* tb = treebin_at(m, i);
    2756             :   tchunkptr t = *tb;
    2757             :   int empty = (m->treemap & (1U << i)) == 0;
    2758             :   if (t == 0)
    2759             :     assert(empty);
    2760             :   if (!empty)
    2761             :     do_check_tree(m, t);
    2762             : }
    2763             : 
    2764             : /*  Check all the chunks in a smallbin.  */
    2765             : static void do_check_smallbin(mstate m, bindex_t i) {
    2766             :   sbinptr b = smallbin_at(m, i);
    2767             :   mchunkptr p = b->bk;
    2768             :   unsigned int empty = (m->smallmap & (1U << i)) == 0;
    2769             :   if (p == b)
    2770             :     assert(empty);
    2771             :   if (!empty) {
    2772             :     for (; p != b; p = p->bk) {
    2773             :       size_t size = chunksize(p);
    2774             :       mchunkptr q;
    2775             :       /* each chunk claims to be free */
    2776             :       do_check_free_chunk(m, p);
    2777             :       /* chunk belongs in bin */
    2778             :       assert(small_index(size) == i);
    2779             :       assert(p->bk == b || chunksize(p->bk) == chunksize(p));
    2780             :       /* chunk is followed by an inuse chunk */
    2781             :       q = next_chunk(p);
    2782             :       if (q->head != FENCEPOST_HEAD)
    2783             :         do_check_inuse_chunk(m, q);
    2784             :     }
    2785             :   }
    2786             : }
    2787             : 
    2788             : /* Find x in a bin. Used in other check functions. */
    2789             : static int bin_find(mstate m, mchunkptr x) {
    2790             :   size_t size = chunksize(x);
    2791             :   if (is_small(size)) {
    2792             :     bindex_t sidx = small_index(size);
    2793             :     sbinptr b = smallbin_at(m, sidx);
    2794             :     if (smallmap_is_marked(m, sidx)) {
    2795             :       mchunkptr p = b;
    2796             :       do {
    2797             :         if (p == x)
    2798             :           return 1;
    2799             :       } while ((p = p->fd) != b);
    2800             :     }
    2801             :   }
    2802             :   else {
    2803             :     bindex_t tidx;
    2804             :     compute_tree_index(size, tidx);
    2805             :     if (treemap_is_marked(m, tidx)) {
    2806             :       tchunkptr t = *treebin_at(m, tidx);
    2807             :       size_t sizebits = size << leftshift_for_tree_index(tidx);
    2808             :       while (t != 0 && chunksize(t) != size) {
    2809             :         t = t->child[(sizebits >> (SIZE_T_BITSIZE-SIZE_T_ONE)) & 1];
    2810             :         sizebits <<= 1;
    2811             :       }
    2812             :       if (t != 0) {
    2813             :         tchunkptr u = t;
    2814             :         do {
    2815             :           if (u == (tchunkptr)x)
    2816             :             return 1;
    2817             :         } while ((u = u->fd) != t);
    2818             :       }
    2819             :     }
    2820             :   }
    2821             :   return 0;
    2822             : }
    2823             : 
    2824             : /* Traverse each chunk and check it; return total */
    2825             : static size_t traverse_and_check(mstate m) {
    2826             :   size_t sum = 0;
    2827             :   if (is_initialized(m)) {
    2828             :     msegmentptr s = &m->seg;
    2829             :     sum += m->topsize + TOP_FOOT_SIZE;
    2830             :     while (s != 0) {
    2831             :       mchunkptr q = align_as_chunk(s->base);
    2832             :       mchunkptr lastq = 0;
    2833             :       assert(pinuse(q));
    2834             :       while (segment_holds(s, q) &&
    2835             :              q != m->top && q->head != FENCEPOST_HEAD) {
    2836             :         sum += chunksize(q);
    2837             :         if (cinuse(q)) {
    2838             :           assert(!bin_find(m, q));
    2839             :           do_check_inuse_chunk(m, q);
    2840             :         }
    2841             :         else {
    2842             :           assert(q == m->dv || bin_find(m, q));
    2843             :           assert(lastq == 0 || cinuse(lastq)); /* Not 2 consecutive free */
    2844             :           do_check_free_chunk(m, q);
    2845             :         }
    2846             :         lastq = q;
    2847             :         q = next_chunk(q);
    2848             :       }
    2849             :       s = s->next;
    2850             :     }
    2851             :   }
    2852             :   return sum;
    2853             : }
    2854             : 
    2855             : /* Check all properties of malloc_state. */
    2856             : static void do_check_malloc_state(mstate m) {
    2857             :   bindex_t i;
    2858             :   size_t total;
    2859             :   /* check bins */
    2860             :   for (i = 0; i < NSMALLBINS; ++i)
    2861             :     do_check_smallbin(m, i);
    2862             :   for (i = 0; i < NTREEBINS; ++i)
    2863             :     do_check_treebin(m, i);
    2864             : 
    2865             :   if (m->dvsize != 0) { /* check dv chunk */
    2866             :     do_check_any_chunk(m, m->dv);
    2867             :     assert(m->dvsize == chunksize(m->dv));
    2868             :     assert(m->dvsize >= MIN_CHUNK_SIZE);
    2869             :     assert(bin_find(m, m->dv) == 0);
    2870             :   }
    2871             : 
    2872             :   if (m->top != 0) {   /* check top chunk */
    2873             :     do_check_top_chunk(m, m->top);
    2874             :     assert(m->topsize == chunksize(m->top));
    2875             :     assert(m->topsize > 0);
    2876             :     assert(bin_find(m, m->top) == 0);
    2877             :   }
    2878             : 
    2879             :   total = traverse_and_check(m);
    2880             :   assert(total <= m->footprint);
    2881             :   assert(m->footprint <= m->max_footprint);
    2882             : }
    2883             : #endif /* DEBUG */
    2884             : 
    2885             : /* ----------------------------- statistics ------------------------------ */
    2886             : 
    2887             : #if !NO_MALLINFO
    2888           0 : static struct mallinfo internal_mallinfo(mstate m) {
    2889           0 :   struct mallinfo nm = { 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 };
    2890             :   if (!PREACTION(m)) {
    2891             :     check_malloc_state(m);
    2892           0 :     if (is_initialized(m)) {
    2893           0 :       size_t nfree = SIZE_T_ONE; /* top always free */
    2894           0 :       size_t mfree = m->topsize + TOP_FOOT_SIZE;
    2895           0 :       size_t sum = mfree;
    2896           0 :       msegmentptr s = &m->seg;
    2897           0 :       while (s != 0) {
    2898           0 :         mchunkptr q = align_as_chunk(s->base);
    2899           0 :         while (segment_holds(s, q) &&
    2900           0 :                q != m->top && q->head != FENCEPOST_HEAD) {
    2901           0 :           size_t sz = chunksize(q);
    2902           0 :           sum += sz;
    2903           0 :           if (!cinuse(q)) {
    2904           0 :             mfree += sz;
    2905           0 :             ++nfree;
    2906             :           }
    2907           0 :           q = next_chunk(q);
    2908             :         }
    2909           0 :         s = s->next;
    2910             :       }
    2911             : 
    2912           0 :       nm.arena    = sum;
    2913           0 :       nm.ordblks  = nfree;
    2914           0 :       nm.hblkhd   = m->footprint - sum;
    2915           0 :       nm.usmblks  = m->max_footprint;
    2916           0 :       nm.uordblks = m->footprint - mfree;
    2917           0 :       nm.fordblks = mfree;
    2918           0 :       nm.keepcost = m->topsize;
    2919             :     }
    2920             : 
    2921             :     POSTACTION(m);
    2922             :   }
    2923           0 :   return nm;
    2924             : }
    2925             : #endif /* !NO_MALLINFO */
    2926             : 
    2927           0 : static void internal_malloc_stats(mstate m) {
    2928           0 :   if (!PREACTION(m)) {
    2929           0 :     size_t maxfp = 0;
    2930           0 :     size_t fp = 0;
    2931           0 :     size_t used = 0;
    2932             :     check_malloc_state(m);
    2933           0 :     if (is_initialized(m)) {
    2934           0 :       msegmentptr s = &m->seg;
    2935           0 :       maxfp = m->max_footprint;
    2936           0 :       fp = m->footprint;
    2937           0 :       used = fp - (m->topsize + TOP_FOOT_SIZE);
    2938             : 
    2939           0 :       while (s != 0) {
    2940           0 :         mchunkptr q = align_as_chunk(s->base);
    2941           0 :         while (segment_holds(s, q) &&
    2942           0 :                q != m->top && q->head != FENCEPOST_HEAD) {
    2943           0 :           if (!cinuse(q))
    2944           0 :             used -= chunksize(q);
    2945           0 :           q = next_chunk(q);
    2946             :         }
    2947           0 :         s = s->next;
    2948             :       }
    2949             :     }
    2950             : 
    2951           0 :     fprintf(stderr, "max system bytes = %10lu\n", (unsigned long)(maxfp));
    2952           0 :     fprintf(stderr, "system bytes     = %10lu\n", (unsigned long)(fp));
    2953           0 :     fprintf(stderr, "in use bytes     = %10lu\n", (unsigned long)(used));
    2954             : 
    2955           0 :     POSTACTION(m);
    2956             :   }
    2957           0 : }
    2958             : 
    2959             : /* ----------------------- Operations on smallbins ----------------------- */
    2960             : 
    2961             : /*
    2962             :   Various forms of linking and unlinking are defined as macros.  Even
    2963             :   the ones for trees, which are very long but have very short typical
    2964             :   paths.  This is ugly but reduces reliance on inlining support of
    2965             :   compilers.
    2966             : */
    2967             : 
    2968             : /* Link a free chunk into a smallbin  */
    2969             : #define insert_small_chunk(M, P, S) {\
    2970             :   bindex_t I  = small_index(S);\
    2971             :   mchunkptr B = smallbin_at(M, I);\
    2972             :   mchunkptr F = B;\
    2973             :   assert(S >= MIN_CHUNK_SIZE);\
    2974             :   if (!smallmap_is_marked(M, I))\
    2975             :     mark_smallmap(M, I);\
    2976             :   else if (RTCHECK(ok_address(M, B->fd)))\
    2977             :     F = B->fd;\
    2978             :   else {\
    2979             :     CORRUPTION_ERROR_ACTION(M);\
    2980             :   }\
    2981             :   B->fd = P;\
    2982             :   F->bk = P;\
    2983             :   P->fd = F;\
    2984             :   P->bk = B;\
    2985             : }
    2986             : 
    2987             : /* Unlink a chunk from a smallbin  */
    2988             : #define unlink_small_chunk(M, P, S) {\
    2989             :   mchunkptr F = P->fd;\
    2990             :   mchunkptr B = P->bk;\
    2991             :   bindex_t I = small_index(S);\
    2992             :   assert(P != B);\
    2993             :   assert(P != F);\
    2994             :   assert(chunksize(P) == small_index2size(I));\
    2995             :   if (F == B)\
    2996             :     clear_smallmap(M, I);\
    2997             :   else if (RTCHECK((F == smallbin_at(M,I) || ok_address(M, F)) &&\
    2998             :                    (B == smallbin_at(M,I) || ok_address(M, B)))) {\
    2999             :     F->bk = B;\
    3000             :     B->fd = F;\
    3001             :   }\
    3002             :   else {\
    3003             :     CORRUPTION_ERROR_ACTION(M);\
    3004             :   }\
    3005             : }
    3006             : 
    3007             : /* Unlink the first chunk from a smallbin */
    3008             : #define unlink_first_small_chunk(M, B, P, I) {\
    3009             :   mchunkptr F = P->fd;\
    3010             :   assert(P != B);\
    3011             :   assert(P != F);\
    3012             :   assert(chunksize(P) == small_index2size(I));\
    3013             :   if (B == F)\
    3014             :     clear_smallmap(M, I);\
    3015             :   else if (RTCHECK(ok_address(M, F))) {\
    3016             :     B->fd = F;\
    3017             :     F->bk = B;\
    3018             :   }\
    3019             :   else {\
    3020             :     CORRUPTION_ERROR_ACTION(M);\
    3021             :   }\
    3022             : }
    3023             : 
    3024             : /* Replace dv node, binning the old one */
    3025             : /* Used only when dvsize known to be small */
    3026             : #define replace_dv(M, P, S) {\
    3027             :   size_t DVS = M->dvsize;\
    3028             :   if (DVS != 0) {\
    3029             :     mchunkptr DV = M->dv;\
    3030             :     assert(is_small(DVS));\
    3031             :     insert_small_chunk(M, DV, DVS);\
    3032             :   }\
    3033             :   M->dvsize = S;\
    3034             :   M->dv = P;\
    3035             : }
    3036             : 
    3037             : /* ------------------------- Operations on trees ------------------------- */
    3038             : 
    3039             : /* Insert chunk into tree */
    3040             : #define insert_large_chunk(M, X, S) {\
    3041             :   tbinptr* H;\
    3042             :   bindex_t I;\
    3043             :   compute_tree_index(S, I);\
    3044             :   H = treebin_at(M, I);\
    3045             :   X->index = I;\
    3046             :   X->child[0] = X->child[1] = 0;\
    3047             :   if (!treemap_is_marked(M, I)) {\
    3048             :     mark_treemap(M, I);\
    3049             :     *H = X;\
    3050             :     X->parent = (tchunkptr)H;\
    3051             :     X->fd = X->bk = X;\
    3052             :   }\
    3053             :   else {\
    3054             :     tchunkptr T = *H;\
    3055             :     size_t K = S << leftshift_for_tree_index(I);\
    3056             :     for (;;) {\
    3057             :       if (chunksize(T) != S) {\
    3058             :         tchunkptr* C = &(T->child[(K >> (SIZE_T_BITSIZE-SIZE_T_ONE)) & 1]);\
    3059             :         K <<= 1;\
    3060             :         if (*C != 0)\
    3061             :           T = *C;\
    3062             :         else if (RTCHECK(ok_address(M, C))) {\
    3063             :           *C = X;\
    3064             :           X->parent = T;\
    3065             :           X->fd = X->bk = X;\
    3066             :           break;\
    3067             :         }\
    3068             :         else {\
    3069             :           CORRUPTION_ERROR_ACTION(M);\
    3070             :           break;\
    3071             :         }\
    3072             :       }\
    3073             :       else {\
    3074             :         tchunkptr F = T->fd;\
    3075             :         if (RTCHECK(ok_address(M, T) && ok_address(M, F))) {\
    3076             :           T->fd = F->bk = X;\
    3077             :           X->fd = F;\
    3078             :           X->bk = T;\
    3079             :           X->parent = 0;\
    3080             :           break;\
    3081             :         }\
    3082             :         else {\
    3083             :           CORRUPTION_ERROR_ACTION(M);\
    3084             :           break;\
    3085             :         }\
    3086             :       }\
    3087             :     }\
    3088             :   }\
    3089             : }
    3090             : 
    3091             : /*
    3092             :   Unlink steps:
    3093             : 
    3094             :   1. If x is a chained node, unlink it from its same-sized fd/bk links
    3095             :      and choose its bk node as its replacement.
    3096             :   2. If x was the last node of its size, but not a leaf node, it must
    3097             :      be replaced with a leaf node (not merely one with an open left or
    3098             :      right), to make sure that lefts and rights of descendents
    3099             :      correspond properly to bit masks.  We use the rightmost descendent
    3100             :      of x.  We could use any other leaf, but this is easy to locate and
    3101             :      tends to counteract removal of leftmosts elsewhere, and so keeps
    3102             :      paths shorter than minimally guaranteed.  This doesn't loop much
    3103             :      because on average a node in a tree is near the bottom.
    3104             :   3. If x is the base of a chain (i.e., has parent links) relink
    3105             :      x's parent and children to x's replacement (or null if none).
    3106             : */
    3107             : 
    3108             : #define unlink_large_chunk(M, X) {\
    3109             :   tchunkptr XP = X->parent;\
    3110             :   tchunkptr R;\
    3111             :   if (X->bk != X) {\
    3112             :     tchunkptr F = X->fd;\
    3113             :     R = X->bk;\
    3114             :     if (RTCHECK(ok_address(M, F))) {\
    3115             :       F->bk = R;\
    3116             :       R->fd = F;\
    3117             :     }\
    3118             :     else {\
    3119             :       CORRUPTION_ERROR_ACTION(M);\
    3120             :     }\
    3121             :   }\
    3122             :   else {\
    3123             :     tchunkptr* RP;\
    3124             :     if (((R = *(RP = &(X->child[1]))) != 0) ||\
    3125             :         ((R = *(RP = &(X->child[0]))) != 0)) {\
    3126             :       tchunkptr* CP;\
    3127             :       while ((*(CP = &(R->child[1])) != 0) ||\
    3128             :              (*(CP = &(R->child[0])) != 0)) {\
    3129             :         R = *(RP = CP);\
    3130             :       }\
    3131             :       if (RTCHECK(ok_address(M, RP)))\
    3132             :         *RP = 0;\
    3133             :       else {\
    3134             :         CORRUPTION_ERROR_ACTION(M);\
    3135             :       }\
    3136             :     }\
    3137             :   }\
    3138             :   if (XP != 0) {\
    3139             :     tbinptr* H = treebin_at(M, X->index);\
    3140             :     if (X == *H) {\
    3141             :       if ((*H = R) == 0) \
    3142             :         clear_treemap(M, X->index);\
    3143             :     }\
    3144             :     else if (RTCHECK(ok_address(M, XP))) {\
    3145             :       if (XP->child[0] == X) \
    3146             :         XP->child[0] = R;\
    3147             :       else \
    3148             :         XP->child[1] = R;\
    3149             :     }\
    3150             :     else\
    3151             :       CORRUPTION_ERROR_ACTION(M);\
    3152             :     if (R != 0) {\
    3153             :       if (RTCHECK(ok_address(M, R))) {\
    3154             :         tchunkptr C0, C1;\
    3155             :         R->parent = XP;\
    3156             :         if ((C0 = X->child[0]) != 0) {\
    3157             :           if (RTCHECK(ok_address(M, C0))) {\
    3158             :             R->child[0] = C0;\
    3159             :             C0->parent = R;\
    3160             :           }\
    3161             :           else\
    3162             :             CORRUPTION_ERROR_ACTION(M);\
    3163             :         }\
    3164             :         if ((C1 = X->child[1]) != 0) {\
    3165             :           if (RTCHECK(ok_address(M, C1))) {\
    3166             :             R->child[1] = C1;\
    3167             :             C1->parent = R;\
    3168             :           }\
    3169             :           else\
    3170             :             CORRUPTION_ERROR_ACTION(M);\
    3171             :         }\
    3172             :       }\
    3173             :       else\
    3174             :         CORRUPTION_ERROR_ACTION(M);\
    3175             :     }\
    3176             :   }\
    3177             : }
    3178             : 
    3179             : /* Relays to large vs small bin operations */
    3180             : 
    3181             : #define insert_chunk(M, P, S)\
    3182             :   if (is_small(S)) insert_small_chunk(M, P, S)\
    3183             :   else { tchunkptr TP = (tchunkptr)(P); insert_large_chunk(M, TP, S); }
    3184             : 
    3185             : #define unlink_chunk(M, P, S)\
    3186             :   if (is_small(S)) unlink_small_chunk(M, P, S)\
    3187             :   else { tchunkptr TP = (tchunkptr)(P); unlink_large_chunk(M, TP); }
    3188             : 
    3189             : 
    3190             : /* Relays to internal calls to malloc/free from realloc, memalign etc */
    3191             : 
    3192             : #if ONLY_MSPACES
    3193             : #define internal_malloc(m, b) mspace_malloc(m, b)
    3194             : #define internal_free(m, mem) mspace_free(m,mem);
    3195             : #else /* ONLY_MSPACES */
    3196             : #if MSPACES
    3197             : #define internal_malloc(m, b)\
    3198             :    (m == gm)? dlmalloc(b) : mspace_malloc(m, b)
    3199             : #define internal_free(m, mem)\
    3200             :    if (m == gm) dlfree(mem); else mspace_free(m,mem);
    3201             : #else /* MSPACES */
    3202             : #define internal_malloc(m, b) dlmalloc(b)
    3203             : #define internal_free(m, mem) dlfree(mem)
    3204             : #endif /* MSPACES */
    3205             : #endif /* ONLY_MSPACES */
    3206             : 
    3207             : /* -----------------------  Direct-mmapping chunks ----------------------- */
    3208             : 
    3209             : /*
    3210             :   Directly mmapped chunks are set up with an offset to the start of
    3211             :   the mmapped region stored in the prev_foot field of the chunk. This
    3212             :   allows reconstruction of the required argument to MUNMAP when freed,
    3213             :   and also allows adjustment of the returned chunk to meet alignment
    3214             :   requirements (especially in memalign).  There is also enough space
    3215             :   allocated to hold a fake next chunk of size SIZE_T_SIZE to maintain
    3216             :   the PINUSE bit so frees can be checked.
    3217             : */
    3218             : 
    3219             : /* Malloc using mmap */
    3220           0 : static void* mmap_alloc(mstate m, size_t nb) {
    3221           0 :   size_t mmsize = granularity_align(nb + SIX_SIZE_T_SIZES + CHUNK_ALIGN_MASK);
    3222           0 :   if (mmsize > nb) {     /* Check for wrap around 0 */
    3223           0 :     char* mm = (char*)(DIRECT_MMAP(mmsize));
    3224           0 :     if (mm != CMFAIL) {
    3225           0 :       size_t offset = align_offset(chunk2mem(mm));
    3226           0 :       size_t psize = mmsize - offset - MMAP_FOOT_PAD;
    3227           0 :       mchunkptr p = (mchunkptr)(mm + offset);
    3228           0 :       p->prev_foot = offset | IS_MMAPPED_BIT;
    3229           0 :       (p)->head = (psize|CINUSE_BIT);
    3230             :       mark_inuse_foot(m, p, psize);
    3231           0 :       chunk_plus_offset(p, psize)->head = FENCEPOST_HEAD;
    3232           0 :       chunk_plus_offset(p, psize+SIZE_T_SIZE)->head = 0;
    3233             : 
    3234           0 :       if (mm < m->least_addr)
    3235           0 :         m->least_addr = mm;
    3236           0 :       if ((m->footprint += mmsize) > m->max_footprint)
    3237           0 :         m->max_footprint = m->footprint;
    3238             :       assert(is_aligned(chunk2mem(p)));
    3239             :       check_mmapped_chunk(m, p);
    3240           0 :       return chunk2mem(p);
    3241             :     }
    3242             :   }
    3243           0 :   return 0;
    3244             : }
    3245             : 
    3246             : /* Realloc using mmap */
    3247           0 : static mchunkptr mmap_resize(mstate m, mchunkptr oldp, size_t nb) {
    3248           0 :   size_t oldsize = chunksize(oldp);
    3249           0 :   if (is_small(nb)) /* Can't shrink mmap regions below small size */
    3250           0 :     return 0;
    3251             :   /* Keep old chunk if big enough but not too big */
    3252           0 :   if (oldsize >= nb + SIZE_T_SIZE &&
    3253           0 :       (oldsize - nb) <= (mparams.granularity << 1))
    3254           0 :     return oldp;
    3255             :   else {
    3256           0 :     size_t offset = oldp->prev_foot & ~IS_MMAPPED_BIT;
    3257           0 :     size_t oldmmsize = oldsize + offset + MMAP_FOOT_PAD;
    3258           0 :     size_t newmmsize = granularity_align(nb + SIX_SIZE_T_SIZES +
    3259             :                                          CHUNK_ALIGN_MASK);
    3260           0 :     char* cp = (char*)CALL_MREMAP((char*)oldp - offset,
    3261             :                                   oldmmsize, newmmsize, 1);
    3262           0 :     if (cp != CMFAIL) {
    3263           0 :       mchunkptr newp = (mchunkptr)(cp + offset);
    3264           0 :       size_t psize = newmmsize - offset - MMAP_FOOT_PAD;
    3265           0 :       newp->head = (psize|CINUSE_BIT);
    3266             :       mark_inuse_foot(m, newp, psize);
    3267           0 :       chunk_plus_offset(newp, psize)->head = FENCEPOST_HEAD;
    3268           0 :       chunk_plus_offset(newp, psize+SIZE_T_SIZE)->head = 0;
    3269             : 
    3270           0 :       if (cp < m->least_addr)
    3271           0 :         m->least_addr = cp;
    3272           0 :       if ((m->footprint += newmmsize - oldmmsize) > m->max_footprint)
    3273           0 :         m->max_footprint = m->footprint;
    3274             :       check_mmapped_chunk(m, newp);
    3275           0 :       return newp;
    3276             :     }
    3277             :   }
    3278           0 :   return 0;
    3279             : }
    3280             : 
    3281             : /* -------------------------- mspace management -------------------------- */
    3282             : 
    3283             : /* Initialize top chunk and its size */
    3284           0 : static void init_top(mstate m, mchunkptr p, size_t psize) {
    3285             :   /* Ensure alignment */
    3286           0 :   size_t offset = align_offset(chunk2mem(p));
    3287           0 :   p = (mchunkptr)((char*)p + offset);
    3288           0 :   psize -= offset;
    3289             : 
    3290           0 :   m->top = p;
    3291           0 :   m->topsize = psize;
    3292           0 :   p->head = psize | PINUSE_BIT;
    3293             :   /* set size of fake trailing chunk holding overhead space only once */
    3294           0 :   chunk_plus_offset(p, psize)->head = TOP_FOOT_SIZE;
    3295           0 :   m->trim_check = mparams.trim_threshold; /* reset on each update */
    3296           0 : }
    3297             : 
    3298             : /* Initialize bins for a new mstate that is otherwise zeroed out */
    3299           0 : static void init_bins(mstate m) {
    3300             :   /* Establish circular links for smallbins */
    3301             :   bindex_t i;
    3302           0 :   for (i = 0; i < NSMALLBINS; ++i) {
    3303           0 :     sbinptr bin = smallbin_at(m,i);
    3304           0 :     bin->fd = bin->bk = bin;
    3305             :   }
    3306           0 : }
    3307             : 
    3308             : #if PROCEED_ON_ERROR
    3309             : 
    3310             : /* default corruption action */
    3311             : static void reset_on_error(mstate m) {
    3312             :   int i;
    3313             :   ++malloc_corruption_error_count;
    3314             :   /* Reinitialize fields to forget about all memory */
    3315             :   m->smallbins = m->treebins = 0;
    3316             :   m->dvsize = m->topsize = 0;
    3317             :   m->seg.base = 0;
    3318             :   m->seg.size = 0;
    3319             :   m->seg.next = 0;
    3320             :   m->top = m->dv = 0;
    3321             :   for (i = 0; i < NTREEBINS; ++i)
    3322             :     *treebin_at(m, i) = 0;
    3323             :   init_bins(m);
    3324             : }
    3325             : #endif /* PROCEED_ON_ERROR */
    3326             : 
    3327             : /* Allocate chunk and prepend remainder with chunk in successor base. */
    3328           0 : static void* prepend_alloc(mstate m, char* newbase, char* oldbase,
    3329             :                            size_t nb) {
    3330           0 :   mchunkptr p = align_as_chunk(newbase);
    3331           0 :   mchunkptr oldfirst = align_as_chunk(oldbase);
    3332           0 :   size_t psize = (char*)oldfirst - (char*)p;
    3333           0 :   mchunkptr q = chunk_plus_offset(p, nb);
    3334           0 :   size_t qsize = psize - nb;
    3335           0 :   set_size_and_pinuse_of_inuse_chunk(m, p, nb);
    3336             : 
    3337             :   assert((char*)oldfirst > (char*)q);
    3338             :   assert(pinuse(oldfirst));
    3339             :   assert(qsize >= MIN_CHUNK_SIZE);
    3340             : 
    3341             :   /* consolidate remainder with first chunk of old base */
    3342           0 :   if (oldfirst == m->top) {
    3343           0 :     size_t tsize = m->topsize += qsize;
    3344           0 :     m->top = q;
    3345           0 :     q->head = tsize | PINUSE_BIT;
    3346             :     check_top_chunk(m, q);
    3347             :   }
    3348           0 :   else if (oldfirst == m->dv) {
    3349           0 :     size_t dsize = m->dvsize += qsize;
    3350           0 :     m->dv = q;
    3351           0 :     set_size_and_pinuse_of_free_chunk(q, dsize);
    3352             :   }
    3353             :   else {
    3354           0 :     if (!cinuse(oldfirst)) {
    3355           0 :       size_t nsize = chunksize(oldfirst);
    3356           0 :       unlink_chunk(m, oldfirst, nsize);
    3357           0 :       oldfirst = chunk_plus_offset(oldfirst, nsize);
    3358           0 :       qsize += nsize;
    3359             :     }
    3360           0 :     set_free_with_pinuse(q, qsize, oldfirst);
    3361           0 :     insert_chunk(m, q, qsize);
    3362             :     check_free_chunk(m, q);
    3363             :   }
    3364             : 
    3365             :   check_malloced_chunk(m, chunk2mem(p), nb);
    3366           0 :   return chunk2mem(p);
    3367             : }
    3368             : 
    3369             : 
    3370             : /* Add a segment to hold a new noncontiguous region */
    3371           0 : static void add_segment(mstate m, char* tbase, size_t tsize, flag_t mmapped) {
    3372             :   /* Determine locations and sizes of segment, fenceposts, old top */
    3373           0 :   char* old_top = (char*)m->top;
    3374           0 :   msegmentptr oldsp = segment_holding(m, old_top);
    3375           0 :   char* old_end = oldsp->base + oldsp->size;
    3376           0 :   size_t ssize = pad_request(sizeof(struct malloc_segment));
    3377           0 :   char* rawsp = old_end - (ssize + FOUR_SIZE_T_SIZES + CHUNK_ALIGN_MASK);
    3378           0 :   size_t offset = align_offset(chunk2mem(rawsp));
    3379           0 :   char* asp = rawsp + offset;
    3380           0 :   char* csp = (asp < (old_top + MIN_CHUNK_SIZE))? old_top : asp;
    3381           0 :   mchunkptr sp = (mchunkptr)csp;
    3382           0 :   msegmentptr ss = (msegmentptr)(chunk2mem(sp));
    3383           0 :   mchunkptr tnext = chunk_plus_offset(sp, ssize);
    3384           0 :   mchunkptr p = tnext;
    3385           0 :   int nfences = 0;
    3386             : 
    3387             :   /* reset top to new space */
    3388           0 :   init_top(m, (mchunkptr)tbase, tsize - TOP_FOOT_SIZE);
    3389             : 
    3390             :   /* Set up segment record */
    3391             :   assert(is_aligned(ss));
    3392           0 :   set_size_and_pinuse_of_inuse_chunk(m, sp, ssize);
    3393           0 :   *ss = m->seg; /* Push current record */
    3394           0 :   m->seg.base = tbase;
    3395           0 :   m->seg.size = tsize;
    3396           0 :   set_segment_flags(&m->seg, mmapped);
    3397           0 :   m->seg.next = ss;
    3398             : 
    3399             :   /* Insert trailing fenceposts */
    3400             :   for (;;) {
    3401           0 :     mchunkptr nextp = chunk_plus_offset(p, SIZE_T_SIZE);
    3402           0 :     p->head = FENCEPOST_HEAD;
    3403           0 :     ++nfences;
    3404           0 :     if ((char*)(&(nextp->head)) < old_end)
    3405           0 :       p = nextp;
    3406             :     else
    3407           0 :       break;
    3408           0 :   }
    3409             :   assert(nfences >= 2);
    3410             : 
    3411             :   /* Insert the rest of old top into a bin as an ordinary free chunk */
    3412           0 :   if (csp != old_top) {
    3413           0 :     mchunkptr q = (mchunkptr)old_top;
    3414           0 :     size_t psize = csp - old_top;
    3415           0 :     mchunkptr tn = chunk_plus_offset(q, psize);
    3416           0 :     set_free_with_pinuse(q, psize, tn);
    3417           0 :     insert_chunk(m, q, psize);
    3418             :   }
    3419             : 
    3420             :   check_top_chunk(m, m->top);
    3421           0 : }
    3422             : 
    3423             : /* -------------------------- System allocation -------------------------- */
    3424             : 
    3425             : /* Get memory from system using MORECORE or MMAP */
    3426           0 : static void* sys_alloc(mstate m, size_t nb) {
    3427           0 :   char* tbase = CMFAIL;
    3428           0 :   size_t tsize = 0;
    3429           0 :   flag_t mmap_flag = 0;
    3430             : 
    3431           0 :   init_mparams();
    3432             : 
    3433             :   /* Directly map large chunks */
    3434           0 :   if (use_mmap(m) && nb >= mparams.mmap_threshold) {
    3435           0 :     void* mem = mmap_alloc(m, nb);
    3436           0 :     if (mem != 0)
    3437           0 :       return mem;
    3438             :   }
    3439             : 
    3440             :   /*
    3441             :     Try getting memory in any of three ways (in most-preferred to
    3442             :     least-preferred order):
    3443             :     1. A call to MORECORE that can normally contiguously extend memory.
    3444             :        (disabled if not MORECORE_CONTIGUOUS or not HAVE_MORECORE or
    3445             :        or main space is mmapped or a previous contiguous call failed)
    3446             :     2. A call to MMAP new space (disabled if not HAVE_MMAP).
    3447             :        Note that under the default settings, if MORECORE is unable to
    3448             :        fulfill a request, and HAVE_MMAP is true, then mmap is
    3449             :        used as a noncontiguous system allocator. This is a useful backup
    3450             :        strategy for systems with holes in address spaces -- in this case
    3451             :        sbrk cannot contiguously expand the heap, but mmap may be able to
    3452             :        find space.
    3453             :     3. A call to MORECORE that cannot usually contiguously extend memory.
    3454             :        (disabled if not HAVE_MORECORE)
    3455             :   */
    3456             : 
    3457           0 :   if (MORECORE_CONTIGUOUS && !use_noncontiguous(m)) {
    3458           0 :     char* br = CMFAIL;
    3459           0 :     msegmentptr ss = (m->top == 0)? 0 : segment_holding(m, (char*)m->top);
    3460           0 :     size_t asize = 0;
    3461             :     ACQUIRE_MORECORE_LOCK();
    3462             : 
    3463           0 :     if (ss == 0) {  /* First time through or recovery */
    3464           0 :       char* base = (char*)CALL_MORECORE(0);
    3465           0 :       if (base != CMFAIL) {
    3466           0 :         asize = granularity_align(nb + TOP_FOOT_SIZE + SIZE_T_ONE);
    3467             :         /* Adjust to end on a page boundary */
    3468           0 :         if (!is_page_aligned(base))
    3469           0 :           asize += (page_align((size_t)base) - (size_t)base);
    3470             :         /* Can't call MORECORE if size is negative when treated as signed */
    3471           0 :         if (asize < HALF_MAX_SIZE_T &&
    3472           0 :             (br = (char*)(CALL_MORECORE(asize))) == base) {
    3473           0 :           tbase = base;
    3474           0 :           tsize = asize;
    3475             :         }
    3476             :       }
    3477             :     }
    3478             :     else {
    3479             :       /* Subtract out existing available top space from MORECORE request. */
    3480           0 :       asize = granularity_align(nb - m->topsize + TOP_FOOT_SIZE + SIZE_T_ONE);
    3481             :       /* Use mem here only if it did continuously extend old space */
    3482           0 :       if (asize < HALF_MAX_SIZE_T &&
    3483           0 :           (br = (char*)(CALL_MORECORE(asize))) == ss->base+ss->size) {
    3484           0 :         tbase = br;
    3485           0 :         tsize = asize;
    3486             :       }
    3487             :     }
    3488             : 
    3489           0 :     if (tbase == CMFAIL) {    /* Cope with partial failure */
    3490           0 :       if (br != CMFAIL) {    /* Try to use/extend the space we did get */
    3491           0 :         if (asize < HALF_MAX_SIZE_T &&
    3492           0 :             asize < nb + TOP_FOOT_SIZE + SIZE_T_ONE) {
    3493           0 :           size_t esize = granularity_align(nb + TOP_FOOT_SIZE + SIZE_T_ONE - asize);
    3494           0 :           if (esize < HALF_MAX_SIZE_T) {
    3495           0 :             char* end = (char*)CALL_MORECORE(esize);
    3496           0 :             if (end != CMFAIL)
    3497           0 :               asize += esize;
    3498             :             else {            /* Can't use; try to release */
    3499           0 :               (void)CALL_MORECORE(-asize);
    3500           0 :               br = CMFAIL;
    3501             :             }
    3502             :           }
    3503             :         }
    3504             :       }
    3505           0 :       if (br != CMFAIL) {    /* Use the space we did get */
    3506           0 :         tbase = br;
    3507           0 :         tsize = asize;
    3508             :       }
    3509             :       else
    3510           0 :         disable_contiguous(m); /* Don't try contiguous path in the future */
    3511             :     }
    3512             : 
    3513             :     RELEASE_MORECORE_LOCK();
    3514             :   }
    3515             : 
    3516           0 :   if (HAVE_MMAP && tbase == CMFAIL) {  /* Try MMAP */
    3517           0 :     size_t req = nb + TOP_FOOT_SIZE + SIZE_T_ONE;
    3518           0 :     size_t rsize = granularity_align(req);
    3519           0 :     if (rsize > nb) { /* Fail if wraps around zero */
    3520           0 :       char* mp = (char*)(CALL_MMAP(rsize));
    3521           0 :       if (mp != CMFAIL) {
    3522           0 :         tbase = mp;
    3523           0 :         tsize = rsize;
    3524           0 :         mmap_flag = IS_MMAPPED_BIT;
    3525             :       }
    3526             :     }
    3527             :   }
    3528             : 
    3529           0 :   if (HAVE_MORECORE && tbase == CMFAIL) { /* Try noncontiguous MORECORE */
    3530           0 :     size_t asize = granularity_align(nb + TOP_FOOT_SIZE + SIZE_T_ONE);
    3531           0 :     if (asize < HALF_MAX_SIZE_T) {
    3532           0 :       char* br = CMFAIL;
    3533           0 :       char* end = CMFAIL;
    3534             :       ACQUIRE_MORECORE_LOCK();
    3535           0 :       br = (char*)(CALL_MORECORE(asize));
    3536           0 :       end = (char*)(CALL_MORECORE(0));
    3537             :       RELEASE_MORECORE_LOCK();
    3538           0 :       if (br != CMFAIL && end != CMFAIL && br < end) {
    3539           0 :         size_t ssize = end - br;
    3540           0 :         if (ssize > nb + TOP_FOOT_SIZE) {
    3541           0 :           tbase = br;
    3542           0 :           tsize = ssize;
    3543             :         }
    3544             :       }
    3545             :     }
    3546             :   }
    3547             : 
    3548           0 :   if (tbase != CMFAIL) {
    3549             : 
    3550           0 :     if ((m->footprint += tsize) > m->max_footprint)
    3551           0 :       m->max_footprint = m->footprint;
    3552             : 
    3553           0 :     if (!is_initialized(m)) { /* first-time initialization */
    3554           0 :       m->seg.base = m->least_addr = tbase;
    3555           0 :       m->seg.size = tsize;
    3556           0 :       set_segment_flags(&m->seg, mmap_flag);
    3557           0 :       m->magic = mparams.magic;
    3558           0 :       init_bins(m);
    3559           0 :       if (is_global(m)) 
    3560           0 :         init_top(m, (mchunkptr)tbase, tsize - TOP_FOOT_SIZE);
    3561             :       else {
    3562             :         /* Offset top by embedded malloc_state */
    3563           0 :         mchunkptr mn = next_chunk(mem2chunk(m));
    3564           0 :         init_top(m, mn, (size_t)((tbase + tsize) - (char*)mn) -TOP_FOOT_SIZE);
    3565             :       }
    3566             :     }
    3567             : 
    3568             :     else {
    3569             :       /* Try to merge with an existing segment */
    3570           0 :       msegmentptr sp = &m->seg;
    3571           0 :       while (sp != 0 && tbase != sp->base + sp->size)
    3572           0 :         sp = sp->next;
    3573           0 :       if (sp != 0 &&
    3574           0 :           !is_extern_segment(sp) &&
    3575           0 :           check_segment_merge(sp, tbase, tsize) &&
    3576           0 :           (get_segment_flags(sp) & IS_MMAPPED_BIT) == mmap_flag &&
    3577           0 :           segment_holds(sp, m->top)) { /* append */
    3578           0 :         sp->size += tsize;
    3579           0 :         init_top(m, m->top, m->topsize + tsize);
    3580             :       }
    3581             :       else {
    3582           0 :         if (tbase < m->least_addr)
    3583           0 :           m->least_addr = tbase;
    3584           0 :         sp = &m->seg;
    3585           0 :         while (sp != 0 && sp->base != tbase + tsize)
    3586           0 :           sp = sp->next;
    3587           0 :         if (sp != 0 &&
    3588           0 :             !is_extern_segment(sp) &&
    3589           0 :             check_segment_merge(sp, tbase, tsize) &&
    3590           0 :             (get_segment_flags(sp) & IS_MMAPPED_BIT) == mmap_flag) {
    3591           0 :           char* oldbase = sp->base;
    3592           0 :           sp->base = tbase;
    3593           0 :           sp->size += tsize;
    3594           0 :           return prepend_alloc(m, tbase, oldbase, nb);
    3595             :         }
    3596             :         else
    3597           0 :           add_segment(m, tbase, tsize, mmap_flag);
    3598             :       }
    3599             :     }
    3600             : 
    3601           0 :     if (nb < m->topsize) { /* Allocate from new or extended top space */
    3602           0 :       size_t rsize = m->topsize -= nb;
    3603           0 :       mchunkptr p = m->top;
    3604           0 :       mchunkptr r = m->top = chunk_plus_offset(p, nb);
    3605           0 :       r->head = rsize | PINUSE_BIT;
    3606           0 :       set_size_and_pinuse_of_inuse_chunk(m, p, nb);
    3607             :       check_top_chunk(m, m->top);
    3608             :       check_malloced_chunk(m, chunk2mem(p), nb);
    3609           0 :       return chunk2mem(p);
    3610             :     }
    3611             :   }
    3612             : 
    3613           0 :   MALLOC_FAILURE_ACTION;
    3614           0 :   return 0;
    3615             : }
    3616             : 
    3617             : /* -----------------------  system deallocation -------------------------- */
    3618             : 
    3619             : /* Unmap and unlink any mmapped segments that don't contain used chunks */
    3620           0 : static size_t release_unused_segments(mstate m) {
    3621           0 :   size_t released = 0;
    3622           0 :   msegmentptr pred = &m->seg;
    3623           0 :   msegmentptr sp = pred->next;
    3624           0 :   while (sp != 0) {
    3625           0 :     char* base = sp->base;
    3626           0 :     size_t size = sp->size;
    3627           0 :     msegmentptr next = sp->next;
    3628           0 :     if (is_mmapped_segment(sp) && !is_extern_segment(sp)) {
    3629           0 :       mchunkptr p = align_as_chunk(base);
    3630           0 :       size_t psize = chunksize(p);
    3631             :       /* Can unmap if first chunk holds entire segment and not pinned */
    3632           0 :       if (!cinuse(p) && (char*)p + psize >= base + size - TOP_FOOT_SIZE) {
    3633           0 :         tchunkptr tp = (tchunkptr)p;
    3634             :         assert(segment_holds(sp, (char*)sp));
    3635           0 :         if (p == m->dv) {
    3636           0 :           m->dv = 0;
    3637           0 :           m->dvsize = 0;
    3638             :         }
    3639             :         else {
    3640           0 :           unlink_large_chunk(m, tp);
    3641             :         }
    3642           0 :         if (CALL_MUNMAP(base, size) == 0) {
    3643           0 :           released += size;
    3644           0 :           m->footprint -= size;
    3645             :           /* unlink obsoleted record */
    3646           0 :           sp = pred;
    3647           0 :           sp->next = next;
    3648             :         }
    3649             :         else { /* back out if cannot unmap */
    3650           0 :           insert_large_chunk(m, tp, psize);
    3651             :         }
    3652             :       }
    3653             :     }
    3654           0 :     pred = sp;
    3655           0 :     sp = next;
    3656             :   }
    3657           0 :   return released;
    3658             : }
    3659             : 
    3660           0 : static int sys_trim(mstate m, size_t pad) {
    3661           0 :   size_t released = 0;
    3662           0 :   if (pad < MAX_REQUEST && is_initialized(m)) {
    3663           0 :     pad += TOP_FOOT_SIZE; /* ensure enough room for segment overhead */
    3664             : 
    3665           0 :     if (m->topsize > pad) {
    3666             :       /* Shrink top space in granularity-size units, keeping at least one */
    3667           0 :       size_t unit = mparams.granularity;
    3668           0 :       size_t extra = ((m->topsize - pad + (unit - SIZE_T_ONE)) / unit -
    3669             :                       SIZE_T_ONE) * unit;
    3670           0 :       msegmentptr sp = segment_holding(m, (char*)m->top);
    3671             : 
    3672           0 :       if (!is_extern_segment(sp)) {
    3673           0 :         if (is_mmapped_segment(sp)) {
    3674           0 :           if (HAVE_MMAP &&
    3675           0 :               sp->size >= extra &&
    3676           0 :               !has_segment_link(m, sp)) { /* can't shrink if pinned */
    3677           0 :             size_t newsize = sp->size - extra;
    3678             :             /* Prefer mremap, fall back to munmap */
    3679           0 :             if ((CALL_MREMAP(sp->base, sp->size, newsize, 0) != MFAIL) ||
    3680           0 :                 (CALL_MUNMAP(sp->base + newsize, extra) == 0)) {
    3681           0 :               released = extra;
    3682             :             }
    3683             :           }
    3684             :         }
    3685             :         else if (HAVE_MORECORE) {
    3686           0 :           if (extra >= HALF_MAX_SIZE_T) /* Avoid wrapping negative */
    3687           0 :             extra = (HALF_MAX_SIZE_T) + SIZE_T_ONE - unit;
    3688             :           ACQUIRE_MORECORE_LOCK();
    3689             :           {
    3690             :             /* Make sure end of memory is where we last set it. */
    3691           0 :             char* old_br = (char*)(CALL_MORECORE(0));
    3692           0 :             if (old_br == sp->base + sp->size) {
    3693           0 :               char* rel_br = (char*)(CALL_MORECORE(-extra));
    3694           0 :               char* new_br = (char*)(CALL_MORECORE(0));
    3695           0 :               if (rel_br != CMFAIL && new_br < old_br)
    3696           0 :                 released = old_br - new_br;
    3697             :             }
    3698             :           }
    3699             :           RELEASE_MORECORE_LOCK();
    3700             :         }
    3701             :       }
    3702             : 
    3703           0 :       if (released != 0) {
    3704           0 :         sp->size -= released;
    3705           0 :         m->footprint -= released;
    3706           0 :         init_top(m, m->top, m->topsize - released);
    3707             :         check_top_chunk(m, m->top);
    3708             :       }
    3709             :     }
    3710             : 
    3711             :     /* Unmap any unused mmapped segments */
    3712             :     if (HAVE_MMAP) 
    3713           0 :       released += release_unused_segments(m);
    3714             : 
    3715             :     /* On failure, disable autotrim to avoid repeated failed future calls */
    3716           0 :     if (released == 0)
    3717           0 :       m->trim_check = MAX_SIZE_T;
    3718             :   }
    3719             : 
    3720           0 :   return (released != 0)? 1 : 0;
    3721             : }
    3722             : 
    3723             : /* ---------------------------- malloc support --------------------------- */
    3724             : 
    3725             : /* allocate a large request from the best fitting chunk in a treebin */
    3726           0 : static void* tmalloc_large(mstate m, size_t nb) {
    3727           0 :   tchunkptr v = 0;
    3728           0 :   size_t rsize = -nb; /* Unsigned negation */
    3729             :   tchunkptr t;
    3730             :   bindex_t idx;
    3731           0 :   compute_tree_index(nb, idx);
    3732             : 
    3733           0 :   if ((t = *treebin_at(m, idx)) != 0) {
    3734             :     /* Traverse tree for this bin looking for node with size == nb */
    3735           0 :     size_t sizebits = nb << leftshift_for_tree_index(idx);
    3736           0 :     tchunkptr rst = 0;  /* The deepest untaken right subtree */
    3737             :     for (;;) {
    3738             :       tchunkptr rt;
    3739           0 :       size_t trem = chunksize(t) - nb;
    3740           0 :       if (trem < rsize) {
    3741           0 :         v = t;
    3742           0 :         if ((rsize = trem) == 0)
    3743           0 :           break;
    3744             :       }
    3745           0 :       rt = t->child[1];
    3746           0 :       t = t->child[(sizebits >> (SIZE_T_BITSIZE-SIZE_T_ONE)) & 1];
    3747           0 :       if (rt != 0 && rt != t)
    3748           0 :         rst = rt;
    3749           0 :       if (t == 0) {
    3750           0 :         t = rst; /* set t to least subtree holding sizes > nb */
    3751           0 :         break;
    3752             :       }
    3753           0 :       sizebits <<= 1;
    3754           0 :     }
    3755             :   }
    3756             : 
    3757           0 :   if (t == 0 && v == 0) { /* set t to root of next non-empty treebin */
    3758           0 :     binmap_t leftbits = left_bits(idx2bit(idx)) & m->treemap;
    3759           0 :     if (leftbits != 0) {
    3760             :       bindex_t i;
    3761           0 :       binmap_t leastbit = least_bit(leftbits);
    3762           0 :       compute_bit2idx(leastbit, i);
    3763           0 :       t = *treebin_at(m, i);
    3764             :     }
    3765             :   }
    3766             : 
    3767           0 :   while (t != 0) { /* find smallest of tree or subtree */
    3768           0 :     size_t trem = chunksize(t) - nb;
    3769           0 :     if (trem < rsize) {
    3770           0 :       rsize = trem;
    3771           0 :       v = t;
    3772             :     }
    3773           0 :     t = leftmost_child(t);
    3774             :   }
    3775             : 
    3776             :   /*  If dv is a better fit, return 0 so malloc will use it */
    3777           0 :   if (v != 0 && rsize < (size_t)(m->dvsize - nb)) {
    3778           0 :     if (RTCHECK(ok_address(m, v))) { /* split */
    3779           0 :       mchunkptr r = chunk_plus_offset(v, nb);
    3780             :       assert(chunksize(v) == rsize + nb);
    3781           0 :       if (RTCHECK(ok_next(v, r))) {
    3782           0 :         unlink_large_chunk(m, v);
    3783           0 :         if (rsize < MIN_CHUNK_SIZE)
    3784           0 :           set_inuse_and_pinuse(m, v, (rsize + nb));
    3785             :         else {
    3786           0 :           set_size_and_pinuse_of_inuse_chunk(m, v, nb);
    3787           0 :           set_size_and_pinuse_of_free_chunk(r, rsize);
    3788           0 :           insert_chunk(m, r, rsize);
    3789             :         }
    3790           0 :         return chunk2mem(v);
    3791             :       }
    3792             :     }
    3793           0 :     CORRUPTION_ERROR_ACTION(m);
    3794             :   }
    3795           0 :   return 0;
    3796             : }
    3797             : 
    3798             : /* allocate a small request from the best fitting chunk in a treebin */
    3799           0 : static void* tmalloc_small(mstate m, size_t nb) {
    3800             :   tchunkptr t, v;
    3801             :   size_t rsize;
    3802             :   bindex_t i;
    3803           0 :   binmap_t leastbit = least_bit(m->treemap);
    3804           0 :   compute_bit2idx(leastbit, i);
    3805             : 
    3806           0 :   v = t = *treebin_at(m, i);
    3807           0 :   rsize = chunksize(t) - nb;
    3808             : 
    3809           0 :   while ((t = leftmost_child(t)) != 0) {
    3810           0 :     size_t trem = chunksize(t) - nb;
    3811           0 :     if (trem < rsize) {
    3812           0 :       rsize = trem;
    3813           0 :       v = t;
    3814             :     }
    3815             :   }
    3816             : 
    3817           0 :   if (RTCHECK(ok_address(m, v))) {
    3818           0 :     mchunkptr r = chunk_plus_offset(v, nb);
    3819             :     assert(chunksize(v) == rsize + nb);
    3820           0 :     if (RTCHECK(ok_next(v, r))) {
    3821           0 :       unlink_large_chunk(m, v);
    3822           0 :       if (rsize < MIN_CHUNK_SIZE)
    3823           0 :         set_inuse_and_pinuse(m, v, (rsize + nb));
    3824             :       else {
    3825           0 :         set_size_and_pinuse_of_inuse_chunk(m, v, nb);
    3826           0 :         set_size_and_pinuse_of_free_chunk(r, rsize);
    3827           0 :         replace_dv(m, r, rsize);
    3828             :       }
    3829           0 :       return chunk2mem(v);
    3830             :     }
    3831             :   }
    3832             : 
    3833           0 :   CORRUPTION_ERROR_ACTION(m);
    3834             :   return 0;
    3835             : }
    3836             : 
    3837             : /* --------------------------- realloc support --------------------------- */
    3838             : 
    3839           0 : static void* internal_realloc(mstate m, void* oldmem, size_t bytes) {
    3840           0 :   if (bytes >= MAX_REQUEST) {
    3841           0 :     MALLOC_FAILURE_ACTION;
    3842           0 :     return 0;
    3843             :   }
    3844           0 :   if (!PREACTION(m)) {
    3845           0 :     mchunkptr oldp = mem2chunk(oldmem);
    3846           0 :     size_t oldsize = chunksize(oldp);
    3847           0 :     mchunkptr next = chunk_plus_offset(oldp, oldsize);
    3848           0 :     mchunkptr newp = 0;
    3849           0 :     void* extra = 0;
    3850             : 
    3851             :     /* Try to either shrink or extend into top. Else malloc-copy-free */
    3852             : 
    3853           0 :     if (RTCHECK(ok_address(m, oldp) && ok_cinuse(oldp) &&
    3854           0 :                 ok_next(oldp, next) && ok_pinuse(next))) {
    3855           0 :       size_t nb = request2size(bytes);
    3856           0 :       if (is_mmapped(oldp))
    3857           0 :         newp = mmap_resize(m, oldp, nb);
    3858           0 :       else if (oldsize >= nb) { /* already big enough */
    3859           0 :         size_t rsize = oldsize - nb;
    3860           0 :         newp = oldp;
    3861           0 :         if (rsize >= MIN_CHUNK_SIZE) {
    3862           0 :           mchunkptr remainder = chunk_plus_offset(newp, nb);
    3863           0 :           set_inuse(m, newp, nb);
    3864           0 :           set_inuse(m, remainder, rsize);
    3865           0 :           extra = chunk2mem(remainder);
    3866             :         }
    3867             :       }
    3868           0 :       else if (next == m->top && oldsize + m->topsize > nb) {
    3869             :         /* Expand into top */
    3870           0 :         size_t newsize = oldsize + m->topsize;
    3871           0 :         size_t newtopsize = newsize - nb;
    3872           0 :         mchunkptr newtop = chunk_plus_offset(oldp, nb);
    3873           0 :         set_inuse(m, oldp, nb);
    3874           0 :         newtop->head = newtopsize |PINUSE_BIT;
    3875           0 :         m->top = newtop;
    3876           0 :         m->topsize = newtopsize;
    3877           0 :         newp = oldp;
    3878             :       }
    3879             :     }
    3880             :     else {
    3881           0 :       USAGE_ERROR_ACTION(m, oldmem);
    3882             :       POSTACTION(m);
    3883             :       return 0;
    3884             :     }
    3885             : 
    3886           0 :     POSTACTION(m);
    3887             : 
    3888           0 :     if (newp != 0) {
    3889           0 :       if (extra != 0) {
    3890           0 :         internal_free(m, extra);
    3891             :       }
    3892             :       check_inuse_chunk(m, newp);
    3893           0 :       return chunk2mem(newp);
    3894             :     }
    3895             :     else {
    3896           0 :       void* newmem = internal_malloc(m, bytes);
    3897           0 :       if (newmem != 0) {
    3898           0 :         size_t oc = oldsize - overhead_for(oldp);
    3899           0 :         memcpy(newmem, oldmem, (oc < bytes)? oc : bytes);
    3900           0 :         internal_free(m, oldmem);
    3901             :       }
    3902           0 :       return newmem;
    3903             :     }
    3904             :   }
    3905           0 :   return 0;
    3906             : }
    3907             : 
    3908             : /* --------------------------- memalign support -------------------------- */
    3909             : 
    3910           0 : static void* internal_memalign(mstate m, size_t alignment, size_t bytes) {
    3911           0 :   if (alignment <= MALLOC_ALIGNMENT)    /* Can just use malloc */
    3912           0 :     return internal_malloc(m, bytes);
    3913           0 :   if (alignment <  MIN_CHUNK_SIZE) /* must be at least a minimum chunk size */
    3914           0 :     alignment = MIN_CHUNK_SIZE;
    3915           0 :   if ((alignment & (alignment-SIZE_T_ONE)) != 0) {/* Ensure a power of 2 */
    3916           0 :     size_t a = MALLOC_ALIGNMENT << 1;
    3917           0 :     while (a < alignment) a <<= 1;
    3918           0 :     alignment = a;
    3919             :   }
    3920             :   
    3921           0 :   if (bytes >= MAX_REQUEST - alignment) {
    3922           0 :     if (m != 0)  { /* Test isn't needed but avoids compiler warning */
    3923           0 :       MALLOC_FAILURE_ACTION;
    3924             :     }
    3925             :   }
    3926             :   else {
    3927           0 :     size_t nb = request2size(bytes);
    3928           0 :     size_t req = nb + alignment + MIN_CHUNK_SIZE - CHUNK_OVERHEAD;
    3929           0 :     char* mem = (char*)internal_malloc(m, req);
    3930           0 :     if (mem != 0) {
    3931           0 :       void* leader = 0;
    3932           0 :       void* trailer = 0;
    3933           0 :       mchunkptr p = mem2chunk(mem);
    3934             : 
    3935           0 :       if (PREACTION(m)) return 0;
    3936           0 :       if ((((size_t)(mem)) % alignment) != 0) { /* misaligned */
    3937             :         /*
    3938             :           Find an aligned spot inside chunk.  Since we need to give
    3939             :           back leading space in a chunk of at least MIN_CHUNK_SIZE, if
    3940             :           the first calculation places us at a spot with less than
    3941             :           MIN_CHUNK_SIZE leader, we can move to the next aligned spot.
    3942             :           We've allocated enough total room so that this is always
    3943             :           possible.
    3944             :         */
    3945           0 :         char* br = (char*)mem2chunk((size_t)(((size_t)(mem +
    3946             :                                                        alignment -
    3947             :                                                        SIZE_T_ONE)) &
    3948             :                                              -alignment));
    3949           0 :         char* pos = ((size_t)(br - (char*)(p)) >= MIN_CHUNK_SIZE)?
    3950           0 :           br : br+alignment;
    3951           0 :         mchunkptr newp = (mchunkptr)pos;
    3952           0 :         size_t leadsize = pos - (char*)(p);
    3953           0 :         size_t newsize = chunksize(p) - leadsize;
    3954             : 
    3955           0 :         if (is_mmapped(p)) { /* For mmapped chunks, just adjust offset */
    3956           0 :           newp->prev_foot = p->prev_foot + leadsize;
    3957           0 :           newp->head = (newsize|CINUSE_BIT);
    3958             :         }
    3959             :         else { /* Otherwise, give back leader, use the rest */
    3960           0 :           set_inuse(m, newp, newsize);
    3961           0 :           set_inuse(m, p, leadsize);
    3962           0 :           leader = chunk2mem(p);
    3963             :         }
    3964           0 :         p = newp;
    3965             :       }
    3966             : 
    3967             :       /* Give back spare room at the end */
    3968           0 :       if (!is_mmapped(p)) {
    3969           0 :         size_t size = chunksize(p);
    3970           0 :         if (size > nb + MIN_CHUNK_SIZE) {
    3971           0 :           size_t remainder_size = size - nb;
    3972           0 :           mchunkptr remainder = chunk_plus_offset(p, nb);
    3973           0 :           set_inuse(m, p, nb);
    3974           0 :           set_inuse(m, remainder, remainder_size);
    3975           0 :           trailer = chunk2mem(remainder);
    3976             :         }
    3977             :       }
    3978             : 
    3979             :       assert (chunksize(p) >= nb);
    3980             :       assert((((size_t)(chunk2mem(p))) % alignment) == 0);
    3981             :       check_inuse_chunk(m, p);
    3982           0 :       POSTACTION(m);
    3983           0 :       if (leader != 0) {
    3984           0 :         internal_free(m, leader);
    3985             :       }
    3986           0 :       if (trailer != 0) {
    3987           0 :         internal_free(m, trailer);
    3988             :       }
    3989           0 :       return chunk2mem(p);
    3990             :     }
    3991             :   }
    3992           0 :   return 0;
    3993             : }
    3994             : 
    3995             : /* ------------------------ comalloc/coalloc support --------------------- */
    3996             : 
    3997           0 : static void** ialloc(mstate m,
    3998             :                      size_t n_elements,
    3999             :                      size_t* sizes,
    4000             :                      int opts,
    4001             :                      void* chunks[]) {
    4002             :   /*
    4003             :     This provides common support for independent_X routines, handling
    4004             :     all of the combinations that can result.
    4005             : 
    4006             :     The opts arg has:
    4007             :     bit 0 set if all elements are same size (using sizes[0])
    4008             :     bit 1 set if elements should be zeroed
    4009             :   */
    4010             : 
    4011             :   size_t    element_size;   /* chunksize of each element, if all same */
    4012             :   size_t    contents_size;  /* total size of elements */
    4013             :   size_t    array_size;     /* request size of pointer array */
    4014             :   void*     mem;            /* malloced aggregate space */
    4015             :   mchunkptr p;              /* corresponding chunk */
    4016             :   size_t    remainder_size; /* remaining bytes while splitting */
    4017             :   void**    marray;         /* either "chunks" or malloced ptr array */
    4018             :   mchunkptr array_chunk;    /* chunk for malloced ptr array */
    4019             :   flag_t    was_enabled;    /* to disable mmap */
    4020             :   size_t    size;
    4021             :   size_t    i;
    4022             : 
    4023             :   /* compute array length, if needed */
    4024           0 :   if (chunks != 0) {
    4025           0 :     if (n_elements == 0)
    4026           0 :       return chunks; /* nothing to do */
    4027           0 :     marray = chunks;
    4028           0 :     array_size = 0;
    4029             :   }
    4030             :   else {
    4031             :     /* if empty req, must still return chunk representing empty array */
    4032           0 :     if (n_elements == 0)
    4033           0 :       return (void**)internal_malloc(m, 0);
    4034           0 :     marray = 0;
    4035           0 :     array_size = request2size(n_elements * (sizeof(void*)));
    4036             :   }
    4037             : 
    4038             :   /* compute total element size */
    4039           0 :   if (opts & 0x1) { /* all-same-size */
    4040           0 :     element_size = request2size(*sizes);
    4041           0 :     contents_size = n_elements * element_size;
    4042             :   }
    4043             :   else { /* add up all the sizes */
    4044           0 :     element_size = 0;
    4045           0 :     contents_size = 0;
    4046           0 :     for (i = 0; i != n_elements; ++i)
    4047           0 :       contents_size += request2size(sizes[i]);
    4048             :   }
    4049             : 
    4050           0 :   size = contents_size + array_size;
    4051             : 
    4052             :   /*
    4053             :      Allocate the aggregate chunk.  First disable direct-mmapping so
    4054             :      malloc won't use it, since we would not be able to later
    4055             :      free/realloc space internal to a segregated mmap region.
    4056             :   */
    4057           0 :   was_enabled = use_mmap(m);
    4058           0 :   disable_mmap(m);
    4059           0 :   mem = internal_malloc(m, size - CHUNK_OVERHEAD);
    4060           0 :   if (was_enabled)
    4061           0 :     enable_mmap(m);
    4062           0 :   if (mem == 0)
    4063           0 :     return 0;
    4064             : 
    4065           0 :   if (PREACTION(m)) return 0;
    4066           0 :   p = mem2chunk(mem);
    4067           0 :   remainder_size = chunksize(p);
    4068             : 
    4069             :   assert(!is_mmapped(p));
    4070             : 
    4071           0 :   if (opts & 0x2) {       /* optionally clear the elements */
    4072           0 :     memset((size_t*)mem, 0, remainder_size - SIZE_T_SIZE - array_size);
    4073             :   }
    4074             : 
    4075             :   /* If not provided, allocate the pointer array as final part of chunk */
    4076           0 :   if (marray == 0) {
    4077             :     size_t  array_chunk_size;
    4078           0 :     array_chunk = chunk_plus_offset(p, contents_size);
    4079           0 :     array_chunk_size = remainder_size - contents_size;
    4080           0 :     marray = (void**) (chunk2mem(array_chunk));
    4081           0 :     set_size_and_pinuse_of_inuse_chunk(m, array_chunk, array_chunk_size);
    4082           0 :     remainder_size = contents_size;
    4083             :   }
    4084             : 
    4085             :   /* split out elements */
    4086           0 :   for (i = 0; ; ++i) {
    4087           0 :     marray[i] = chunk2mem(p);
    4088           0 :     if (i != n_elements-1) {
    4089           0 :       if (element_size != 0)
    4090           0 :         size = element_size;
    4091             :       else
    4092           0 :         size = request2size(sizes[i]);
    4093           0 :       remainder_size -= size;
    4094           0 :       set_size_and_pinuse_of_inuse_chunk(m, p, size);
    4095           0 :       p = chunk_plus_offset(p, size);
    4096             :     }
    4097             :     else { /* the final element absorbs any overallocation slop */
    4098           0 :       set_size_and_pinuse_of_inuse_chunk(m, p, remainder_size);
    4099           0 :       break;
    4100             :     }
    4101           0 :   }
    4102             : 
    4103             : #if DEBUG
    4104             :   if (marray != chunks) {
    4105             :     /* final element must have exactly exhausted chunk */
    4106             :     if (element_size != 0) {
    4107             :       assert(remainder_size == element_size);
    4108             :     }
    4109             :     else {
    4110             :       assert(remainder_size == request2size(sizes[i]));
    4111             :     }
    4112             :     check_inuse_chunk(m, mem2chunk(marray));
    4113             :   }
    4114             :   for (i = 0; i != n_elements; ++i)
    4115             :     check_inuse_chunk(m, mem2chunk(marray[i]));
    4116             : 
    4117             : #endif /* DEBUG */
    4118             : 
    4119           0 :   POSTACTION(m);
    4120           0 :   return marray;
    4121             : }
    4122             : 
    4123             : 
    4124             : /* -------------------------- public routines ---------------------------- */
    4125             : 
    4126             : #if !ONLY_MSPACES
    4127             : 
    4128           0 : void* dlmalloc(size_t bytes) {
    4129             :   /*
    4130             :      Basic algorithm:
    4131             :      If a small request (< 256 bytes minus per-chunk overhead):
    4132             :        1. If one exists, use a remainderless chunk in associated smallbin.
    4133             :           (Remainderless means that there are too few excess bytes to
    4134             :           represent as a chunk.)
    4135             :        2. If it is big enough, use the dv chunk, which is normally the
    4136             :           chunk adjacent to the one used for the most recent small request.
    4137             :        3. If one exists, split the smallest available chunk in a bin,
    4138             :           saving remainder in dv.
    4139             :        4. If it is big enough, use the top chunk.
    4140             :        5. If available, get memory from system and use it
    4141             :      Otherwise, for a large request:
    4142             :        1. Find the smallest available binned chunk that fits, and use it
    4143             :           if it is better fitting than dv chunk, splitting if necessary.
    4144             :        2. If better fitting than any binned chunk, use the dv chunk.
    4145             :        3. If it is big enough, use the top chunk.
    4146             :        4. If request size >= mmap threshold, try to directly mmap this chunk.
    4147             :        5. If available, get memory from system and use it
    4148             : 
    4149             :      The ugly goto's here ensure that postaction occurs along all paths.
    4150             :   */
    4151             : 
    4152           0 :   if (!PREACTION(gm)) {
    4153             :     void* mem;
    4154             :     size_t nb;
    4155           0 :     if (bytes <= MAX_SMALL_REQUEST) {
    4156             :       bindex_t idx;
    4157             :       binmap_t smallbits;
    4158           0 :       nb = (bytes < MIN_REQUEST)? MIN_CHUNK_SIZE : pad_request(bytes);
    4159           0 :       idx = small_index(nb);
    4160           0 :       smallbits = gm->smallmap >> idx;
    4161             : 
    4162           0 :       if ((smallbits & 0x3U) != 0) { /* Remainderless fit to a smallbin. */
    4163             :         mchunkptr b, p;
    4164           0 :         idx += ~smallbits & 1;       /* Uses next bin if idx empty */
    4165           0 :         b = smallbin_at(gm, idx);
    4166           0 :         p = b->fd;
    4167             :         assert(chunksize(p) == small_index2size(idx));
    4168           0 :         unlink_first_small_chunk(gm, b, p, idx);
    4169           0 :         set_inuse_and_pinuse(gm, p, small_index2size(idx));
    4170           0 :         mem = chunk2mem(p);
    4171             :         check_malloced_chunk(gm, mem, nb);
    4172           0 :         goto postaction;
    4173             :       }
    4174             : 
    4175           0 :       else if (nb > gm->dvsize) {
    4176           0 :         if (smallbits != 0) { /* Use chunk in next nonempty smallbin */
    4177             :           mchunkptr b, p, r;
    4178             :           size_t rsize;
    4179             :           bindex_t i;
    4180           0 :           binmap_t leftbits = (smallbits << idx) & left_bits(idx2bit(idx));
    4181           0 :           binmap_t leastbit = least_bit(leftbits);
    4182           0 :           compute_bit2idx(leastbit, i);
    4183           0 :           b = smallbin_at(gm, i);
    4184           0 :           p = b->fd;
    4185             :           assert(chunksize(p) == small_index2size(i));
    4186           0 :           unlink_first_small_chunk(gm, b, p, i);
    4187           0 :           rsize = small_index2size(i) - nb;
    4188             :           /* Fit here cannot be remainderless if 4byte sizes */
    4189             :           if (SIZE_T_SIZE != 4 && rsize < MIN_CHUNK_SIZE)
    4190             :             set_inuse_and_pinuse(gm, p, small_index2size(i));
    4191             :           else {
    4192           0 :             set_size_and_pinuse_of_inuse_chunk(gm, p, nb);
    4193           0 :             r = chunk_plus_offset(p, nb);
    4194           0 :             set_size_and_pinuse_of_free_chunk(r, rsize);
    4195           0 :             replace_dv(gm, r, rsize);
    4196             :           }
    4197           0 :           mem = chunk2mem(p);
    4198             :           check_malloced_chunk(gm, mem, nb);
    4199           0 :           goto postaction;
    4200             :         }
    4201             : 
    4202           0 :         else if (gm->treemap != 0 && (mem = tmalloc_small(gm, nb)) != 0) {
    4203             :           check_malloced_chunk(gm, mem, nb);
    4204           0 :           goto postaction;
    4205             :         }
    4206             :       }
    4207             :     }
    4208           0 :     else if (bytes >= MAX_REQUEST)
    4209           0 :       nb = MAX_SIZE_T; /* Too big to allocate. Force failure (in sys alloc) */
    4210             :     else {
    4211           0 :       nb = pad_request(bytes);
    4212           0 :       if (gm->treemap != 0 && (mem = tmalloc_large(gm, nb)) != 0) {
    4213             :         check_malloced_chunk(gm, mem, nb);
    4214           0 :         goto postaction;
    4215             :       }
    4216             :     }
    4217             : 
    4218           0 :     if (nb <= gm->dvsize) {
    4219           0 :       size_t rsize = gm->dvsize - nb;
    4220           0 :       mchunkptr p = gm->dv;
    4221           0 :       if (rsize >= MIN_CHUNK_SIZE) { /* split dv */
    4222           0 :         mchunkptr r = gm->dv = chunk_plus_offset(p, nb);
    4223           0 :         gm->dvsize = rsize;
    4224           0 :         set_size_and_pinuse_of_free_chunk(r, rsize);
    4225           0 :         set_size_and_pinuse_of_inuse_chunk(gm, p, nb);
    4226             :       }
    4227             :       else { /* exhaust dv */
    4228           0 :         size_t dvs = gm->dvsize;
    4229           0 :         gm->dvsize = 0;
    4230           0 :         gm->dv = 0;
    4231           0 :         set_inuse_and_pinuse(gm, p, dvs);
    4232             :       }
    4233           0 :       mem = chunk2mem(p);
    4234             :       check_malloced_chunk(gm, mem, nb);
    4235           0 :       goto postaction;
    4236             :     }
    4237             : 
    4238           0 :     else if (nb < gm->topsize) { /* Split top */
    4239           0 :       size_t rsize = gm->topsize -= nb;
    4240           0 :       mchunkptr p = gm->top;
    4241           0 :       mchunkptr r = gm->top = chunk_plus_offset(p, nb);
    4242           0 :       r->head = rsize | PINUSE_BIT;
    4243           0 :       set_size_and_pinuse_of_inuse_chunk(gm, p, nb);
    4244           0 :       mem = chunk2mem(p);
    4245             :       check_top_chunk(gm, gm->top);
    4246             :       check_malloced_chunk(gm, mem, nb);
    4247           0 :       goto postaction;
    4248             :     }
    4249             : 
    4250           0 :     mem = sys_alloc(gm, nb);
    4251             : 
    4252             :   postaction:
    4253           0 :     POSTACTION(gm);
    4254           0 :     return mem;
    4255             :   }
    4256             : 
    4257           0 :   return 0;
    4258             : }
    4259             : 
    4260           0 : void dlfree(void* mem) {
    4261             :   /*
    4262             :      Consolidate freed chunks with preceding or succeeding bordering
    4263             :      free chunks, if they exist, and then place in a bin.  Intermixed
    4264             :      with special cases for top, dv, mmapped chunks, and usage errors.
    4265             :   */
    4266             : 
    4267           0 :   if (mem != 0) {
    4268           0 :     mchunkptr p  = mem2chunk(mem);
    4269             : #if FOOTERS
    4270             :     mstate fm = get_mstate_for(p);
    4271             :     if (!ok_magic(fm)) {
    4272             :       USAGE_ERROR_ACTION(fm, p);
    4273             :       return;
    4274             :     }
    4275             : #else /* FOOTERS */
    4276             : #define fm gm
    4277             : #endif /* FOOTERS */
    4278           0 :     if (!PREACTION(fm)) {
    4279             :       check_inuse_chunk(fm, p);
    4280           0 :       if (RTCHECK(ok_address(fm, p) && ok_cinuse(p))) {
    4281           0 :         size_t psize = chunksize(p);
    4282           0 :         mchunkptr next = chunk_plus_offset(p, psize);
    4283           0 :         if (!pinuse(p)) {
    4284           0 :           size_t prevsize = p->prev_foot;
    4285           0 :           if ((prevsize & IS_MMAPPED_BIT) != 0) {
    4286           0 :             prevsize &= ~IS_MMAPPED_BIT;
    4287           0 :             psize += prevsize + MMAP_FOOT_PAD;
    4288           0 :             if (CALL_MUNMAP((char*)p - prevsize, psize) == 0)
    4289           0 :               fm->footprint -= psize;
    4290           0 :             goto postaction;
    4291             :           }
    4292             :           else {
    4293           0 :             mchunkptr prev = chunk_minus_offset(p, prevsize);
    4294           0 :             psize += prevsize;
    4295           0 :             p = prev;
    4296           0 :             if (RTCHECK(ok_address(fm, prev))) { /* consolidate backward */
    4297           0 :               if (p != fm->dv) {
    4298           0 :                 unlink_chunk(fm, p, prevsize);
    4299             :               }
    4300           0 :               else if ((next->head & INUSE_BITS) == INUSE_BITS) {
    4301           0 :                 fm->dvsize = psize;
    4302           0 :                 set_free_with_pinuse(p, psize, next);
    4303           0 :                 goto postaction;
    4304             :               }
    4305             :             }
    4306             :             else
    4307           0 :               goto erroraction;
    4308             :           }
    4309             :         }
    4310             : 
    4311           0 :         if (RTCHECK(ok_next(p, next) && ok_pinuse(next))) {
    4312           0 :           if (!cinuse(next)) {  /* consolidate forward */
    4313           0 :             if (next == fm->top) {
    4314           0 :               size_t tsize = fm->topsize += psize;
    4315           0 :               fm->top = p;
    4316           0 :               p->head = tsize | PINUSE_BIT;
    4317           0 :               if (p == fm->dv) {
    4318           0 :                 fm->dv = 0;
    4319           0 :                 fm->dvsize = 0;
    4320             :               }
    4321           0 :               if (should_trim(fm, tsize))
    4322           0 :                 sys_trim(fm, 0);
    4323           0 :               goto postaction;
    4324             :             }
    4325           0 :             else if (next == fm->dv) {
    4326           0 :               size_t dsize = fm->dvsize += psize;
    4327           0 :               fm->dv = p;
    4328           0 :               set_size_and_pinuse_of_free_chunk(p, dsize);
    4329           0 :               goto postaction;
    4330             :             }
    4331             :             else {
    4332           0 :               size_t nsize = chunksize(next);
    4333           0 :               psize += nsize;
    4334           0 :               unlink_chunk(fm, next, nsize);
    4335           0 :               set_size_and_pinuse_of_free_chunk(p, psize);
    4336           0 :               if (p == fm->dv) {
    4337           0 :                 fm->dvsize = psize;
    4338           0 :                 goto postaction;
    4339             :               }
    4340             :             }
    4341             :           }
    4342             :           else
    4343           0 :             set_free_with_pinuse(p, psize, next);
    4344           0 :           insert_chunk(fm, p, psize);
    4345             :           check_free_chunk(fm, p);
    4346           0 :           goto postaction;
    4347             :         }
    4348             :       }
    4349             :     erroraction:
    4350           0 :       USAGE_ERROR_ACTION(fm, p);
    4351             :     postaction:
    4352           0 :       POSTACTION(fm);
    4353             :     }
    4354             :   }
    4355             : #if !FOOTERS
    4356             : #undef fm
    4357             : #endif /* FOOTERS */
    4358           0 : }
    4359             : 
    4360           0 : void* dlcalloc(size_t n_elements, size_t elem_size) {
    4361             :   void* mem;
    4362           0 :   size_t req = 0;
    4363           0 :   if (n_elements != 0) {
    4364           0 :     req = n_elements * elem_size;
    4365           0 :     if (((n_elements | elem_size) & ~(size_t)0xffff) &&
    4366           0 :         (req / n_elements != elem_size))
    4367           0 :       req = MAX_SIZE_T; /* force downstream failure on overflow */
    4368             :   }
    4369           0 :   mem = dlmalloc(req);
    4370           0 :   if (mem != 0 && calloc_must_clear(mem2chunk(mem)))
    4371           0 :     memset(mem, 0, req);
    4372           0 :   return mem;
    4373             : }
    4374             : 
    4375           0 : void* dlrealloc(void* oldmem, size_t bytes) {
    4376           0 :   if (oldmem == 0)
    4377           0 :     return dlmalloc(bytes);
    4378             : #ifdef REALLOC_ZERO_BYTES_FREES
    4379             :   if (bytes == 0) {
    4380             :     dlfree(oldmem);
    4381             :     return 0;
    4382             :   }
    4383             : #endif /* REALLOC_ZERO_BYTES_FREES */
    4384             :   else {
    4385             : #if ! FOOTERS
    4386           0 :     mstate m = gm;
    4387             : #else /* FOOTERS */
    4388             :     mstate m = get_mstate_for(mem2chunk(oldmem));
    4389             :     if (!ok_magic(m)) {
    4390             :       USAGE_ERROR_ACTION(m, oldmem);
    4391             :       return 0;
    4392             :     }
    4393             : #endif /* FOOTERS */
    4394           0 :     return internal_realloc(m, oldmem, bytes);
    4395             :   }
    4396             : }
    4397             : 
    4398           0 : void* dlmemalign(size_t alignment, size_t bytes) {
    4399           0 :   return internal_memalign(gm, alignment, bytes);
    4400             : }
    4401             : 
    4402           0 : void** dlindependent_calloc(size_t n_elements, size_t elem_size,
    4403             :                                  void* chunks[]) {
    4404           0 :   size_t sz = elem_size; /* serves as 1-element array */
    4405           0 :   return ialloc(gm, n_elements, &sz, 3, chunks);
    4406             : }
    4407             : 
    4408           0 : void** dlindependent_comalloc(size_t n_elements, size_t sizes[],
    4409             :                                    void* chunks[]) {
    4410           0 :   return ialloc(gm, n_elements, sizes, 0, chunks);
    4411             : }
    4412             : 
    4413           0 : void* dlvalloc(size_t bytes) {
    4414             :   size_t pagesz;
    4415           0 :   init_mparams();
    4416           0 :   pagesz = mparams.page_size;
    4417           0 :   return dlmemalign(pagesz, bytes);
    4418             : }
    4419             : 
    4420           0 : void* dlpvalloc(size_t bytes) {
    4421             :   size_t pagesz;
    4422           0 :   init_mparams();
    4423           0 :   pagesz = mparams.page_size;
    4424           0 :   return dlmemalign(pagesz, (bytes + pagesz - SIZE_T_ONE) & ~(pagesz - SIZE_T_ONE));
    4425             : }
    4426             : 
    4427           0 : int dlmalloc_trim(size_t pad) {
    4428           0 :   int result = 0;
    4429           0 :   if (!PREACTION(gm)) {
    4430           0 :     result = sys_trim(gm, pad);
    4431           0 :     POSTACTION(gm);
    4432             :   }
    4433           0 :   return result;
    4434             : }
    4435             : 
    4436           0 : size_t dlmalloc_footprint(void) {
    4437           0 :   return gm->footprint;
    4438             : }
    4439             : 
    4440           0 : size_t dlmalloc_max_footprint(void) {
    4441           0 :   return gm->max_footprint;
    4442             : }
    4443             : 
    4444             : #if !NO_MALLINFO
    4445           0 : struct mallinfo dlmallinfo(void) {
    4446           0 :   return internal_mallinfo(gm);
    4447             : }
    4448             : #endif /* NO_MALLINFO */
    4449             : 
    4450           0 : void dlmalloc_stats() {
    4451           0 :   internal_malloc_stats(gm);
    4452           0 : }
    4453             : 
    4454           0 : size_t dlmalloc_usable_size(void* mem) {
    4455           0 :   if (mem != 0) {
    4456           0 :     mchunkptr p = mem2chunk(mem);
    4457           0 :     if (cinuse(p))
    4458           0 :       return chunksize(p) - overhead_for(p);
    4459             :   }
    4460           0 :   return 0;
    4461             : }
    4462             : 
    4463           0 : int dlmallopt(int param_number, int value) {
    4464           0 :   return change_mparam(param_number, value);
    4465             : }
    4466             : 
    4467             : #endif /* !ONLY_MSPACES */
    4468             : 
    4469             : /* ----------------------------- user mspaces ---------------------------- */
    4470             : 
    4471             : #if MSPACES
    4472             : 
    4473             : static mstate init_user_mstate(char* tbase, size_t tsize) {
    4474             :   size_t msize = pad_request(sizeof(struct malloc_state));
    4475             :   mchunkptr mn;
    4476             :   mchunkptr msp = align_as_chunk(tbase);
    4477             :   mstate m = (mstate)(chunk2mem(msp));
    4478             :   memset(m, 0, msize);
    4479             :   INITIAL_LOCK(&m->mutex);
    4480             :   msp->head = (msize|PINUSE_BIT|CINUSE_BIT);
    4481             :   m->seg.base = m->least_addr = tbase;
    4482             :   m->seg.size = m->footprint = m->max_footprint = tsize;
    4483             :   m->magic = mparams.magic;
    4484             :   m->mflags = mparams.default_mflags;
    4485             :   disable_contiguous(m);
    4486             :   init_bins(m);
    4487             :   mn = next_chunk(mem2chunk(m));
    4488             :   init_top(m, mn, (size_t)((tbase + tsize) - (char*)mn) - TOP_FOOT_SIZE);
    4489             :   check_top_chunk(m, m->top);
    4490             :   return m;
    4491             : }
    4492             : 
    4493             : mspace create_mspace(size_t capacity, int locked) {
    4494             :   mstate m = 0;
    4495             :   size_t msize = pad_request(sizeof(struct malloc_state));
    4496             :   init_mparams(); /* Ensure pagesize etc initialized */
    4497             : 
    4498             :   if (capacity < (size_t) -(msize + TOP_FOOT_SIZE + mparams.page_size)) {
    4499             :     size_t rs = ((capacity == 0)? mparams.granularity :
    4500             :                  (capacity + TOP_FOOT_SIZE + msize));
    4501             :     size_t tsize = granularity_align(rs);
    4502             :     char* tbase = (char*)(CALL_MMAP(tsize));
    4503             :     if (tbase != CMFAIL) {
    4504             :       m = init_user_mstate(tbase, tsize);
    4505             :       set_segment_flags(&m->seg, IS_MMAPPED_BIT);
    4506             :       set_lock(m, locked);
    4507             :     }
    4508             :   }
    4509             :   return (mspace)m;
    4510             : }
    4511             : 
    4512             : mspace create_mspace_with_base(void* base, size_t capacity, int locked) {
    4513             :   mstate m = 0;
    4514             :   size_t msize = pad_request(sizeof(struct malloc_state));
    4515             :   init_mparams(); /* Ensure pagesize etc initialized */
    4516             : 
    4517             :   if (capacity > msize + TOP_FOOT_SIZE &&
    4518             :       capacity < (size_t) -(msize + TOP_FOOT_SIZE + mparams.page_size)) {
    4519             :     m = init_user_mstate((char*)base, capacity);
    4520             :     set_segment_flags(&m->seg, EXTERN_BIT);
    4521             :     set_lock(m, locked);
    4522             :   }
    4523             :   return (mspace)m;
    4524             : }
    4525             : 
    4526             : size_t destroy_mspace(mspace msp) {
    4527             :   size_t freed = 0;
    4528             :   mstate ms = (mstate)msp;
    4529             :   if (ok_magic(ms)) {
    4530             :     msegmentptr sp = &ms->seg;
    4531             :     while (sp != 0) {
    4532             :       char* base = sp->base;
    4533             :       size_t size = sp->size;
    4534             :       flag_t flag = get_segment_flags(sp);
    4535             :       sp = sp->next;
    4536             :       if ((flag & IS_MMAPPED_BIT) && !(flag & EXTERN_BIT) &&
    4537             :           CALL_MUNMAP(base, size) == 0)
    4538             :         freed += size;
    4539             :     }
    4540             :   }
    4541             :   else {
    4542             :     USAGE_ERROR_ACTION(ms,ms);
    4543             :   }
    4544             :   return freed;
    4545             : }
    4546             : 
    4547             : /*
    4548             :   mspace versions of routines are near-clones of the global
    4549             :   versions. This is not so nice but better than the alternatives.
    4550             : */
    4551             : 
    4552             : 
    4553             : void* mspace_malloc(mspace msp, size_t bytes) {
    4554             :   mstate ms = (mstate)msp;
    4555             :   if (!ok_magic(ms)) {
    4556             :     USAGE_ERROR_ACTION(ms,ms);
    4557             :     return 0;
    4558             :   }
    4559             :   if (!PREACTION(ms)) {
    4560             :     void* mem;
    4561             :     size_t nb;
    4562             :     if (bytes <= MAX_SMALL_REQUEST) {
    4563             :       bindex_t idx;
    4564             :       binmap_t smallbits;
    4565             :       nb = (bytes < MIN_REQUEST)? MIN_CHUNK_SIZE : pad_request(bytes);
    4566             :       idx = small_index(nb);
    4567             :       smallbits = ms->smallmap >> idx;
    4568             : 
    4569             :       if ((smallbits & 0x3U) != 0) { /* Remainderless fit to a smallbin. */
    4570             :         mchunkptr b, p;
    4571             :         idx += ~smallbits & 1;       /* Uses next bin if idx empty */
    4572             :         b = smallbin_at(ms, idx);
    4573             :         p = b->fd;
    4574             :         assert(chunksize(p) == small_index2size(idx));
    4575             :         unlink_first_small_chunk(ms, b, p, idx);
    4576             :         set_inuse_and_pinuse(ms, p, small_index2size(idx));
    4577             :         mem = chunk2mem(p);
    4578             :         check_malloced_chunk(ms, mem, nb);
    4579             :         goto postaction;
    4580             :       }
    4581             : 
    4582             :       else if (nb > ms->dvsize) {
    4583             :         if (smallbits != 0) { /* Use chunk in next nonempty smallbin */
    4584             :           mchunkptr b, p, r;
    4585             :           size_t rsize;
    4586             :           bindex_t i;
    4587             :           binmap_t leftbits = (smallbits << idx) & left_bits(idx2bit(idx));
    4588             :           binmap_t leastbit = least_bit(leftbits);
    4589             :           compute_bit2idx(leastbit, i);
    4590             :           b = smallbin_at(ms, i);
    4591             :           p = b->fd;
    4592             :           assert(chunksize(p) == small_index2size(i));
    4593             :           unlink_first_small_chunk(ms, b, p, i);
    4594             :           rsize = small_index2size(i) - nb;
    4595             :           /* Fit here cannot be remainderless if 4byte sizes */
    4596             :           if (SIZE_T_SIZE != 4 && rsize < MIN_CHUNK_SIZE)
    4597             :             set_inuse_and_pinuse(ms, p, small_index2size(i));
    4598             :           else {
    4599             :             set_size_and_pinuse_of_inuse_chunk(ms, p, nb);
    4600             :             r = chunk_plus_offset(p, nb);
    4601             :             set_size_and_pinuse_of_free_chunk(r, rsize);
    4602             :             replace_dv(ms, r, rsize);
    4603             :           }
    4604             :           mem = chunk2mem(p);
    4605             :           check_malloced_chunk(ms, mem, nb);
    4606             :           goto postaction;
    4607             :         }
    4608             : 
    4609             :         else if (ms->treemap != 0 && (mem = tmalloc_small(ms, nb)) != 0) {
    4610             :           check_malloced_chunk(ms, mem, nb);
    4611             :           goto postaction;
    4612             :         }
    4613             :       }
    4614             :     }
    4615             :     else if (bytes >= MAX_REQUEST)
    4616             :       nb = MAX_SIZE_T; /* Too big to allocate. Force failure (in sys alloc) */
    4617             :     else {
    4618             :       nb = pad_request(bytes);
    4619             :       if (ms->treemap != 0 && (mem = tmalloc_large(ms, nb)) != 0) {
    4620             :         check_malloced_chunk(ms, mem, nb);
    4621             :         goto postaction;
    4622             :       }
    4623             :     }
    4624             : 
    4625             :     if (nb <= ms->dvsize) {
    4626             :       size_t rsize = ms->dvsize - nb;
    4627             :       mchunkptr p = ms->dv;
    4628             :       if (rsize >= MIN_CHUNK_SIZE) { /* split dv */
    4629             :         mchunkptr r = ms->dv = chunk_plus_offset(p, nb);
    4630             :         ms->dvsize = rsize;
    4631             :         set_size_and_pinuse_of_free_chunk(r, rsize);
    4632             :         set_size_and_pinuse_of_inuse_chunk(ms, p, nb);
    4633             :       }
    4634             :       else { /* exhaust dv */
    4635             :         size_t dvs = ms->dvsize;
    4636             :         ms->dvsize = 0;
    4637             :         ms->dv = 0;
    4638             :         set_inuse_and_pinuse(ms, p, dvs);
    4639             :       }
    4640             :       mem = chunk2mem(p);
    4641             :       check_malloced_chunk(ms, mem, nb);
    4642             :       goto postaction;
    4643             :     }
    4644             : 
    4645             :     else if (nb < ms->topsize) { /* Split top */
    4646             :       size_t rsize = ms->topsize -= nb;
    4647             :       mchunkptr p = ms->top;
    4648             :       mchunkptr r = ms->top = chunk_plus_offset(p, nb);
    4649             :       r->head = rsize | PINUSE_BIT;
    4650             :       set_size_and_pinuse_of_inuse_chunk(ms, p, nb);
    4651             :       mem = chunk2mem(p);
    4652             :       check_top_chunk(ms, ms->top);
    4653             :       check_malloced_chunk(ms, mem, nb);
    4654             :       goto postaction;
    4655             :     }
    4656             : 
    4657             :     mem = sys_alloc(ms, nb);
    4658             : 
    4659             :   postaction:
    4660             :     POSTACTION(ms);
    4661             :     return mem;
    4662             :   }
    4663             : 
    4664             :   return 0;
    4665             : }
    4666             : 
    4667             : void mspace_free(mspace msp, void* mem) {
    4668             :   if (mem != 0) {
    4669             :     mchunkptr p  = mem2chunk(mem);
    4670             : #if FOOTERS
    4671             :     mstate fm = get_mstate_for(p);
    4672             : #else /* FOOTERS */
    4673             :     mstate fm = (mstate)msp;
    4674             : #endif /* FOOTERS */
    4675             :     if (!ok_magic(fm)) {
    4676             :       USAGE_ERROR_ACTION(fm, p);
    4677             :       return;
    4678             :     }
    4679             :     if (!PREACTION(fm)) {
    4680             :       check_inuse_chunk(fm, p);
    4681             :       if (RTCHECK(ok_address(fm, p) && ok_cinuse(p))) {
    4682             :         size_t psize = chunksize(p);
    4683             :         mchunkptr next = chunk_plus_offset(p, psize);
    4684             :         if (!pinuse(p)) {
    4685             :           size_t prevsize = p->prev_foot;
    4686             :           if ((prevsize & IS_MMAPPED_BIT) != 0) {
    4687             :             prevsize &= ~IS_MMAPPED_BIT;
    4688             :             psize += prevsize + MMAP_FOOT_PAD;
    4689             :             if (CALL_MUNMAP((char*)p - prevsize, psize) == 0)
    4690             :               fm->footprint -= psize;
    4691             :             goto postaction;
    4692             :           }
    4693             :           else {
    4694             :             mchunkptr prev = chunk_minus_offset(p, prevsize);
    4695             :             psize += prevsize;
    4696             :             p = prev;
    4697             :             if (RTCHECK(ok_address(fm, prev))) { /* consolidate backward */
    4698             :               if (p != fm->dv) {
    4699             :                 unlink_chunk(fm, p, prevsize);
    4700             :               }
    4701             :               else if ((next->head & INUSE_BITS) == INUSE_BITS) {
    4702             :                 fm->dvsize = psize;
    4703             :                 set_free_with_pinuse(p, psize, next);
    4704             :                 goto postaction;
    4705             :               }
    4706             :             }
    4707             :             else
    4708             :               goto erroraction;
    4709             :           }
    4710             :         }
    4711             : 
    4712             :         if (RTCHECK(ok_next(p, next) && ok_pinuse(next))) {
    4713             :           if (!cinuse(next)) {  /* consolidate forward */
    4714             :             if (next == fm->top) {
    4715             :               size_t tsize = fm->topsize += psize;
    4716             :               fm->top = p;
    4717             :               p->head = tsize | PINUSE_BIT;
    4718             :               if (p == fm->dv) {
    4719             :                 fm->dv = 0;
    4720             :                 fm->dvsize = 0;
    4721             :               }
    4722             :               if (should_trim(fm, tsize))
    4723             :                 sys_trim(fm, 0);
    4724             :               goto postaction;
    4725             :             }
    4726             :             else if (next == fm->dv) {
    4727             :               size_t dsize = fm->dvsize += psize;
    4728             :               fm->dv = p;
    4729             :               set_size_and_pinuse_of_free_chunk(p, dsize);
    4730             :               goto postaction;
    4731             :             }
    4732             :             else {
    4733             :               size_t nsize = chunksize(next);
    4734             :               psize += nsize;
    4735             :               unlink_chunk(fm, next, nsize);
    4736             :               set_size_and_pinuse_of_free_chunk(p, psize);
    4737             :               if (p == fm->dv) {
    4738             :                 fm->dvsize = psize;
    4739             :                 goto postaction;
    4740             :               }
    4741             :             }
    4742             :           }
    4743             :           else
    4744             :             set_free_with_pinuse(p, psize, next);
    4745             :           insert_chunk(fm, p, psize);
    4746             :           check_free_chunk(fm, p);
    4747             :           goto postaction;
    4748             :         }
    4749             :       }
    4750             :     erroraction:
    4751             :       USAGE_ERROR_ACTION(fm, p);
    4752             :     postaction:
    4753             :       POSTACTION(fm);
    4754             :     }
    4755             :   }
    4756             : }
    4757             : 
    4758             : void* mspace_calloc(mspace msp, size_t n_elements, size_t elem_size) {
    4759             :   void* mem;
    4760             :   size_t req = 0;
    4761             :   mstate ms = (mstate)msp;
    4762             :   if (!ok_magic(ms)) {
    4763             :     USAGE_ERROR_ACTION(ms,ms);
    4764             :     return 0;
    4765             :   }
    4766             :   if (n_elements != 0) {
    4767             :     req = n_elements * elem_size;
    4768             :     if (((n_elements | elem_size) & ~(size_t)0xffff) &&
    4769             :         (req / n_elements != elem_size))
    4770             :       req = MAX_SIZE_T; /* force downstream failure on overflow */
    4771             :   }
    4772             :   mem = internal_malloc(ms, req);
    4773             :   if (mem != 0 && calloc_must_clear(mem2chunk(mem)))
    4774             :     memset(mem, 0, req);
    4775             :   return mem;
    4776             : }
    4777             : 
    4778             : void* mspace_realloc(mspace msp, void* oldmem, size_t bytes) {
    4779             :   if (oldmem == 0)
    4780             :     return mspace_malloc(msp, bytes);
    4781             : #ifdef REALLOC_ZERO_BYTES_FREES
    4782             :   if (bytes == 0) {
    4783             :     mspace_free(msp, oldmem);
    4784             :     return 0;
    4785             :   }
    4786             : #endif /* REALLOC_ZERO_BYTES_FREES */
    4787             :   else {
    4788             : #if FOOTERS
    4789             :     mchunkptr p  = mem2chunk(oldmem);
    4790             :     mstate ms = get_mstate_for(p);
    4791             : #else /* FOOTERS */
    4792             :     mstate ms = (mstate)msp;
    4793             : #endif /* FOOTERS */
    4794             :     if (!ok_magic(ms)) {
    4795             :       USAGE_ERROR_ACTION(ms,ms);
    4796             :       return 0;
    4797             :     }
    4798             :     return internal_realloc(ms, oldmem, bytes);
    4799             :   }
    4800             : }
    4801             : 
    4802             : void* mspace_memalign(mspace msp, size_t alignment, size_t bytes) {
    4803             :   mstate ms = (mstate)msp;
    4804             :   if (!ok_magic(ms)) {
    4805             :     USAGE_ERROR_ACTION(ms,ms);
    4806             :     return 0;
    4807             :   }
    4808             :   return internal_memalign(ms, alignment, bytes);
    4809             : }
    4810             : 
    4811             : void** mspace_independent_calloc(mspace msp, size_t n_elements,
    4812             :                                  size_t elem_size, void* chunks[]) {
    4813             :   size_t sz = elem_size; /* serves as 1-element array */
    4814             :   mstate ms = (mstate)msp;
    4815             :   if (!ok_magic(ms)) {
    4816             :     USAGE_ERROR_ACTION(ms,ms);
    4817             :     return 0;
    4818             :   }
    4819             :   return ialloc(ms, n_elements, &sz, 3, chunks);
    4820             : }
    4821             : 
    4822             : void** mspace_independent_comalloc(mspace msp, size_t n_elements,
    4823             :                                    size_t sizes[], void* chunks[]) {
    4824             :   mstate ms = (mstate)msp;
    4825             :   if (!ok_magic(ms)) {
    4826             :     USAGE_ERROR_ACTION(ms,ms);
    4827             :     return 0;
    4828             :   }
    4829             :   return ialloc(ms, n_elements, sizes, 0, chunks);
    4830             : }
    4831             : 
    4832             : int mspace_trim(mspace msp, size_t pad) {
    4833             :   int result = 0;
    4834             :   mstate ms = (mstate)msp;
    4835             :   if (ok_magic(ms)) {
    4836             :     if (!PREACTION(ms)) {
    4837             :       result = sys_trim(ms, pad);
    4838             :       POSTACTION(ms);
    4839             :     }
    4840             :   }
    4841             :   else {
    4842             :     USAGE_ERROR_ACTION(ms,ms);
    4843             :   }
    4844             :   return result;
    4845             : }
    4846             : 
    4847             : void mspace_malloc_stats(mspace msp) {
    4848             :   mstate ms = (mstate)msp;
    4849             :   if (ok_magic(ms)) {
    4850             :     internal_malloc_stats(ms);
    4851             :   }
    4852             :   else {
    4853             :     USAGE_ERROR_ACTION(ms,ms);
    4854             :   }
    4855             : }
    4856             : 
    4857             : size_t mspace_footprint(mspace msp) {
    4858             :   size_t result;
    4859             :   mstate ms = (mstate)msp;
    4860             :   if (ok_magic(ms)) {
    4861             :     result = ms->footprint;
    4862             :   }
    4863             :   USAGE_ERROR_ACTION(ms,ms);
    4864             :   return result;
    4865             : }
    4866             : 
    4867             : 
    4868             : size_t mspace_max_footprint(mspace msp) {
    4869             :   size_t result;
    4870             :   mstate ms = (mstate)msp;
    4871             :   if (ok_magic(ms)) {
    4872             :     result = ms->max_footprint;
    4873             :   }
    4874             :   USAGE_ERROR_ACTION(ms,ms);
    4875             :   return result;
    4876             : }
    4877             : 
    4878             : 
    4879             : #if !NO_MALLINFO
    4880             : struct mallinfo mspace_mallinfo(mspace msp) {
    4881             :   mstate ms = (mstate)msp;
    4882             :   if (!ok_magic(ms)) {
    4883             :     USAGE_ERROR_ACTION(ms,ms);
    4884             :   }
    4885             :   return internal_mallinfo(ms);
    4886             : }
    4887             : #endif /* NO_MALLINFO */
    4888             : 
    4889             : int mspace_mallopt(int param_number, int value) {
    4890             :   return change_mparam(param_number, value);
    4891             : }
    4892             : 
    4893             : #endif /* MSPACES */
    4894             : 
    4895             : /* -------------------- Alternative MORECORE functions ------------------- */
    4896             : 
    4897             : /*
    4898             :   Guidelines for creating a custom version of MORECORE:
    4899             : 
    4900             :   * For best performance, MORECORE should allocate in multiples of pagesize.
    4901             :   * MORECORE may allocate more memory than requested. (Or even less,
    4902             :       but this will usually result in a malloc failure.)
    4903             :   * MORECORE must not allocate memory when given argument zero, but
    4904             :       instead return one past the end address of memory from previous
    4905             :       nonzero call.
    4906             :   * For best performance, consecutive calls to MORECORE with positive
    4907             :       arguments should return increasing addresses, indicating that
    4908             :       space has been contiguously extended.
    4909             :   * Even though consecutive calls to MORECORE need not return contiguous
    4910             :       addresses, it must be OK for malloc'ed chunks to span multiple
    4911             :       regions in those cases where they do happen to be contiguous.
    4912             :   * MORECORE need not handle negative arguments -- it may instead
    4913             :       just return MFAIL when given negative arguments.
    4914             :       Negative arguments are always multiples of pagesize. MORECORE
    4915             :       must not misinterpret negative args as large positive unsigned
    4916             :       args. You can suppress all such calls from even occurring by defining
    4917             :       MORECORE_CANNOT_TRIM,
    4918             : 
    4919             :   As an example alternative MORECORE, here is a custom allocator
    4920             :   kindly contributed for pre-OSX macOS.  It uses virtually but not
    4921             :   necessarily physically contiguous non-paged memory (locked in,
    4922             :   present and won't get swapped out).  You can use it by uncommenting
    4923             :   this section, adding some #includes, and setting up the appropriate
    4924             :   defines above:
    4925             : 
    4926             :       #define MORECORE osMoreCore
    4927             : 
    4928             :   There is also a shutdown routine that should somehow be called for
    4929             :   cleanup upon program exit.
    4930             : 
    4931             :   #define MAX_POOL_ENTRIES 100
    4932             :   #define MINIMUM_MORECORE_SIZE  (64 * 1024U)
    4933             :   static int next_os_pool;
    4934             :   void *our_os_pools[MAX_POOL_ENTRIES];
    4935             : 
    4936             :   void *osMoreCore(int size)
    4937             :   {
    4938             :     void *ptr = 0;
    4939             :     static void *sbrk_top = 0;
    4940             : 
    4941             :     if (size > 0)
    4942             :     {
    4943             :       if (size < MINIMUM_MORECORE_SIZE)
    4944             :          size = MINIMUM_MORECORE_SIZE;
    4945             :       if (CurrentExecutionLevel() == kTaskLevel)
    4946             :          ptr = PoolAllocateResident(size + RM_PAGE_SIZE, 0);
    4947             :       if (ptr == 0)
    4948             :       {
    4949             :         return (void *) MFAIL;
    4950             :       }
    4951             :       // save ptrs so they can be freed during cleanup
    4952             :       our_os_pools[next_os_pool] = ptr;
    4953             :       next_os_pool++;
    4954             :       ptr = (void *) ((((size_t) ptr) + RM_PAGE_MASK) & ~RM_PAGE_MASK);
    4955             :       sbrk_top = (char *) ptr + size;
    4956             :       return ptr;
    4957             :     }
    4958             :     else if (size < 0)
    4959             :     {
    4960             :       // we don't currently support shrink behavior
    4961             :       return (void *) MFAIL;
    4962             :     }
    4963             :     else
    4964             :     {
    4965             :       return sbrk_top;
    4966             :     }
    4967             :   }
    4968             : 
    4969             :   // cleanup any allocated memory pools
    4970             :   // called as last thing before shutting down driver
    4971             : 
    4972             :   void osCleanupMem(void)
    4973             :   {
    4974             :     void **ptr;
    4975             : 
    4976             :     for (ptr = our_os_pools; ptr < &our_os_pools[MAX_POOL_ENTRIES]; ptr++)
    4977             :       if (*ptr)
    4978             :       {
    4979             :          PoolDeallocate(*ptr);
    4980             :          *ptr = 0;
    4981             :       }
    4982             :   }
    4983             : 
    4984             : */
    4985             : 
    4986             : 
    4987             : /* -----------------------------------------------------------------------
    4988             : History:
    4989             :     V2.8.3 Thu Sep 22 11:16:32 2005  Doug Lea  (dl at gee)
    4990             :       * Add max_footprint functions
    4991             :       * Ensure all appropriate literals are size_t
    4992             :       * Fix conditional compilation problem for some #define settings
    4993             :       * Avoid concatenating segments with the one provided
    4994             :         in create_mspace_with_base
    4995             :       * Rename some variables to avoid compiler shadowing warnings
    4996             :       * Use explicit lock initialization.
    4997             :       * Better handling of sbrk interference.
    4998             :       * Simplify and fix segment insertion, trimming and mspace_destroy
    4999             :       * Reinstate REALLOC_ZERO_BYTES_FREES option from 2.7.x
    5000             :       * Thanks especially to Dennis Flanagan for help on these.
    5001             : 
    5002             :     V2.8.2 Sun Jun 12 16:01:10 2005  Doug Lea  (dl at gee)
    5003             :       * Fix memalign brace error.
    5004             : 
    5005             :     V2.8.1 Wed Jun  8 16:11:46 2005  Doug Lea  (dl at gee)
    5006             :       * Fix improper #endif nesting in C++
    5007             :       * Add explicit casts needed for C++
    5008             : 
    5009             :     V2.8.0 Mon May 30 14:09:02 2005  Doug Lea  (dl at gee)
    5010             :       * Use trees for large bins
    5011             :       * Support mspaces
    5012             :       * Use segments to unify sbrk-based and mmap-based system allocation,
    5013             :         removing need for emulation on most platforms without sbrk.
    5014             :       * Default safety checks
    5015             :       * Optional footer checks. Thanks to William Robertson for the idea.
    5016             :       * Internal code refactoring
    5017             :       * Incorporate suggestions and platform-specific changes.
    5018             :         Thanks to Dennis Flanagan, Colin Plumb, Niall Douglas,
    5019             :         Aaron Bachmann,  Emery Berger, and others.
    5020             :       * Speed up non-fastbin processing enough to remove fastbins.
    5021             :       * Remove useless cfree() to avoid conflicts with other apps.
    5022             :       * Remove internal memcpy, memset. Compilers handle builtins better.
    5023             :       * Remove some options that no one ever used and rename others.
    5024             : 
    5025             :     V2.7.2 Sat Aug 17 09:07:30 2002  Doug Lea  (dl at gee)
    5026             :       * Fix malloc_state bitmap array misdeclaration
    5027             : 
    5028             :     V2.7.1 Thu Jul 25 10:58:03 2002  Doug Lea  (dl at gee)
    5029             :       * Allow tuning of FIRST_SORTED_BIN_SIZE
    5030             :       * Use PTR_UINT as type for all ptr->int casts. Thanks to John Belmonte.
    5031             :       * Better detection and support for non-contiguousness of MORECORE.
    5032             :         Thanks to Andreas Mueller, Conal Walsh, and Wolfram Gloger
    5033             :       * Bypass most of malloc if no frees. Thanks To Emery Berger.
    5034             :       * Fix freeing of old top non-contiguous chunk im sysmalloc.
    5035             :       * Raised default trim and map thresholds to 256K.
    5036             :       * Fix mmap-related #defines. Thanks to Lubos Lunak.
    5037             :       * Fix copy macros; added LACKS_FCNTL_H. Thanks to Neal Walfield.
    5038             :       * Branch-free bin calculation
    5039             :       * Default trim and mmap thresholds now 256K.
    5040             : 
    5041             :     V2.7.0 Sun Mar 11 14:14:06 2001  Doug Lea  (dl at gee)
    5042             :       * Introduce independent_comalloc and independent_calloc.
    5043             :         Thanks to Michael Pachos for motivation and help.
    5044             :       * Make optional .h file available
    5045             :       * Allow > 2GB requests on 32bit systems.
    5046             :       * new WIN32 sbrk, mmap, munmap, lock code from <Walter@GeNeSys-e.de>.
    5047             :         Thanks also to Andreas Mueller <a.mueller at paradatec.de>,
    5048             :         and Anonymous.
    5049             :       * Allow override of MALLOC_ALIGNMENT (Thanks to Ruud Waij for
    5050             :         helping test this.)
    5051             :       * memalign: check alignment arg
    5052             :       * realloc: don't try to shift chunks backwards, since this
    5053             :         leads to  more fragmentation in some programs and doesn't
    5054             :         seem to help in any others.
    5055             :       * Collect all cases in malloc requiring system memory into sysmalloc
    5056             :       * Use mmap as backup to sbrk
    5057             :       * Place all internal state in malloc_state
    5058             :       * Introduce fastbins (although similar to 2.5.1)
    5059             :       * Many minor tunings and cosmetic improvements
    5060             :       * Introduce USE_PUBLIC_MALLOC_WRAPPERS, USE_MALLOC_LOCK
    5061             :       * Introduce MALLOC_FAILURE_ACTION, MORECORE_CONTIGUOUS
    5062             :         Thanks to Tony E. Bennett <tbennett@nvidia.com> and others.
    5063             :       * Include errno.h to support default failure action.
    5064             : 
    5065             :     V2.6.6 Sun Dec  5 07:42:19 1999  Doug Lea  (dl at gee)
    5066             :       * return null for negative arguments
    5067             :       * Added Several WIN32 cleanups from Martin C. Fong <mcfong at yahoo.com>
    5068             :          * Add 'LACKS_SYS_PARAM_H' for those systems without 'sys/param.h'
    5069             :           (e.g. WIN32 platforms)
    5070             :          * Cleanup header file inclusion for WIN32 platforms
    5071             :          * Cleanup code to avoid Microsoft Visual C++ compiler complaints
    5072             :          * Add 'USE_DL_PREFIX' to quickly allow co-existence with existing
    5073             :            memory allocation routines
    5074             :          * Set 'malloc_getpagesize' for WIN32 platforms (needs more work)
    5075             :          * Use 'assert' rather than 'ASSERT' in WIN32 code to conform to
    5076             :            usage of 'assert' in non-WIN32 code
    5077             :          * Improve WIN32 'sbrk()' emulation's 'findRegion()' routine to
    5078             :            avoid infinite loop
    5079             :       * Always call 'fREe()' rather than 'free()'
    5080             : 
    5081             :     V2.6.5 Wed Jun 17 15:57:31 1998  Doug Lea  (dl at gee)
    5082             :       * Fixed ordering problem with boundary-stamping
    5083             : 
    5084             :     V2.6.3 Sun May 19 08:17:58 1996  Doug Lea  (dl at gee)
    5085             :       * Added pvalloc, as recommended by H.J. Liu
    5086             :       * Added 64bit pointer support mainly from Wolfram Gloger
    5087             :       * Added anonymously donated WIN32 sbrk emulation
    5088             :       * Malloc, calloc, getpagesize: add optimizations from Raymond Nijssen
    5089             :       * malloc_extend_top: fix mask error that caused wastage after
    5090             :         foreign sbrks
    5091             :       * Add linux mremap support code from HJ Liu
    5092             : 
    5093             :     V2.6.2 Tue Dec  5 06:52:55 1995  Doug Lea  (dl at gee)
    5094             :       * Integrated most documentation with the code.
    5095             :       * Add support for mmap, with help from
    5096             :         Wolfram Gloger (Gloger@lrz.uni-muenchen.de).
    5097             :       * Use last_remainder in more cases.
    5098             :       * Pack bins using idea from  colin@nyx10.cs.du.edu
    5099             :       * Use ordered bins instead of best-fit threshhold
    5100             :       * Eliminate block-local decls to simplify tracing and debugging.
    5101             :       * Support another case of realloc via move into top
    5102             :       * Fix error occuring when initial sbrk_base not word-aligned.
    5103             :       * Rely on page size for units instead of SBRK_UNIT to
    5104             :         avoid surprises about sbrk alignment conventions.
    5105             :       * Add mallinfo, mallopt. Thanks to Raymond Nijssen
    5106             :         (raymond@es.ele.tue.nl) for the suggestion.
    5107             :       * Add `pad' argument to malloc_trim and top_pad mallopt parameter.
    5108             :       * More precautions for cases where other routines call sbrk,
    5109             :         courtesy of Wolfram Gloger (Gloger@lrz.uni-muenchen.de).
    5110             :       * Added macros etc., allowing use in linux libc from
    5111             :         H.J. Lu (hjl@gnu.ai.mit.edu)
    5112             :       * Inverted this history list
    5113             : 
    5114             :     V2.6.1 Sat Dec  2 14:10:57 1995  Doug Lea  (dl at gee)
    5115             :       * Re-tuned and fixed to behave more nicely with V2.6.0 changes.
    5116             :       * Removed all preallocation code since under current scheme
    5117             :         the work required to undo bad preallocations exceeds
    5118             :         the work saved in good cases for most test programs.
    5119             :       * No longer use return list or unconsolidated bins since
    5120             :         no scheme using them consistently outperforms those that don't
    5121             :         given above changes.
    5122             :       * Use best fit for very large chunks to prevent some worst-cases.
    5123             :       * Added some support for debugging
    5124             : 
    5125             :     V2.6.0 Sat Nov  4 07:05:23 1995  Doug Lea  (dl at gee)
    5126             :       * Removed footers when chunks are in use. Thanks to
    5127             :         Paul Wilson (wilson@cs.texas.edu) for the suggestion.
    5128             : 
    5129             :     V2.5.4 Wed Nov  1 07:54:51 1995  Doug Lea  (dl at gee)
    5130             :       * Added malloc_trim, with help from Wolfram Gloger
    5131             :         (wmglo@Dent.MED.Uni-Muenchen.DE).
    5132             : 
    5133             :     V2.5.3 Tue Apr 26 10:16:01 1994  Doug Lea  (dl at g)
    5134             : 
    5135             :     V2.5.2 Tue Apr  5 16:20:40 1994  Doug Lea  (dl at g)
    5136             :       * realloc: try to expand in both directions
    5137             :       * malloc: swap order of clean-bin strategy;
    5138             :       * realloc: only conditionally expand backwards
    5139             :       * Try not to scavenge used bins
    5140             :       * Use bin counts as a guide to preallocation
    5141             :       * Occasionally bin return list chunks in first scan
    5142             :       * Add a few optimizations from colin@nyx10.cs.du.edu
    5143             : 
    5144             :     V2.5.1 Sat Aug 14 15:40:43 1993  Doug Lea  (dl at g)
    5145             :       * faster bin computation & slightly different binning
    5146             :       * merged all consolidations to one part of malloc proper
    5147             :          (eliminating old malloc_find_space & malloc_clean_bin)
    5148             :       * Scan 2 returns chunks (not just 1)
    5149             :       * Propagate failure in realloc if malloc returns 0
    5150             :       * Add stuff to allow compilation on non-ANSI compilers
    5151             :           from kpv@research.att.com
    5152             : 
    5153             :     V2.5 Sat Aug  7 07:41:59 1993  Doug Lea  (dl at g.oswego.edu)
    5154             :       * removed potential for odd address access in prev_chunk
    5155             :       * removed dependency on getpagesize.h
    5156             :       * misc cosmetics and a bit more internal documentation
    5157             :       * anticosmetics: mangled names in macros to evade debugger strangeness
    5158             :       * tested on sparc, hp-700, dec-mips, rs6000
    5159             :           with gcc & native cc (hp, dec only) allowing
    5160             :           Detlefs & Zorn comparison study (in SIGPLAN Notices.)
    5161             : 
    5162             :     Trial version Fri Aug 28 13:14:29 1992  Doug Lea  (dl at g.oswego.edu)
    5163             :       * Based loosely on libg++-1.2X malloc. (It retains some of the overall
    5164             :          structure of old version,  but most details differ.)
    5165             :  
    5166             : */

Generated by: LCOV version 1.10