Line data Source code
1 : #include "rotatingtree.h"
2 :
3 : #define KEY_LOWER_THAN(key1, key2) ((char*)(key1) < (char*)(key2))
4 :
5 : /* The randombits() function below is a fast-and-dirty generator that
6 : * is probably irregular enough for our purposes. Note that it's biased:
7 : * I think that ones are slightly more probable than zeroes. It's not
8 : * important here, though.
9 : */
10 :
11 : static unsigned int random_value = 1;
12 : static unsigned int random_stream = 0;
13 :
14 : static int
15 0 : randombits(int bits)
16 : {
17 : int result;
18 0 : if (random_stream < (1U << bits)) {
19 0 : random_value *= 1082527;
20 0 : random_stream = random_value;
21 : }
22 0 : result = random_stream & ((1<<bits)-1);
23 0 : random_stream >>= bits;
24 0 : return result;
25 : }
26 :
27 :
28 : /* Insert a new node into the tree.
29 : (*root) is modified to point to the new root. */
30 : void
31 0 : RotatingTree_Add(rotating_node_t **root, rotating_node_t *node)
32 : {
33 0 : while (*root != NULL) {
34 0 : if (KEY_LOWER_THAN(node->key, (*root)->key))
35 0 : root = &((*root)->left);
36 : else
37 0 : root = &((*root)->right);
38 : }
39 0 : node->left = NULL;
40 0 : node->right = NULL;
41 0 : *root = node;
42 0 : }
43 :
44 : /* Locate the node with the given key. This is the most complicated
45 : function because it occasionally rebalances the tree to move the
46 : resulting node closer to the root. */
47 : rotating_node_t *
48 0 : RotatingTree_Get(rotating_node_t **root, void *key)
49 : {
50 0 : if (randombits(3) != 4) {
51 : /* Fast path, no rebalancing */
52 0 : rotating_node_t *node = *root;
53 0 : while (node != NULL) {
54 0 : if (node->key == key)
55 0 : return node;
56 0 : if (KEY_LOWER_THAN(key, node->key))
57 0 : node = node->left;
58 : else
59 0 : node = node->right;
60 : }
61 0 : return NULL;
62 : }
63 : else {
64 0 : rotating_node_t **pnode = root;
65 0 : rotating_node_t *node = *pnode;
66 : rotating_node_t *next;
67 : int rotate;
68 0 : if (node == NULL)
69 0 : return NULL;
70 : while (1) {
71 0 : if (node->key == key)
72 0 : return node;
73 0 : rotate = !randombits(1);
74 0 : if (KEY_LOWER_THAN(key, node->key)) {
75 0 : next = node->left;
76 0 : if (next == NULL)
77 0 : return NULL;
78 0 : if (rotate) {
79 0 : node->left = next->right;
80 0 : next->right = node;
81 0 : *pnode = next;
82 : }
83 : else
84 0 : pnode = &(node->left);
85 : }
86 : else {
87 0 : next = node->right;
88 0 : if (next == NULL)
89 0 : return NULL;
90 0 : if (rotate) {
91 0 : node->right = next->left;
92 0 : next->left = node;
93 0 : *pnode = next;
94 : }
95 : else
96 0 : pnode = &(node->right);
97 : }
98 0 : node = next;
99 0 : }
100 : }
101 : }
102 :
103 : /* Enumerate all nodes in the tree. The callback enumfn() should return
104 : zero to continue the enumeration, or non-zero to interrupt it.
105 : A non-zero value is directly returned by RotatingTree_Enum(). */
106 : int
107 0 : RotatingTree_Enum(rotating_node_t *root, rotating_tree_enum_fn enumfn,
108 : void *arg)
109 : {
110 : int result;
111 : rotating_node_t *node;
112 0 : while (root != NULL) {
113 0 : result = RotatingTree_Enum(root->left, enumfn, arg);
114 0 : if (result != 0) return result;
115 0 : node = root->right;
116 0 : result = enumfn(root, arg);
117 0 : if (result != 0) return result;
118 0 : root = node;
119 : }
120 0 : return 0;
121 : }
|