LCOV - code coverage report
Current view: top level - libreoffice/chart2/source/view/charttypes - Splines.cxx (source / functions) Hit Total Coverage
Test: libreoffice_filtered.info Lines: 0 430 0.0 %
Date: 2012-12-27 Functions: 0 11 0.0 %
Legend: Lines: hit not hit

          Line data    Source code
       1             : /* -*- Mode: C++; tab-width: 4; indent-tabs-mode: nil; c-basic-offset: 4 -*- */
       2             : /*
       3             :  * This file is part of the LibreOffice project.
       4             :  *
       5             :  * This Source Code Form is subject to the terms of the Mozilla Public
       6             :  * License, v. 2.0. If a copy of the MPL was not distributed with this
       7             :  * file, You can obtain one at http://mozilla.org/MPL/2.0/.
       8             :  *
       9             :  * This file incorporates work covered by the following license notice:
      10             :  *
      11             :  *   Licensed to the Apache Software Foundation (ASF) under one or more
      12             :  *   contributor license agreements. See the NOTICE file distributed
      13             :  *   with this work for additional information regarding copyright
      14             :  *   ownership. The ASF licenses this file to you under the Apache
      15             :  *   License, Version 2.0 (the "License"); you may not use this file
      16             :  *   except in compliance with the License. You may obtain a copy of
      17             :  *   the License at http://www.apache.org/licenses/LICENSE-2.0 .
      18             :  */
      19             : 
      20             : #include "Splines.hxx"
      21             : #include <rtl/math.hxx>
      22             : 
      23             : #include <vector>
      24             : #include <algorithm>
      25             : #include <functional>
      26             : 
      27             : #define MAX_BSPLINE_DEGREE 15
      28             : 
      29             : //.............................................................................
      30             : namespace chart
      31             : {
      32             : //.............................................................................
      33             : using namespace ::com::sun::star;
      34             : 
      35             : namespace
      36             : {
      37             : 
      38             : typedef ::std::pair< double, double >   tPointType;
      39             : typedef ::std::vector< tPointType >     tPointVecType;
      40             : typedef tPointVecType::size_type        lcl_tSizeType;
      41             : 
      42           0 : class lcl_SplineCalculation
      43             : {
      44             : public:
      45             :     /** @descr creates an object that calculates cublic splines on construction
      46             : 
      47             :         @param rSortedPoints  the points for which splines shall be calculated, they need to be sorted in x values
      48             :         @param fY1FirstDerivation the resulting spline should have the first
      49             :                derivation equal to this value at the x-value of the first point
      50             :                of rSortedPoints.  If fY1FirstDerivation is set to infinity, a natural
      51             :                spline is calculated.
      52             :         @param fYnFirstDerivation the resulting spline should have the first
      53             :                derivation equal to this value at the x-value of the last point
      54             :                of rSortedPoints
      55             :      */
      56             :     lcl_SplineCalculation( const tPointVecType & rSortedPoints,
      57             :                            double fY1FirstDerivation,
      58             :                            double fYnFirstDerivation );
      59             : 
      60             : 
      61             :     /** @descr creates an object that calculates cublic splines on construction
      62             :                for the special case of periodic cubic spline
      63             : 
      64             :         @param rSortedPoints  the points for which splines shall be calculated,
      65             :                they need to be sorted in x values. First and last y value must be equal
      66             :      */
      67             :     lcl_SplineCalculation( const tPointVecType & rSortedPoints);
      68             : 
      69             : 
      70             :     /** @descr this function corresponds to the function splint in [1].
      71             : 
      72             :         [1] Numerical Recipies in C, 2nd edition
      73             :             William H. Press, et al.,
      74             :             Section 3.3, page 116
      75             :     */
      76             :     double GetInterpolatedValue( double x );
      77             : 
      78             : private:
      79             :     /// a copy of the points given in the CTOR
      80             :     tPointVecType            m_aPoints;
      81             : 
      82             :     /// the result of the Calculate() method
      83             :     ::std::vector< double >         m_aSecDerivY;
      84             : 
      85             :     double m_fYp1;
      86             :     double m_fYpN;
      87             : 
      88             :     // these values are cached for performance reasons
      89             :     lcl_tSizeType m_nKLow;
      90             :     lcl_tSizeType m_nKHigh;
      91             :     double m_fLastInterpolatedValue;
      92             : 
      93             :     /** @descr this function corresponds to the function spline in [1].
      94             : 
      95             :         [1] Numerical Recipies in C, 2nd edition
      96             :             William H. Press, et al.,
      97             :             Section 3.3, page 115
      98             :     */
      99             :     void Calculate();
     100             : 
     101             :     /** @descr this function corresponds to the algoritm 4.76 in [2] and
     102             :         theorem 5.3.7 in [3]
     103             : 
     104             :         [2] Engeln-Müllges, Gisela: Numerik-Algorithmen: Verfahren, Beispiele, Anwendungen
     105             :             Springer, Berlin; Auflage: 9., überarb. und erw. A. (8. Dezember 2004)
     106             :             Section 4.10.2, page 175
     107             : 
     108             :         [3] Hanrath, Wilhelm: Mathematik III / Numerik, Vorlesungsskript zur
     109             :             Veranstaltung im WS 2007/2008
     110             :             Fachhochschule Aachen, 2009-09-19
     111             :             Numerik_01.pdf, downloaded 2011-04-19 via
     112             :             http://www.fh-aachen.de/index.php?id=11424&no_cache=1&file=5016&uid=44191
     113             :             Section 5.3, page 129
     114             :     */
     115             :     void CalculatePeriodic();
     116             : };
     117             : 
     118             : //-----------------------------------------------------------------------------
     119             : 
     120           0 : lcl_SplineCalculation::lcl_SplineCalculation(
     121             :     const tPointVecType & rSortedPoints,
     122             :     double fY1FirstDerivation,
     123             :     double fYnFirstDerivation )
     124             :         : m_aPoints( rSortedPoints ),
     125             :           m_fYp1( fY1FirstDerivation ),
     126             :           m_fYpN( fYnFirstDerivation ),
     127             :           m_nKLow( 0 ),
     128           0 :           m_nKHigh( rSortedPoints.size() - 1 )
     129             : {
     130           0 :     ::rtl::math::setInf( &m_fLastInterpolatedValue, sal_False );
     131           0 :     Calculate();
     132           0 : }
     133             : 
     134             : //-----------------------------------------------------------------------------
     135             : 
     136           0 : lcl_SplineCalculation::lcl_SplineCalculation(
     137             :     const tPointVecType & rSortedPoints)
     138             :         : m_aPoints( rSortedPoints ),
     139             :           m_fYp1( 0.0 ),  /*dummy*/
     140             :           m_fYpN( 0.0 ),  /*dummy*/
     141             :           m_nKLow( 0 ),
     142           0 :           m_nKHigh( rSortedPoints.size() - 1 )
     143             : {
     144           0 :     ::rtl::math::setInf( &m_fLastInterpolatedValue, sal_False );
     145           0 :     CalculatePeriodic();
     146           0 : }
     147             : //-----------------------------------------------------------------------------
     148             : 
     149             : 
     150           0 : void lcl_SplineCalculation::Calculate()
     151             : {
     152           0 :     if( m_aPoints.size() <= 1 )
     153           0 :         return;
     154             : 
     155             :     // n is the last valid index to m_aPoints
     156           0 :     const lcl_tSizeType n = m_aPoints.size() - 1;
     157           0 :     ::std::vector< double > u( n );
     158           0 :     m_aSecDerivY.resize( n + 1, 0.0 );
     159             : 
     160           0 :     if( ::rtl::math::isInf( m_fYp1 ) )
     161             :     {
     162             :         // natural spline
     163           0 :         m_aSecDerivY[ 0 ] = 0.0;
     164           0 :         u[ 0 ] = 0.0;
     165             :     }
     166             :     else
     167             :     {
     168           0 :         m_aSecDerivY[ 0 ] = -0.5;
     169           0 :         double xDiff = ( m_aPoints[ 1 ].first - m_aPoints[ 0 ].first );
     170           0 :         u[ 0 ] = ( 3.0 / xDiff ) *
     171           0 :             ((( m_aPoints[ 1 ].second - m_aPoints[ 0 ].second ) / xDiff ) - m_fYp1 );
     172             :     }
     173             : 
     174           0 :     for( lcl_tSizeType i = 1; i < n; ++i )
     175             :     {
     176             :         tPointType
     177           0 :             p_i = m_aPoints[ i ],
     178           0 :             p_im1 = m_aPoints[ i - 1 ],
     179           0 :             p_ip1 = m_aPoints[ i + 1 ];
     180             : 
     181             :         double sig = ( p_i.first - p_im1.first ) /
     182           0 :             ( p_ip1.first - p_im1.first );
     183           0 :         double p = sig * m_aSecDerivY[ i - 1 ] + 2.0;
     184             : 
     185           0 :         m_aSecDerivY[ i ] = ( sig - 1.0 ) / p;
     186           0 :         u[ i ] =
     187             :             ( ( p_ip1.second - p_i.second ) /
     188             :               ( p_ip1.first - p_i.first ) ) -
     189             :             ( ( p_i.second - p_im1.second ) /
     190           0 :               ( p_i.first - p_im1.first ) );
     191           0 :         u[ i ] =
     192           0 :             ( 6.0 * u[ i ] / ( p_ip1.first - p_im1.first )
     193           0 :               - sig * u[ i - 1 ] ) / p;
     194             :     }
     195             : 
     196             :     // initialize to values for natural splines (used for m_fYpN equal to
     197             :     // infinity)
     198           0 :     double qn = 0.0;
     199           0 :     double un = 0.0;
     200             : 
     201           0 :     if( ! ::rtl::math::isInf( m_fYpN ) )
     202             :     {
     203           0 :         qn = 0.5;
     204           0 :         double xDiff = ( m_aPoints[ n ].first - m_aPoints[ n - 1 ].first );
     205             :         un = ( 3.0 / xDiff ) *
     206           0 :             ( m_fYpN - ( m_aPoints[ n ].second - m_aPoints[ n - 1 ].second ) / xDiff );
     207             :     }
     208             : 
     209           0 :     m_aSecDerivY[ n ] = ( un - qn * u[ n - 1 ] ) * ( qn * m_aSecDerivY[ n - 1 ] + 1.0 );
     210             : 
     211             :     // note: the algorithm in [1] iterates from n-1 to 0, but as size_type
     212             :     // may be (usuall is) an unsigned type, we can not write k >= 0, as this
     213             :     // is always true.
     214           0 :     for( lcl_tSizeType k = n; k > 0; --k )
     215             :     {
     216           0 :         ( m_aSecDerivY[ k - 1 ] *= m_aSecDerivY[ k ] ) += u[ k - 1 ];
     217           0 :     }
     218             : }
     219             : 
     220           0 : void lcl_SplineCalculation::CalculatePeriodic()
     221             : {
     222           0 :     if( m_aPoints.size() <= 1 )
     223           0 :         return;
     224             : 
     225             :     // n is the last valid index to m_aPoints
     226           0 :     const lcl_tSizeType n = m_aPoints.size() - 1;
     227             : 
     228             :     // u is used for vector f in A*c=f in [3], vector a in  Ax=a in [2],
     229             :     // vector z in Rtranspose z = a and Dr=z in [2]
     230           0 :     ::std::vector< double > u( n + 1, 0.0 );
     231             : 
     232             :     // used for vector c in A*c=f and vector x in Ax=a in [2]
     233           0 :     m_aSecDerivY.resize( n + 1, 0.0 );
     234             : 
     235             :     // diagonal of matrix A, used index 1 to n
     236           0 :     ::std::vector< double > Adiag( n + 1, 0.0 );
     237             : 
     238             :     // secondary diagonal of matrix A with index 1 to n-1 and upper right element in A[n]
     239           0 :     ::std::vector< double > Aupper( n + 1, 0.0 );
     240             : 
     241             :     // diagonal of matrix D in A=(R transpose)*D*R in [2], used index 1 to n
     242           0 :     ::std::vector< double > Ddiag( n+1, 0.0 );
     243             : 
     244             :     // right column of matrix R, used index 1 to n-2
     245           0 :     ::std::vector< double > Rright( n-1, 0.0 );
     246             : 
     247             :     // secondary diagonal of matrix R, used index 1 to n-1
     248           0 :     ::std::vector< double > Rupper( n, 0.0 );
     249             : 
     250           0 :     if (n<4)
     251             :     {
     252           0 :         if (n==3)
     253             :         {   // special handling of three polynomials, that are four points
     254           0 :             double xDiff0 = m_aPoints[ 1 ].first - m_aPoints[ 0 ].first ;
     255           0 :             double xDiff1 = m_aPoints[ 2 ].first - m_aPoints[ 1 ].first ;
     256           0 :             double xDiff2 = m_aPoints[ 3 ].first - m_aPoints[ 2 ].first ;
     257           0 :             double xDiff2p1 = xDiff2 + xDiff1;
     258           0 :             double xDiff0p2 = xDiff0 + xDiff2;
     259           0 :             double xDiff1p0 = xDiff1 + xDiff0;
     260           0 :             double fFaktor = 1.5 / (xDiff0*xDiff1 + xDiff1*xDiff2 + xDiff2*xDiff0);
     261           0 :             double yDiff0 = (m_aPoints[ 1 ].second - m_aPoints[ 0 ].second) / xDiff0;
     262           0 :             double yDiff1 = (m_aPoints[ 2 ].second - m_aPoints[ 1 ].second) / xDiff1;
     263           0 :             double yDiff2 = (m_aPoints[ 0 ].second - m_aPoints[ 2 ].second) / xDiff2;
     264           0 :             m_aSecDerivY[ 1 ] = fFaktor * (yDiff1*xDiff2p1 - yDiff0*xDiff0p2);
     265           0 :             m_aSecDerivY[ 2 ] = fFaktor * (yDiff2*xDiff0p2 - yDiff1*xDiff1p0);
     266           0 :             m_aSecDerivY[ 3 ] = fFaktor * (yDiff0*xDiff1p0 - yDiff2*xDiff2p1);
     267           0 :             m_aSecDerivY[ 0 ] = m_aSecDerivY[ 3 ];
     268             :         }
     269           0 :         else if (n==2)
     270             :         {
     271             :         // special handling of two polynomials, that are three points
     272           0 :             double xDiff0 = m_aPoints[ 1 ].first - m_aPoints[ 0 ].first;
     273           0 :             double xDiff1 = m_aPoints[ 2 ].first - m_aPoints[ 1 ].first;
     274           0 :             double fHelp = 3.0 * (m_aPoints[ 0 ].second - m_aPoints[ 1 ].second) / (xDiff0*xDiff1);
     275           0 :             m_aSecDerivY[ 1 ] = fHelp ;
     276           0 :             m_aSecDerivY[ 2 ] = -fHelp ;
     277           0 :             m_aSecDerivY[ 0 ] = m_aSecDerivY[ 2 ] ;
     278             :         }
     279             :         else
     280             :         {
     281             :             // should be handled with natural spline, periodic not possible.
     282             :         }
     283             :     }
     284             :     else
     285             :     {
     286           0 :         double xDiff_i =1.0; // values are dummy;
     287           0 :         double xDiff_im1 =1.0;
     288           0 :         double yDiff_i = 1.0;
     289           0 :         double yDiff_im1 = 1.0;
     290             :         // fill matrix A and fill right side vector u
     291           0 :         for( lcl_tSizeType i=1; i<n; ++i )
     292             :         {
     293           0 :             xDiff_im1 = m_aPoints[ i ].first - m_aPoints[ i-1 ].first;
     294           0 :             xDiff_i = m_aPoints[ i+1 ].first - m_aPoints[ i ].first;
     295           0 :             yDiff_im1 = (m_aPoints[ i ].second - m_aPoints[ i-1 ].second) / xDiff_im1;
     296           0 :             yDiff_i = (m_aPoints[ i+1 ].second - m_aPoints[ i ].second) / xDiff_i;
     297           0 :             Adiag[ i ] = 2 * (xDiff_im1 + xDiff_i);
     298           0 :             Aupper[ i ] = xDiff_i;
     299           0 :             u [ i ] = 3 * (yDiff_i - yDiff_im1);
     300             :         }
     301           0 :         xDiff_im1 = m_aPoints[ n ].first - m_aPoints[ n-1 ].first;
     302           0 :         xDiff_i = m_aPoints[ 1 ].first - m_aPoints[ 0 ].first;
     303           0 :         yDiff_im1 = (m_aPoints[ n ].second - m_aPoints[ n-1 ].second) / xDiff_im1;
     304           0 :         yDiff_i = (m_aPoints[ 1 ].second - m_aPoints[ 0 ].second) / xDiff_i;
     305           0 :         Adiag[ n ] = 2 * (xDiff_im1 + xDiff_i);
     306           0 :         Aupper[ n ] = xDiff_i;
     307           0 :         u [ n ] = 3 * (yDiff_i - yDiff_im1);
     308             : 
     309             :         // decomposite A=(R transpose)*D*R
     310           0 :         Ddiag[1] = Adiag[1];
     311           0 :         Rupper[1] = Aupper[1] / Ddiag[1];
     312           0 :         Rright[1] = Aupper[n] / Ddiag[1];
     313           0 :         for( lcl_tSizeType i=2; i<=n-2; ++i )
     314             :         {
     315           0 :             Ddiag[i] = Adiag[i] - Aupper[ i-1 ] * Rupper[ i-1 ];
     316           0 :             Rupper[ i ] = Aupper[ i ] / Ddiag[ i ];
     317           0 :             Rright[ i ] = - Rright[ i-1 ] * Aupper[ i-1 ] / Ddiag[ i ];
     318             :         }
     319           0 :         Ddiag[ n-1 ] = Adiag[ n-1 ] - Aupper[ n-2 ] * Rupper[ n-2 ];
     320           0 :         Rupper[ n-1 ] = ( Aupper[ n-1 ] - Aupper[ n-2 ] * Rright[ n-2] ) / Ddiag[ n-1 ];
     321           0 :         double fSum = 0.0;
     322           0 :         for ( lcl_tSizeType i=1; i<=n-2; ++i )
     323             :         {
     324           0 :             fSum += Ddiag[ i ] * Rright[ i ] * Rright[ i ];
     325             :         }
     326           0 :         Ddiag[ n ] = Adiag[ n ] - fSum - Ddiag[ n-1 ] * Rupper[ n-1 ] * Rupper[ n-1 ]; // bug in [2]!
     327             : 
     328             :         // solve forward (R transpose)*z=u, overwrite u with z
     329           0 :         for ( lcl_tSizeType i=2; i<=n-1; ++i )
     330             :         {
     331           0 :             u[ i ] -= u[ i-1 ]* Rupper[ i-1 ];
     332             :         }
     333           0 :         fSum = 0.0;
     334           0 :         for ( lcl_tSizeType i=1; i<=n-2; ++i )
     335             :         {
     336           0 :             fSum += Rright[ i ] * u[ i ];
     337             :         }
     338           0 :         u[ n ] = u[ n ] - fSum - Rupper[ n - 1] * u[ n-1 ];
     339             : 
     340             :         // solve forward D*r=z, z is in u, overwrite u with r
     341           0 :         for ( lcl_tSizeType i=1; i<=n; ++i )
     342             :         {
     343           0 :             u[ i ] = u[i] / Ddiag[ i ];
     344             :         }
     345             : 
     346             :         // solve backward R*x= r, r is in u
     347           0 :         m_aSecDerivY[ n ] = u[ n ];
     348           0 :         m_aSecDerivY[ n-1 ] = u[ n-1 ] - Rupper[ n-1 ] * m_aSecDerivY[ n ];
     349           0 :         for ( lcl_tSizeType i=n-2; i>=1; --i)
     350             :         {
     351           0 :             m_aSecDerivY[ i ] = u[ i ] - Rupper[ i ] * m_aSecDerivY[ i+1 ] - Rright[ i ] * m_aSecDerivY[ n ];
     352             :         }
     353             :         // periodic
     354           0 :         m_aSecDerivY[ 0 ] = m_aSecDerivY[ n ];
     355             :     }
     356             : 
     357             :     // adapt m_aSecDerivY for usage in GetInterpolatedValue()
     358           0 :     for( lcl_tSizeType i = 0; i <= n ; ++i )
     359             :     {
     360           0 :         m_aSecDerivY[ i ] *= 2.0;
     361           0 :     }
     362             : 
     363             : }
     364             : 
     365           0 : double lcl_SplineCalculation::GetInterpolatedValue( double x )
     366             : {
     367             :     OSL_PRECOND( ( m_aPoints[ 0 ].first <= x ) &&
     368             :                 ( x <= m_aPoints[ m_aPoints.size() - 1 ].first ),
     369             :                 "Trying to extrapolate" );
     370             : 
     371           0 :     const lcl_tSizeType n = m_aPoints.size() - 1;
     372           0 :     if( x < m_fLastInterpolatedValue )
     373             :     {
     374           0 :         m_nKLow = 0;
     375           0 :         m_nKHigh = n;
     376             : 
     377             :         // calculate m_nKLow and m_nKHigh
     378             :         // first initialization is done in CTOR
     379           0 :         while( m_nKHigh - m_nKLow > 1 )
     380             :         {
     381           0 :             lcl_tSizeType k = ( m_nKHigh + m_nKLow ) / 2;
     382           0 :             if( m_aPoints[ k ].first > x )
     383           0 :                 m_nKHigh = k;
     384             :             else
     385           0 :                 m_nKLow = k;
     386             :         }
     387             :     }
     388             :     else
     389             :     {
     390           0 :         while( ( m_aPoints[ m_nKHigh ].first < x ) &&
     391             :                ( m_nKHigh <= n ) )
     392             :         {
     393           0 :             ++m_nKHigh;
     394           0 :             ++m_nKLow;
     395             :         }
     396             :         OSL_ENSURE( m_nKHigh <= n, "Out of Bounds" );
     397             :     }
     398           0 :     m_fLastInterpolatedValue = x;
     399             : 
     400           0 :     double h = m_aPoints[ m_nKHigh ].first - m_aPoints[ m_nKLow ].first;
     401             :     OSL_ENSURE( h != 0, "Bad input to GetInterpolatedValue()" );
     402             : 
     403           0 :     double a = ( m_aPoints[ m_nKHigh ].first - x ) / h;
     404           0 :     double b = ( x - m_aPoints[ m_nKLow ].first  ) / h;
     405             : 
     406           0 :     return ( a * m_aPoints[ m_nKLow ].second +
     407           0 :              b * m_aPoints[ m_nKHigh ].second +
     408           0 :              (( a*a*a - a ) * m_aSecDerivY[ m_nKLow ] +
     409           0 :               ( b*b*b - b ) * m_aSecDerivY[ m_nKHigh ] ) *
     410           0 :              ( h*h ) / 6.0 );
     411             : }
     412             : 
     413             : //-----------------------------------------------------------------------------
     414             : 
     415             : // helper methods for B-spline
     416             : 
     417             : // Create parameter t_0 to t_n using the centripetal method with a power of 0.5
     418           0 : bool createParameterT(const tPointVecType aUniquePoints, double* t)
     419             : {   // precondition: no adjacent identical points
     420             :     // postcondition: 0 = t_0 < t_1 < ... < t_n = 1
     421           0 :     bool bIsSuccessful = true;
     422           0 :     const lcl_tSizeType n = aUniquePoints.size() - 1;
     423           0 :     t[0]=0.0;
     424           0 :     double dx = 0.0;
     425           0 :     double dy = 0.0;
     426           0 :     double fDiffMax = 1.0; //dummy values
     427           0 :     double fDenominator = 0.0; // initialized for summing up
     428           0 :     for (lcl_tSizeType i=1; i<=n ; ++i)
     429             :     {   // 4th root(dx^2+dy^2)
     430           0 :         dx = aUniquePoints[i].first - aUniquePoints[i-1].first;
     431           0 :         dy = aUniquePoints[i].second - aUniquePoints[i-1].second;
     432             :         // scaling to avoid underflow or overflow
     433           0 :         fDiffMax = (fabs(dx)>fabs(dy)) ? fabs(dx) : fabs(dy);
     434           0 :         if (fDiffMax == 0.0)
     435             :         {
     436           0 :             bIsSuccessful = false;
     437           0 :             break;
     438             :         }
     439             :         else
     440             :         {
     441           0 :             dx /= fDiffMax;
     442           0 :             dy /= fDiffMax;
     443           0 :             fDenominator += sqrt(sqrt(dx * dx + dy * dy)) * sqrt(fDiffMax);
     444             :         }
     445             :     }
     446           0 :     if (fDenominator == 0.0)
     447             :     {
     448           0 :         bIsSuccessful = false;
     449             :     }
     450           0 :     if (bIsSuccessful)
     451             :     {
     452           0 :         for (lcl_tSizeType j=1; j<=n ; ++j)
     453             :         {
     454           0 :             double fNumerator = 0.0;
     455           0 :             for (lcl_tSizeType i=1; i<=j ; ++i)
     456             :             {
     457           0 :                 dx = aUniquePoints[i].first - aUniquePoints[i-1].first;
     458           0 :                 dy = aUniquePoints[i].second - aUniquePoints[i-1].second;
     459           0 :                 fDiffMax = (fabs(dx)>fabs(dy)) ? fabs(dx) : fabs(dy);
     460             :                 // same as above, so should not be zero
     461           0 :                 dx /= fDiffMax;
     462           0 :                 dy /= fDiffMax;
     463           0 :                 fNumerator += sqrt(sqrt(dx * dx + dy * dy)) * sqrt(fDiffMax);
     464             :             }
     465           0 :             t[j] = fNumerator / fDenominator;
     466             : 
     467             :         }
     468             :         // postcondition check
     469           0 :         t[n] = 1.0;
     470           0 :         double fPrevious = 0.0;
     471           0 :         for (lcl_tSizeType i=1; i <= n && bIsSuccessful ; ++i)
     472             :         {
     473           0 :             if (fPrevious >= t[i])
     474             :             {
     475           0 :                 bIsSuccessful = false;
     476             :             }
     477             :             else
     478             :             {
     479           0 :                 fPrevious = t[i];
     480             :             }
     481             :         }
     482             :     }
     483           0 :     return bIsSuccessful;
     484             : }
     485             : 
     486           0 : void createKnotVector(const lcl_tSizeType n, const sal_uInt32 p, double* t, double* u)
     487             : {  // precondition: 0 = t_0 < t_1 < ... < t_n = 1
     488           0 :         for (lcl_tSizeType j = 0; j <= p; ++j)
     489             :         {
     490           0 :             u[j] = 0.0;
     491             :         }
     492           0 :         double fSum = 0.0;
     493           0 :         for (lcl_tSizeType j = 1; j <= n-p; ++j )
     494             :         {
     495           0 :             fSum = 0.0;
     496           0 :             for (lcl_tSizeType i = j; i <= j+p-1; ++i)
     497             :             {
     498           0 :                 fSum += t[i];
     499             :             }
     500           0 :             u[j+p] = fSum / p ;
     501             :         }
     502           0 :         for (lcl_tSizeType j = n+1; j <= n+1+p; ++j)
     503             :         {
     504           0 :             u[j] = 1.0;
     505             :         }
     506           0 : }
     507             : 
     508           0 : void applyNtoParameterT(const lcl_tSizeType i,const double tk,const sal_uInt32 p,const double* u, double* rowN)
     509             : {
     510             :     // get N_p(t_k) recursively, only N_(i-p) till N_(i) are relevant, all other N_# are zero
     511           0 :     double fRightFactor = 0.0;
     512           0 :     double fLeftFactor = 0.0;
     513             : 
     514             :     // initialize with indicator function degree 0
     515           0 :     rowN[p] = 1.0; // all others are zero
     516             : 
     517             :     // calculate up to degree p
     518           0 :     for (sal_uInt32 s = 1; s <= p; ++s)
     519             :     {
     520             :         // first element
     521           0 :         fRightFactor = ( u[i+1] - tk ) / ( u[i+1]- u[i-s+1] );
     522             :         // i-s "true index" - (i-p)"shift" = p-s
     523           0 :         rowN[p-s] = fRightFactor * rowN[p-s+1];
     524             : 
     525             :         // middle elements
     526           0 :         for (sal_uInt32 j = s-1; j>=1 ; --j)
     527             :         {
     528           0 :             fLeftFactor = ( tk - u[i-j] ) / ( u[i-j+s] - u[i-j] ) ;
     529           0 :             fRightFactor = ( u[i-j+s+1] - tk ) / ( u[i-j+s+1] - u[i-j+1] );
     530             :             // i-j "true index" - (i-p)"shift" = p-j
     531           0 :             rowN[p-j] = fLeftFactor * rowN[p-j] + fRightFactor *  rowN[p-j+1];
     532             :         }
     533             : 
     534             :         // last element
     535           0 :         fLeftFactor = ( tk - u[i] ) / ( u[i+s] - u[i] );
     536             :         // i "true index" - (i-p)"shift" = p
     537           0 :         rowN[p] = fLeftFactor * rowN[p];
     538             :     }
     539           0 : }
     540             : 
     541             : } //  anonymous namespace
     542             : 
     543             : //-----------------------------------------------------------------------------
     544             : 
     545             : // Calculates uniform parametric splines with subinterval length 1,
     546             : // according ODF1.2 part 1, chapter 'chart interpolation'.
     547           0 : void SplineCalculater::CalculateCubicSplines(
     548             :     const drawing::PolyPolygonShape3D& rInput
     549             :     , drawing::PolyPolygonShape3D& rResult
     550             :     , sal_uInt32 nGranularity )
     551             : {
     552             :     OSL_PRECOND( nGranularity > 0, "Granularity is invalid" );
     553             : 
     554           0 :     rResult.SequenceX.realloc(0);
     555           0 :     rResult.SequenceY.realloc(0);
     556           0 :     rResult.SequenceZ.realloc(0);
     557             : 
     558           0 :     sal_uInt32 nOuterCount = rInput.SequenceX.getLength();
     559           0 :     if( !nOuterCount )
     560           0 :         return;
     561             : 
     562           0 :     rResult.SequenceX.realloc(nOuterCount);
     563           0 :     rResult.SequenceY.realloc(nOuterCount);
     564           0 :     rResult.SequenceZ.realloc(nOuterCount);
     565             : 
     566           0 :     for( sal_uInt32 nOuter = 0; nOuter < nOuterCount; ++nOuter )
     567             :     {
     568           0 :         if( rInput.SequenceX[nOuter].getLength() <= 1 )
     569           0 :             continue; //we need at least two points
     570             : 
     571           0 :         sal_uInt32 nMaxIndexPoints = rInput.SequenceX[nOuter].getLength()-1; // is >=1
     572           0 :         const double* pOldX = rInput.SequenceX[nOuter].getConstArray();
     573           0 :         const double* pOldY = rInput.SequenceY[nOuter].getConstArray();
     574           0 :         const double* pOldZ = rInput.SequenceZ[nOuter].getConstArray();
     575             : 
     576           0 :         ::std::vector < double > aParameter(nMaxIndexPoints+1);
     577           0 :         aParameter[0]=0.0;
     578           0 :         for( sal_uInt32 nIndex=1; nIndex<=nMaxIndexPoints; nIndex++ )
     579             :         {
     580           0 :             aParameter[nIndex]=aParameter[nIndex-1]+1;
     581             :         }
     582             : 
     583             :         // Split the calculation to X, Y and Z coordinate
     584           0 :         tPointVecType aInputX;
     585           0 :         aInputX.resize(nMaxIndexPoints+1);
     586           0 :         tPointVecType aInputY;
     587           0 :         aInputY.resize(nMaxIndexPoints+1);
     588           0 :         tPointVecType aInputZ;
     589           0 :         aInputZ.resize(nMaxIndexPoints+1);
     590           0 :         for (sal_uInt32 nN=0;nN<=nMaxIndexPoints; nN++ )
     591             :         {
     592           0 :           aInputX[ nN ].first=aParameter[nN];
     593           0 :           aInputX[ nN ].second=pOldX[ nN ];
     594           0 :           aInputY[ nN ].first=aParameter[nN];
     595           0 :           aInputY[ nN ].second=pOldY[ nN ];
     596           0 :           aInputZ[ nN ].first=aParameter[nN];
     597           0 :           aInputZ[ nN ].second=pOldZ[ nN ];
     598             :         }
     599             : 
     600             :         // generate a spline for each coordinate. It holds the complete
     601             :         // information to calculate each point of the curve
     602             :         double fXDerivation;
     603             :         double fYDerivation;
     604             :         lcl_SplineCalculation* aSplineX;
     605             :         lcl_SplineCalculation* aSplineY;
     606             :         // lcl_SplineCalculation* aSplineZ; the z-coordinates of all points in
     607             :         // a data series are equal. No spline calculation needed, but copy
     608             :         // coordinate to output
     609             : 
     610           0 :         if( pOldX[ 0 ] == pOldX[nMaxIndexPoints] &&
     611           0 :             pOldY[ 0 ] == pOldY[nMaxIndexPoints] &&
     612           0 :             pOldZ[ 0 ] == pOldZ[nMaxIndexPoints] &&
     613             :             nMaxIndexPoints >=2 )
     614             :         {   // periodic spline
     615           0 :             aSplineX = new lcl_SplineCalculation( aInputX) ;
     616           0 :             aSplineY = new lcl_SplineCalculation( aInputY) ;
     617             :             // aSplineZ = new lcl_SplineCalculation( aInputZ) ;
     618             :         }
     619             :         else // generate the kind "natural spline"
     620             :         {
     621             :             double fInfty;
     622           0 :             ::rtl::math::setInf( &fInfty, sal_False );
     623           0 :             fXDerivation = fInfty;
     624           0 :             fYDerivation = fInfty;
     625           0 :             aSplineX = new lcl_SplineCalculation( aInputX, fXDerivation, fXDerivation );
     626           0 :             aSplineY = new lcl_SplineCalculation( aInputY, fYDerivation, fYDerivation );
     627             :         }
     628             : 
     629             :         // fill result polygon with calculated values
     630           0 :         rResult.SequenceX[nOuter].realloc( nMaxIndexPoints*nGranularity + 1);
     631           0 :         rResult.SequenceY[nOuter].realloc( nMaxIndexPoints*nGranularity + 1);
     632           0 :         rResult.SequenceZ[nOuter].realloc( nMaxIndexPoints*nGranularity + 1);
     633             : 
     634           0 :         double* pNewX = rResult.SequenceX[nOuter].getArray();
     635           0 :         double* pNewY = rResult.SequenceY[nOuter].getArray();
     636           0 :         double* pNewZ = rResult.SequenceZ[nOuter].getArray();
     637             : 
     638           0 :         sal_uInt32 nNewPointIndex = 0; // Index in result points
     639             :         // needed for inner loop
     640             :         double    fInc;   // step for intermediate points
     641             :         sal_uInt32 nj;     // for loop
     642             :         double    fParam; // a intermediate parameter value
     643             : 
     644           0 :         for( sal_uInt32 ni = 0; ni < nMaxIndexPoints; ni++ )
     645             :         {
     646             :             // given point is surely a curve point
     647           0 :             pNewX[nNewPointIndex] = pOldX[ni];
     648           0 :             pNewY[nNewPointIndex] = pOldY[ni];
     649           0 :             pNewZ[nNewPointIndex] = pOldZ[ni];
     650           0 :             nNewPointIndex++;
     651             : 
     652             :             // calculate intermediate points
     653           0 :             fInc = ( aParameter[ ni+1 ] - aParameter[ni] ) / static_cast< double >( nGranularity );
     654           0 :             for(nj = 1; nj < nGranularity; nj++)
     655             :             {
     656           0 :                 fParam = aParameter[ni] + ( fInc * static_cast< double >( nj ) );
     657             : 
     658           0 :                 pNewX[nNewPointIndex]=aSplineX->GetInterpolatedValue( fParam );
     659           0 :                 pNewY[nNewPointIndex]=aSplineY->GetInterpolatedValue( fParam );
     660             :                 // pNewZ[nNewPointIndex]=aSplineZ->GetInterpolatedValue( fParam );
     661           0 :                 pNewZ[nNewPointIndex] = pOldZ[ni];
     662           0 :                 nNewPointIndex++;
     663             :             }
     664             :         }
     665             :         // add last point
     666           0 :         pNewX[nNewPointIndex] = pOldX[nMaxIndexPoints];
     667           0 :         pNewY[nNewPointIndex] = pOldY[nMaxIndexPoints];
     668           0 :         pNewZ[nNewPointIndex] = pOldZ[nMaxIndexPoints];
     669           0 :         delete aSplineX;
     670           0 :         delete aSplineY;
     671             :         // delete aSplineZ;
     672           0 :     }
     673             : }
     674             : 
     675             : 
     676             : // The implementation follows closely ODF1.2 spec, chapter chart:interpolation
     677             : // using the same names as in spec as far as possible, without prefix.
     678             : // More details can be found on
     679             : // Dr. C.-K. Shene: CS3621 Introduction to Computing with Geometry Notes
     680             : // Unit 9: Interpolation and Approximation/Curve Global Interpolation
     681             : // Department of Computer Science, Michigan Technological University
     682             : // http://www.cs.mtu.edu/~shene/COURSES/cs3621/NOTES/
     683             : // [last called 2011-05-20]
     684           0 : void SplineCalculater::CalculateBSplines(
     685             :             const ::com::sun::star::drawing::PolyPolygonShape3D& rInput
     686             :             , ::com::sun::star::drawing::PolyPolygonShape3D& rResult
     687             :             , sal_uInt32 nResolution
     688             :             , sal_uInt32 nDegree )
     689             : {
     690             :     // nResolution is ODF1.2 file format attribut chart:spline-resolution and
     691             :     // ODF1.2 spec variable k. Causion, k is used as index in the spec in addition.
     692             :     // nDegree is ODF1.2 file format attribut chart:spline-order and
     693             :     // ODF1.2 spec variable p
     694             :     OSL_ASSERT( nResolution > 1 );
     695             :     OSL_ASSERT( nDegree >= 1 );
     696             : 
     697             :     // limit the b-spline degree to prevent insanely large sets of points
     698           0 :     sal_uInt32 p = std::min<sal_uInt32>(nDegree, MAX_BSPLINE_DEGREE);
     699             : 
     700           0 :     rResult.SequenceX.realloc(0);
     701           0 :     rResult.SequenceY.realloc(0);
     702           0 :     rResult.SequenceZ.realloc(0);
     703             : 
     704           0 :     sal_Int32 nOuterCount = rInput.SequenceX.getLength();
     705           0 :     if( !nOuterCount )
     706           0 :         return; // no input
     707             : 
     708           0 :     rResult.SequenceX.realloc(nOuterCount);
     709           0 :     rResult.SequenceY.realloc(nOuterCount);
     710           0 :     rResult.SequenceZ.realloc(nOuterCount);
     711             : 
     712           0 :     for( sal_Int32 nOuter = 0; nOuter < nOuterCount; ++nOuter )
     713             :     {
     714           0 :         if( rInput.SequenceX[nOuter].getLength() <= 1 )
     715           0 :             continue; // need at least 2 points, next piece of the series
     716             : 
     717             :         // Copy input to vector of points and remove adjacent double points. The
     718             :         // Z-coordinate is equal for all points in a series and holds the depth
     719             :         // in 3D mode, simple copying is enough.
     720           0 :         lcl_tSizeType nMaxIndexPoints = rInput.SequenceX[nOuter].getLength()-1; // is >=1
     721           0 :         const double* pOldX = rInput.SequenceX[nOuter].getConstArray();
     722           0 :         const double* pOldY = rInput.SequenceY[nOuter].getConstArray();
     723           0 :         const double* pOldZ = rInput.SequenceZ[nOuter].getConstArray();
     724           0 :         double fZCoordinate = pOldZ[0];
     725           0 :         tPointVecType aPointsIn;
     726           0 :         aPointsIn.resize(nMaxIndexPoints+1);
     727           0 :         for (lcl_tSizeType i = 0; i <= nMaxIndexPoints; ++i )
     728             :         {
     729           0 :           aPointsIn[ i ].first = pOldX[i];
     730           0 :           aPointsIn[ i ].second = pOldY[i];
     731             :         }
     732             :         aPointsIn.erase( ::std::unique( aPointsIn.begin(), aPointsIn.end()),
     733           0 :                      aPointsIn.end() );
     734             : 
     735             :         // n is the last valid index to the reduced aPointsIn
     736             :         // There are n+1 valid data points.
     737           0 :         const lcl_tSizeType n = aPointsIn.size() - 1;
     738           0 :         if (n < 1 || p > n)
     739           0 :             continue; // need at least 2 points, degree p needs at least n+1 points
     740             :                       // next piece of series
     741             : 
     742           0 :         double* t = new double [n+1];
     743           0 :         if (!createParameterT(aPointsIn, t))
     744             :         {
     745           0 :             delete[] t;
     746           0 :             continue; // next piece of series
     747             :         }
     748             : 
     749           0 :         lcl_tSizeType m = n + p + 1;
     750           0 :         double* u = new double [m+1];
     751           0 :         createKnotVector(n, p, t, u);
     752             : 
     753             :         // The matrix N contains the B-spline basis functions applied to parameters.
     754             :         // In each row only p+1 adjacent elements are non-zero. The starting
     755             :         // column in a higher row is equal or greater than in the lower row.
     756             :         // To store this matrix the non-zero elements are shifted to column 0
     757             :         // and the amount of shifting is remembered in an array.
     758           0 :         double** aMatN = new double*[n+1];
     759           0 :         for (lcl_tSizeType row = 0; row <=n; ++row)
     760             :         {
     761           0 :             aMatN[row] = new double[p+1];
     762           0 :             for (sal_uInt32 col = 0; col <= p; ++col)
     763           0 :             aMatN[row][col] = 0.0;
     764             :         }
     765           0 :         lcl_tSizeType* aShift = new lcl_tSizeType[n+1];
     766           0 :         aMatN[0][0] = 1.0; //all others are zero
     767           0 :         aShift[0] = 0;
     768           0 :         aMatN[n][0] = 1.0;
     769           0 :         aShift[n] = n;
     770           0 :         for (lcl_tSizeType k = 1; k<=n-1; ++k)
     771             :         { // all basis functions are applied to t_k,
     772             :             // results are elements in row k in matrix N
     773             : 
     774             :             // find the one interval with u_i <= t_k < u_(i+1)
     775             :             // remember u_0 = ... = u_p = 0.0 and u_(m-p) = ... u_m = 1.0 and 0<t_k<1
     776           0 :             lcl_tSizeType i = p;
     777           0 :             while (!(u[i] <= t[k] && t[k] < u[i+1]))
     778             :             {
     779           0 :                 ++i;
     780             :             }
     781             : 
     782             :             // index in reduced matrix aMatN = (index in full matrix N) - (i-p)
     783           0 :             aShift[k] = i - p;
     784             : 
     785           0 :             applyNtoParameterT(i, t[k], p, u, aMatN[k]);
     786             :         } // next row k
     787             : 
     788             :         // Get matrix C of control points from the matrix equation aMatN * C = aPointsIn
     789             :         // aPointsIn is overwritten with C.
     790             :         // Gaussian elimination is possible without pivoting, see reference
     791           0 :         lcl_tSizeType r = 0; // true row index
     792           0 :         lcl_tSizeType c = 0; // true column index
     793           0 :         double fDivisor = 1.0; // used for diagonal element
     794           0 :         double fEliminate = 1.0; // used for the element, that will become zero
     795             :         double fHelp;
     796           0 :         tPointType aHelp;
     797             :         lcl_tSizeType nHelp; // used in triangle change
     798           0 :         bool bIsSuccessful = true;
     799           0 :         for (c = 0 ; c <= n && bIsSuccessful; ++c)
     800             :         {
     801             :             // search for first non-zero downwards
     802           0 :             r = c;
     803           0 :             while ( r < n && aMatN[r][c-aShift[r]] == 0 )
     804             :             {
     805           0 :                 ++r;
     806             :             }
     807           0 :             if (aMatN[r][c-aShift[r]] == 0.0)
     808             :             {
     809             :                 // Matrix N is singular, although this is mathematically impossible
     810           0 :                 bIsSuccessful = false;
     811             :             }
     812             :             else
     813             :             {
     814             :                 // exchange total row r with total row c if necessary
     815           0 :                 if (r != c)
     816             :                 {
     817           0 :                     for ( sal_uInt32 i = 0; i <= p ; ++i)
     818             :                     {
     819           0 :                         fHelp = aMatN[r][i];
     820           0 :                         aMatN[r][i] = aMatN[c][i];
     821           0 :                         aMatN[c][i] = fHelp;
     822             :                     }
     823           0 :                     aHelp = aPointsIn[r];
     824           0 :                     aPointsIn[r] = aPointsIn[c];
     825           0 :                     aPointsIn[c] = aHelp;
     826           0 :                     nHelp = aShift[r];
     827           0 :                     aShift[r] = aShift[c];
     828           0 :                     aShift[c] = nHelp;
     829             :                 }
     830             : 
     831             :                 // divide row c, so that element(c,c) becomes 1
     832           0 :                 fDivisor = aMatN[c][c-aShift[c]]; // not zero, see above
     833           0 :                 for (sal_uInt32 i = 0; i <= p; ++i)
     834             :                 {
     835           0 :                     aMatN[c][i] /= fDivisor;
     836             :                 }
     837           0 :                 aPointsIn[c].first /= fDivisor;
     838           0 :                 aPointsIn[c].second /= fDivisor;
     839             : 
     840             :                 // eliminate forward, examine row c+1 to n-1 (worst case)
     841             :                 // stop if first non-zero element in row has an higher column as c
     842             :                 // look at nShift for that, elements in nShift are equal or increasing
     843           0 :                 for ( r = c+1; r < n && aShift[r]<=c ; ++r)
     844             :                 {
     845           0 :                     fEliminate = aMatN[r][0];
     846           0 :                     if (fEliminate != 0.0) // else accidentally zero, nothing to do
     847             :                     {
     848           0 :                         for (sal_uInt32 i = 1; i <= p; ++i)
     849             :                         {
     850           0 :                             aMatN[r][i-1] = aMatN[r][i] - fEliminate * aMatN[c][i];
     851             :                         }
     852           0 :                         aMatN[r][p]=0;
     853           0 :                         aPointsIn[r].first -= fEliminate * aPointsIn[c].first;
     854           0 :                         aPointsIn[r].second -= fEliminate * aPointsIn[c].second;
     855           0 :                         ++aShift[r];
     856             :                     }
     857             :                 }
     858             :             }
     859             :         }// upper triangle form is reached
     860           0 :         if( bIsSuccessful)
     861             :         {
     862             :             // eliminate backwards, begin with last column
     863           0 :             for (lcl_tSizeType cc = n; cc >= 1; --cc )
     864             :             {
     865             :                 // In row cc the diagonal element(cc,cc) == 1 and all elements left from
     866             :                 // diagonal are zero and do not influence other rows.
     867             :                 // Full matrix N has semibandwidth < p, therefore element(r,c) is
     868             :                 // zero, if abs(r-cc)>=p.  abs(r-cc)=cc-r, because r<cc.
     869           0 :                 r = cc - 1;
     870           0 :                 while ( r !=0 && cc-r < p )
     871             :                 {
     872           0 :                     fEliminate = aMatN[r][ cc - aShift[r] ];
     873           0 :                     if ( fEliminate != 0.0) // else element is accidentically zero, no action needed
     874             :                     {
     875             :                         // row r -= fEliminate * row cc only relevant for right side
     876           0 :                         aMatN[r][cc - aShift[r]] = 0.0;
     877           0 :                         aPointsIn[r].first -= fEliminate * aPointsIn[cc].first;
     878           0 :                         aPointsIn[r].second -= fEliminate * aPointsIn[cc].second;
     879             :                     }
     880           0 :                     --r;
     881             :                 }
     882             :             }
     883             :         }   // aPointsIn contains the control points now.
     884           0 :         if (bIsSuccessful)
     885             :         {
     886             :             // calculate the intermediate points according given resolution
     887             :             // using deBoor-Cox algorithm
     888           0 :             lcl_tSizeType nNewSize = nResolution * n + 1;
     889           0 :             rResult.SequenceX[nOuter].realloc(nNewSize);
     890           0 :             rResult.SequenceY[nOuter].realloc(nNewSize);
     891           0 :             rResult.SequenceZ[nOuter].realloc(nNewSize);
     892           0 :             double* pNewX = rResult.SequenceX[nOuter].getArray();
     893           0 :             double* pNewY = rResult.SequenceY[nOuter].getArray();
     894           0 :             double* pNewZ = rResult.SequenceZ[nOuter].getArray();
     895           0 :             pNewX[0] = aPointsIn[0].first;
     896           0 :             pNewY[0] = aPointsIn[0].second;
     897           0 :             pNewZ[0] = fZCoordinate; // Precondition: z-coordinates of all points of a series are equal
     898           0 :             pNewX[nNewSize -1 ] = aPointsIn[n].first;
     899           0 :             pNewY[nNewSize -1 ] = aPointsIn[n].second;
     900           0 :             pNewZ[nNewSize -1 ] = fZCoordinate;
     901           0 :             double* aP = new double[m+1];
     902           0 :             lcl_tSizeType nLow = 0;
     903           0 :             for ( lcl_tSizeType nTIndex = 0; nTIndex <= n-1; ++nTIndex)
     904             :             {
     905           0 :                 for (sal_uInt32 nResolutionStep = 1;
     906           0 :                      nResolutionStep <= nResolution && !( nTIndex == n-1 && nResolutionStep == nResolution);
     907             :                      ++nResolutionStep)
     908             :                 {
     909           0 :                     lcl_tSizeType nNewIndex = nTIndex * nResolution + nResolutionStep;
     910           0 :                     double ux = t[nTIndex] + nResolutionStep * ( t[nTIndex+1] - t[nTIndex]) /nResolution;
     911             : 
     912             :                     // get index nLow, so that u[nLow]<= ux < u[nLow +1]
     913             :                     // continue from previous nLow
     914           0 :                     while ( u[nLow] <= ux)
     915             :                     {
     916           0 :                         ++nLow;
     917             :                     }
     918           0 :                     --nLow;
     919             : 
     920             :                     // x-coordinate
     921           0 :                     for (lcl_tSizeType i = nLow-p; i <= nLow; ++i)
     922             :                     {
     923           0 :                         aP[i] = aPointsIn[i].first;
     924             :                     }
     925           0 :                     for (sal_uInt32 lcl_Degree = 1; lcl_Degree <= p; ++lcl_Degree)
     926             :                     {
     927           0 :                         double fFactor = 0.0;
     928           0 :                         for (lcl_tSizeType i = nLow; i >= nLow + lcl_Degree - p; --i)
     929             :                         {
     930           0 :                             fFactor = ( ux - u[i] ) / ( u[i+p+1-lcl_Degree] - u[i]);
     931           0 :                             aP[i] = (1 - fFactor)* aP[i-1] + fFactor * aP[i];
     932             :                         }
     933             :                     }
     934           0 :                     pNewX[nNewIndex] = aP[nLow];
     935             : 
     936             :                     // y-coordinate
     937           0 :                     for (lcl_tSizeType i = nLow - p; i <= nLow; ++i)
     938             :                     {
     939           0 :                         aP[i] = aPointsIn[i].second;
     940             :                     }
     941           0 :                     for (sal_uInt32 lcl_Degree = 1; lcl_Degree <= p; ++lcl_Degree)
     942             :                     {
     943           0 :                         double fFactor = 0.0;
     944           0 :                         for (lcl_tSizeType i = nLow; i >= nLow +lcl_Degree - p; --i)
     945             :                         {
     946           0 :                             fFactor = ( ux - u[i] ) / ( u[i+p+1-lcl_Degree] - u[i]);
     947           0 :                             aP[i] = (1 - fFactor)* aP[i-1] + fFactor * aP[i];
     948             :                         }
     949             :                     }
     950           0 :                     pNewY[nNewIndex] = aP[nLow];
     951           0 :                     pNewZ[nNewIndex] = fZCoordinate;
     952             :                 }
     953             :             }
     954           0 :             delete[] aP;
     955             :         }
     956           0 :         delete[] aShift;
     957           0 :         for (lcl_tSizeType row = 0; row <=n; ++row)
     958             :         {
     959           0 :             delete[] aMatN[row];
     960             :         }
     961           0 :         delete[] aMatN;
     962           0 :         delete[] u;
     963           0 :         delete[] t;
     964             : 
     965           0 :     } // next piece of the series
     966             : }
     967             : 
     968             : //.............................................................................
     969             : } //namespace chart
     970             : //.............................................................................
     971             : 
     972             : /* vim:set shiftwidth=4 softtabstop=4 expandtab: */

Generated by: LCOV version 1.10