Line data Source code
1 : /* -*- Mode: C++; tab-width: 4; indent-tabs-mode: nil; c-basic-offset: 4 -*- */
2 : /*
3 : * This file is part of the LibreOffice project.
4 : *
5 : * This Source Code Form is subject to the terms of the Mozilla Public
6 : * License, v. 2.0. If a copy of the MPL was not distributed with this
7 : * file, You can obtain one at http://mozilla.org/MPL/2.0/.
8 : *
9 : * This file incorporates work covered by the following license notice:
10 : *
11 : * Licensed to the Apache Software Foundation (ASF) under one or more
12 : * contributor license agreements. See the NOTICE file distributed
13 : * with this work for additional information regarding copyright
14 : * ownership. The ASF licenses this file to you under the Apache
15 : * License, Version 2.0 (the "License"); you may not use this file
16 : * except in compliance with the License. You may obtain a copy of
17 : * the License at http://www.apache.org/licenses/LICENSE-2.0 .
18 : */
19 :
20 : #include <drawinglayer/processor3d/zbufferprocessor3d.hxx>
21 : #include <basegfx/raster/bpixelraster.hxx>
22 : #include <vcl/bmpacc.hxx>
23 : #include <basegfx/raster/rasterconvert3d.hxx>
24 : #include <basegfx/raster/bzpixelraster.hxx>
25 : #include <drawinglayer/attribute/materialattribute3d.hxx>
26 : #include <drawinglayer/texture/texture.hxx>
27 : #include <drawinglayer/primitive3d/drawinglayer_primitivetypes3d.hxx>
28 : #include <drawinglayer/primitive3d/textureprimitive3d.hxx>
29 : #include <drawinglayer/primitive3d/polygonprimitive3d.hxx>
30 : #include <drawinglayer/primitive3d/polypolygonprimitive3d.hxx>
31 : #include <drawinglayer/geometry/viewinformation2d.hxx>
32 : #include <basegfx/polygon/b3dpolygontools.hxx>
33 : #include <basegfx/polygon/b3dpolypolygontools.hxx>
34 : #include <drawinglayer/attribute/sdrlightingattribute3d.hxx>
35 :
36 : //////////////////////////////////////////////////////////////////////////////
37 :
38 : using namespace com::sun::star;
39 :
40 : //////////////////////////////////////////////////////////////////////////////
41 :
42 : namespace
43 : {
44 0 : BitmapEx BPixelRasterToBitmapEx(const basegfx::BPixelRaster& rRaster, sal_uInt16 mnAntiAlialize)
45 : {
46 0 : BitmapEx aRetval;
47 0 : const sal_uInt32 nWidth(mnAntiAlialize ? rRaster.getWidth()/mnAntiAlialize : rRaster.getWidth());
48 0 : const sal_uInt32 nHeight(mnAntiAlialize ? rRaster.getHeight()/mnAntiAlialize : rRaster.getHeight());
49 :
50 0 : if(nWidth && nHeight)
51 : {
52 0 : const Size aDestSize(nWidth, nHeight);
53 0 : sal_uInt8 nInitAlpha(255);
54 0 : Bitmap aContent(aDestSize, 24);
55 0 : AlphaMask aAlpha(aDestSize, &nInitAlpha);
56 0 : BitmapWriteAccess* pContent = aContent.AcquireWriteAccess();
57 0 : BitmapWriteAccess* pAlpha = aAlpha.AcquireWriteAccess();
58 :
59 0 : if(pContent && pAlpha)
60 : {
61 0 : if(mnAntiAlialize)
62 : {
63 0 : const sal_uInt16 nDivisor(mnAntiAlialize * mnAntiAlialize);
64 :
65 0 : for(sal_uInt32 y(0L); y < nHeight; y++)
66 : {
67 0 : for(sal_uInt32 x(0L); x < nWidth; x++)
68 : {
69 0 : sal_uInt16 nRed(0);
70 0 : sal_uInt16 nGreen(0);
71 0 : sal_uInt16 nBlue(0);
72 0 : sal_uInt16 nOpacity(0);
73 0 : sal_uInt32 nIndex(rRaster.getIndexFromXY(x * mnAntiAlialize, y * mnAntiAlialize));
74 :
75 0 : for(sal_uInt32 c(0); c < mnAntiAlialize; c++)
76 : {
77 0 : for(sal_uInt32 d(0); d < mnAntiAlialize; d++)
78 : {
79 0 : const basegfx::BPixel& rPixel(rRaster.getBPixel(nIndex++));
80 0 : nRed = nRed + rPixel.getRed();
81 0 : nGreen = nGreen + rPixel.getGreen();
82 0 : nBlue = nBlue + rPixel.getBlue();
83 0 : nOpacity = nOpacity + rPixel.getOpacity();
84 : }
85 :
86 0 : nIndex += rRaster.getWidth() - mnAntiAlialize;
87 : }
88 :
89 0 : nOpacity = nOpacity / nDivisor;
90 :
91 0 : if(nOpacity)
92 : {
93 : pContent->SetPixel(y, x, BitmapColor(
94 : (sal_uInt8)(nRed / nDivisor),
95 : (sal_uInt8)(nGreen / nDivisor),
96 0 : (sal_uInt8)(nBlue / nDivisor)));
97 0 : pAlpha->SetPixel(y, x, BitmapColor(255 - (sal_uInt8)nOpacity));
98 : }
99 : }
100 : }
101 : }
102 : else
103 : {
104 0 : sal_uInt32 nIndex(0L);
105 :
106 0 : for(sal_uInt32 y(0L); y < nHeight; y++)
107 : {
108 0 : for(sal_uInt32 x(0L); x < nWidth; x++)
109 : {
110 0 : const basegfx::BPixel& rPixel(rRaster.getBPixel(nIndex++));
111 :
112 0 : if(rPixel.getOpacity())
113 : {
114 0 : pContent->SetPixel(y, x, BitmapColor(rPixel.getRed(), rPixel.getGreen(), rPixel.getBlue()));
115 0 : pAlpha->SetPixel(y, x, BitmapColor(255 - rPixel.getOpacity()));
116 : }
117 : }
118 : }
119 : }
120 :
121 0 : aContent.ReleaseAccess(pContent);
122 0 : aAlpha.ReleaseAccess(pAlpha);
123 : }
124 :
125 0 : aRetval = BitmapEx(aContent, aAlpha);
126 :
127 : // #i101811# set PrefMapMode and PrefSize at newly created Bitmap
128 0 : aRetval.SetPrefMapMode(MAP_PIXEL);
129 0 : aRetval.SetPrefSize(Size(nWidth, nHeight));
130 : }
131 :
132 0 : return aRetval;
133 : }
134 : } // end of anonymous namespace
135 :
136 : //////////////////////////////////////////////////////////////////////////////
137 :
138 0 : class ZBufferRasterConverter3D : public basegfx::RasterConverter3D
139 : {
140 : private:
141 : const drawinglayer::processor3d::DefaultProcessor3D& mrProcessor;
142 : basegfx::BZPixelRaster& mrBuffer;
143 :
144 : // interpolators for a single line span
145 : basegfx::ip_single maIntZ;
146 : basegfx::ip_triple maIntColor;
147 : basegfx::ip_triple maIntNormal;
148 : basegfx::ip_double maIntTexture;
149 : basegfx::ip_triple maIntInvTexture;
150 :
151 : // current material to use for ratsreconversion
152 : const drawinglayer::attribute::MaterialAttribute3D* mpCurrentMaterial;
153 :
154 : // bitfield
155 : // some boolean flags for line span interpolator usages
156 : unsigned mbModifyColor : 1;
157 : unsigned mbUseTex : 1;
158 : unsigned mbHasTexCoor : 1;
159 : unsigned mbHasInvTexCoor : 1;
160 : unsigned mbUseNrm : 1;
161 : unsigned mbUseCol : 1;
162 :
163 0 : void getTextureCoor(basegfx::B2DPoint& rTarget) const
164 : {
165 0 : if(mbHasTexCoor)
166 : {
167 0 : rTarget.setX(maIntTexture.getX().getVal());
168 0 : rTarget.setY(maIntTexture.getY().getVal());
169 : }
170 0 : else if(mbHasInvTexCoor)
171 : {
172 0 : const double fZFactor(maIntInvTexture.getZ().getVal());
173 0 : const double fInvZFactor(basegfx::fTools::equalZero(fZFactor) ? 1.0 : 1.0 / fZFactor);
174 0 : rTarget.setX(maIntInvTexture.getX().getVal() * fInvZFactor);
175 0 : rTarget.setY(maIntInvTexture.getY().getVal() * fInvZFactor);
176 : }
177 0 : }
178 :
179 0 : void incrementLineSpanInterpolators(double fStep)
180 : {
181 0 : maIntZ.increment(fStep);
182 :
183 0 : if(mbUseTex)
184 : {
185 0 : if(mbHasTexCoor)
186 : {
187 0 : maIntTexture.increment(fStep);
188 : }
189 0 : else if(mbHasInvTexCoor)
190 : {
191 0 : maIntInvTexture.increment(fStep);
192 : }
193 : }
194 :
195 0 : if(mbUseNrm)
196 : {
197 0 : maIntNormal.increment(fStep);
198 : }
199 :
200 0 : if(mbUseCol)
201 : {
202 0 : maIntColor.increment(fStep);
203 : }
204 0 : }
205 :
206 0 : double decideColorAndOpacity(basegfx::BColor& rColor)
207 : {
208 : // init values with full opacity and material color
209 : OSL_ENSURE(0 != mpCurrentMaterial, "CurrentMaterial not set (!)");
210 0 : double fOpacity(1.0);
211 0 : rColor = mpCurrentMaterial->getColor();
212 :
213 0 : if(mbUseTex)
214 : {
215 0 : basegfx::B2DPoint aTexCoor(0.0, 0.0);
216 0 : getTextureCoor(aTexCoor);
217 :
218 0 : if(mrProcessor.getGeoTexSvx().get())
219 : {
220 : // calc color in spot. This may also set to invisible already when
221 : // e.g. bitmap textures have transparent parts
222 0 : mrProcessor.getGeoTexSvx()->modifyBColor(aTexCoor, rColor, fOpacity);
223 : }
224 :
225 0 : if(basegfx::fTools::more(fOpacity, 0.0) && mrProcessor.getTransparenceGeoTexSvx().get())
226 : {
227 : // calc opacity. Object has a 2nd texture, a transparence texture
228 0 : mrProcessor.getTransparenceGeoTexSvx()->modifyOpacity(aTexCoor, fOpacity);
229 0 : }
230 : }
231 :
232 0 : if(basegfx::fTools::more(fOpacity, 0.0))
233 : {
234 0 : if(mrProcessor.getGeoTexSvx().get())
235 : {
236 0 : if(mbUseNrm)
237 : {
238 : // blend texture with phong
239 0 : rColor = mrProcessor.getSdrLightingAttribute().solveColorModel(
240 0 : basegfx::B3DVector(maIntNormal.getX().getVal(), maIntNormal.getY().getVal(), maIntNormal.getZ().getVal()),
241 : rColor,
242 0 : mpCurrentMaterial->getSpecular(),
243 0 : mpCurrentMaterial->getEmission(),
244 0 : mpCurrentMaterial->getSpecularIntensity());
245 : }
246 0 : else if(mbUseCol)
247 : {
248 : // blend texture with gouraud
249 0 : basegfx::BColor aBlendColor(maIntColor.getX().getVal(), maIntColor.getY().getVal(), maIntColor.getZ().getVal());
250 0 : rColor *= aBlendColor;
251 : }
252 0 : else if(mrProcessor.getModulate())
253 : {
254 : // blend texture with single material color
255 0 : rColor *= mpCurrentMaterial->getColor();
256 : }
257 : }
258 : else
259 : {
260 0 : if(mbUseNrm)
261 : {
262 : // modify color with phong
263 0 : rColor = mrProcessor.getSdrLightingAttribute().solveColorModel(
264 0 : basegfx::B3DVector(maIntNormal.getX().getVal(), maIntNormal.getY().getVal(), maIntNormal.getZ().getVal()),
265 : rColor,
266 0 : mpCurrentMaterial->getSpecular(),
267 0 : mpCurrentMaterial->getEmission(),
268 0 : mpCurrentMaterial->getSpecularIntensity());
269 : }
270 0 : else if(mbUseCol)
271 : {
272 : // modify color with gouraud
273 0 : rColor.setRed(maIntColor.getX().getVal());
274 0 : rColor.setGreen(maIntColor.getY().getVal());
275 0 : rColor.setBlue(maIntColor.getZ().getVal());
276 : }
277 : }
278 :
279 0 : if(mbModifyColor)
280 : {
281 0 : rColor = mrProcessor.getBColorModifierStack().getModifiedColor(rColor);
282 : }
283 : }
284 :
285 0 : return fOpacity;
286 : }
287 :
288 0 : void setupLineSpanInterpolators(const basegfx::RasterConversionLineEntry3D& rA, const basegfx::RasterConversionLineEntry3D& rB)
289 : {
290 : // get inverse XDelta
291 0 : const double xInvDelta(1.0 / (rB.getX().getVal() - rA.getX().getVal()));
292 :
293 : // prepare Z-interpolator
294 0 : const double fZA(rA.getZ().getVal());
295 0 : const double fZB(rB.getZ().getVal());
296 0 : maIntZ = basegfx::ip_single(fZA, (fZB - fZA) * xInvDelta);
297 :
298 : // get bools and init other interpolators on demand accordingly
299 0 : mbModifyColor = mrProcessor.getBColorModifierStack().count();
300 0 : mbHasTexCoor = SCANLINE_EMPTY_INDEX != rA.getTextureIndex() && SCANLINE_EMPTY_INDEX != rB.getTextureIndex();
301 0 : mbHasInvTexCoor = SCANLINE_EMPTY_INDEX != rA.getInverseTextureIndex() && SCANLINE_EMPTY_INDEX != rB.getInverseTextureIndex();
302 0 : const bool bTextureActive(mrProcessor.getGeoTexSvx().get() || mrProcessor.getTransparenceGeoTexSvx().get());
303 0 : mbUseTex = bTextureActive && (mbHasTexCoor || mbHasInvTexCoor || mrProcessor.getSimpleTextureActive());
304 0 : const bool bUseColorTex(mbUseTex && mrProcessor.getGeoTexSvx().get());
305 0 : const bool bNeedNrmOrCol(!bUseColorTex || (bUseColorTex && mrProcessor.getModulate()));
306 0 : mbUseNrm = bNeedNrmOrCol && SCANLINE_EMPTY_INDEX != rA.getNormalIndex() && SCANLINE_EMPTY_INDEX != rB.getNormalIndex();
307 0 : mbUseCol = !mbUseNrm && bNeedNrmOrCol && SCANLINE_EMPTY_INDEX != rA.getColorIndex() && SCANLINE_EMPTY_INDEX != rB.getColorIndex();
308 :
309 0 : if(mbUseTex)
310 : {
311 0 : if(mbHasTexCoor)
312 : {
313 0 : const basegfx::ip_double& rTA(getTextureInterpolators()[rA.getTextureIndex()]);
314 0 : const basegfx::ip_double& rTB(getTextureInterpolators()[rB.getTextureIndex()]);
315 : maIntTexture = basegfx::ip_double(
316 0 : rTA.getX().getVal(), (rTB.getX().getVal() - rTA.getX().getVal()) * xInvDelta,
317 0 : rTA.getY().getVal(), (rTB.getY().getVal() - rTA.getY().getVal()) * xInvDelta);
318 : }
319 0 : else if(mbHasInvTexCoor)
320 : {
321 0 : const basegfx::ip_triple& rITA(getInverseTextureInterpolators()[rA.getInverseTextureIndex()]);
322 0 : const basegfx::ip_triple& rITB(getInverseTextureInterpolators()[rB.getInverseTextureIndex()]);
323 : maIntInvTexture = basegfx::ip_triple(
324 0 : rITA.getX().getVal(), (rITB.getX().getVal() - rITA.getX().getVal()) * xInvDelta,
325 0 : rITA.getY().getVal(), (rITB.getY().getVal() - rITA.getY().getVal()) * xInvDelta,
326 0 : rITA.getZ().getVal(), (rITB.getZ().getVal() - rITA.getZ().getVal()) * xInvDelta);
327 : }
328 : }
329 :
330 0 : if(mbUseNrm)
331 : {
332 0 : const basegfx::ip_triple& rNA(getNormalInterpolators()[rA.getNormalIndex()]);
333 0 : const basegfx::ip_triple& rNB(getNormalInterpolators()[rB.getNormalIndex()]);
334 : maIntNormal = basegfx::ip_triple(
335 0 : rNA.getX().getVal(), (rNB.getX().getVal() - rNA.getX().getVal()) * xInvDelta,
336 0 : rNA.getY().getVal(), (rNB.getY().getVal() - rNA.getY().getVal()) * xInvDelta,
337 0 : rNA.getZ().getVal(), (rNB.getZ().getVal() - rNA.getZ().getVal()) * xInvDelta);
338 : }
339 :
340 0 : if(mbUseCol)
341 : {
342 0 : const basegfx::ip_triple& rCA(getColorInterpolators()[rA.getColorIndex()]);
343 0 : const basegfx::ip_triple& rCB(getColorInterpolators()[rB.getColorIndex()]);
344 : maIntColor = basegfx::ip_triple(
345 0 : rCA.getX().getVal(), (rCB.getX().getVal() - rCA.getX().getVal()) * xInvDelta,
346 0 : rCA.getY().getVal(), (rCB.getY().getVal() - rCA.getY().getVal()) * xInvDelta,
347 0 : rCA.getZ().getVal(), (rCB.getZ().getVal() - rCA.getZ().getVal()) * xInvDelta);
348 : }
349 0 : }
350 :
351 : virtual void processLineSpan(const basegfx::RasterConversionLineEntry3D& rA, const basegfx::RasterConversionLineEntry3D& rB, sal_Int32 nLine, sal_uInt32 nSpanCount);
352 :
353 : public:
354 0 : ZBufferRasterConverter3D(basegfx::BZPixelRaster& rBuffer, const drawinglayer::processor3d::ZBufferProcessor3D& rProcessor)
355 : : basegfx::RasterConverter3D(),
356 : mrProcessor(rProcessor),
357 : mrBuffer(rBuffer),
358 : maIntZ(),
359 : maIntColor(),
360 : maIntNormal(),
361 : maIntTexture(),
362 : maIntInvTexture(),
363 : mpCurrentMaterial(0),
364 : mbModifyColor(false),
365 : mbUseTex(false),
366 : mbHasTexCoor(false),
367 : mbHasInvTexCoor(false),
368 : mbUseNrm(false),
369 0 : mbUseCol(false)
370 0 : {}
371 :
372 0 : void setCurrentMaterial(const drawinglayer::attribute::MaterialAttribute3D& rMaterial)
373 : {
374 0 : mpCurrentMaterial = &rMaterial;
375 0 : }
376 : };
377 :
378 0 : void ZBufferRasterConverter3D::processLineSpan(const basegfx::RasterConversionLineEntry3D& rA, const basegfx::RasterConversionLineEntry3D& rB, sal_Int32 nLine, sal_uInt32 nSpanCount)
379 : {
380 0 : if(!(nSpanCount & 0x0001))
381 : {
382 0 : if(nLine >= 0 && nLine < (sal_Int32)mrBuffer.getHeight())
383 : {
384 0 : sal_uInt32 nXA(::std::min(mrBuffer.getWidth(), (sal_uInt32)::std::max((sal_Int32)0, basegfx::fround(rA.getX().getVal()))));
385 0 : const sal_uInt32 nXB(::std::min(mrBuffer.getWidth(), (sal_uInt32)::std::max((sal_Int32)0, basegfx::fround(rB.getX().getVal()))));
386 :
387 0 : if(nXA < nXB)
388 : {
389 : // prepare the span interpolators
390 0 : setupLineSpanInterpolators(rA, rB);
391 :
392 : // bring span interpolators to start condition by incrementing with the possible difference of
393 : // clamped and non-clamped XStart. Interpolators are setup relying on double precision
394 : // X-values, so that difference is the correct value to compensate for possible clampings
395 0 : incrementLineSpanInterpolators(static_cast<double>(nXA) - rA.getX().getVal());
396 :
397 : // prepare scanline index
398 0 : sal_uInt32 nScanlineIndex(mrBuffer.getIndexFromXY(nXA, static_cast<sal_uInt32>(nLine)));
399 0 : basegfx::BColor aNewColor;
400 :
401 0 : while(nXA < nXB)
402 : {
403 : // early-test Z values if we need to do anything at all
404 0 : const double fNewZ(::std::max(0.0, ::std::min((double)0xffff, maIntZ.getVal())));
405 0 : const sal_uInt16 nNewZ(static_cast< sal_uInt16 >(fNewZ));
406 0 : sal_uInt16& rOldZ(mrBuffer.getZ(nScanlineIndex));
407 :
408 0 : if(nNewZ > rOldZ)
409 : {
410 : // detect color and opacity for this pixel
411 0 : const sal_uInt16 nOpacity(::std::max((sal_Int16)0, static_cast< sal_Int16 >(decideColorAndOpacity(aNewColor) * 255.0)));
412 :
413 0 : if(nOpacity > 0)
414 : {
415 : // avoid color overrun
416 0 : aNewColor.clamp();
417 :
418 0 : if(nOpacity >= 0x00ff)
419 : {
420 : // full opacity (not transparent), set z and color
421 0 : rOldZ = nNewZ;
422 0 : mrBuffer.getBPixel(nScanlineIndex) = basegfx::BPixel(aNewColor, 0xff);
423 : }
424 : else
425 : {
426 0 : basegfx::BPixel& rDest = mrBuffer.getBPixel(nScanlineIndex);
427 :
428 0 : if(rDest.getOpacity())
429 : {
430 : // mix new color by using
431 : // color' = color * (1 - opacity) + newcolor * opacity
432 0 : const sal_uInt16 nTransparence(0x0100 - nOpacity);
433 0 : rDest.setRed((sal_uInt8)(((rDest.getRed() * nTransparence) + ((sal_uInt16)(255.0 * aNewColor.getRed()) * nOpacity)) >> 8));
434 0 : rDest.setGreen((sal_uInt8)(((rDest.getGreen() * nTransparence) + ((sal_uInt16)(255.0 * aNewColor.getGreen()) * nOpacity)) >> 8));
435 0 : rDest.setBlue((sal_uInt8)(((rDest.getBlue() * nTransparence) + ((sal_uInt16)(255.0 * aNewColor.getBlue()) * nOpacity)) >> 8));
436 :
437 0 : if(0xff != rDest.getOpacity())
438 : {
439 : // both are transparent, mix new opacity by using
440 : // opacity = newopacity * (1 - oldopacity) + oldopacity
441 0 : rDest.setOpacity(((sal_uInt8)((nOpacity * (0x0100 - rDest.getOpacity())) >> 8)) + rDest.getOpacity());
442 : }
443 : }
444 : else
445 : {
446 : // dest is unused, set color
447 0 : rDest = basegfx::BPixel(aNewColor, (sal_uInt8)nOpacity);
448 : }
449 : }
450 : }
451 : }
452 :
453 : // increments
454 0 : nScanlineIndex++;
455 0 : nXA++;
456 0 : incrementLineSpanInterpolators(1.0);
457 0 : }
458 : }
459 : }
460 : }
461 0 : }
462 :
463 : //////////////////////////////////////////////////////////////////////////////
464 : // helper class to buffer output for transparent rasterprimitives (filled areas
465 : // and lines) until the end of processing. To ensure correct transparent
466 : // visualisation, ZBuffers require to not set Z and to mix with the transparent
467 : // color. If transparent rasterprimitives overlap, it gets necessary to
468 : // paint transparent rasterprimitives from back to front to ensure that the
469 : // mixing happens from back to front. For that purpose, transparent
470 : // rasterprimitives are held in this class during the processing run, remember
471 : // all data and will be rendered
472 :
473 0 : class RasterPrimitive3D
474 : {
475 : private:
476 : boost::shared_ptr< drawinglayer::texture::GeoTexSvx > mpGeoTexSvx;
477 : boost::shared_ptr< drawinglayer::texture::GeoTexSvx > mpTransparenceGeoTexSvx;
478 : drawinglayer::attribute::MaterialAttribute3D maMaterial;
479 : basegfx::B3DPolyPolygon maPolyPolygon;
480 : double mfCenterZ;
481 :
482 : // bitfield
483 : bool mbModulate : 1;
484 : bool mbFilter : 1;
485 : bool mbSimpleTextureActive : 1;
486 : bool mbIsLine : 1;
487 :
488 : public:
489 0 : RasterPrimitive3D(
490 : const boost::shared_ptr< drawinglayer::texture::GeoTexSvx >& pGeoTexSvx,
491 : const boost::shared_ptr< drawinglayer::texture::GeoTexSvx >& pTransparenceGeoTexSvx,
492 : const drawinglayer::attribute::MaterialAttribute3D& rMaterial,
493 : const basegfx::B3DPolyPolygon& rPolyPolygon,
494 : bool bModulate,
495 : bool bFilter,
496 : bool bSimpleTextureActive,
497 : bool bIsLine)
498 : : mpGeoTexSvx(pGeoTexSvx),
499 : mpTransparenceGeoTexSvx(pTransparenceGeoTexSvx),
500 : maMaterial(rMaterial),
501 : maPolyPolygon(rPolyPolygon),
502 0 : mfCenterZ(basegfx::tools::getRange(rPolyPolygon).getCenter().getZ()),
503 : mbModulate(bModulate),
504 : mbFilter(bFilter),
505 : mbSimpleTextureActive(bSimpleTextureActive),
506 0 : mbIsLine(bIsLine)
507 : {
508 0 : }
509 :
510 0 : RasterPrimitive3D& operator=(const RasterPrimitive3D& rComp)
511 : {
512 0 : mpGeoTexSvx = rComp.mpGeoTexSvx;
513 0 : mpTransparenceGeoTexSvx = rComp.mpTransparenceGeoTexSvx;
514 0 : maMaterial = rComp.maMaterial;
515 0 : maPolyPolygon = rComp.maPolyPolygon;
516 0 : mfCenterZ = rComp.mfCenterZ;
517 0 : mbModulate = rComp.mbModulate;
518 0 : mbFilter = rComp.mbFilter;
519 0 : mbSimpleTextureActive = rComp.mbSimpleTextureActive;
520 0 : mbIsLine = rComp.mbIsLine;
521 :
522 0 : return *this;
523 : }
524 :
525 0 : bool operator<(const RasterPrimitive3D& rComp) const
526 : {
527 0 : return mfCenterZ < rComp.mfCenterZ;
528 : }
529 :
530 0 : const boost::shared_ptr< drawinglayer::texture::GeoTexSvx >& getGeoTexSvx() const { return mpGeoTexSvx; }
531 0 : const boost::shared_ptr< drawinglayer::texture::GeoTexSvx >& getTransparenceGeoTexSvx() const { return mpTransparenceGeoTexSvx; }
532 0 : const drawinglayer::attribute::MaterialAttribute3D& getMaterial() const { return maMaterial; }
533 0 : const basegfx::B3DPolyPolygon& getPolyPolygon() const { return maPolyPolygon; }
534 0 : bool getModulate() const { return mbModulate; }
535 0 : bool getFilter() const { return mbFilter; }
536 0 : bool getSimpleTextureActive() const { return mbSimpleTextureActive; }
537 0 : bool getIsLine() const { return mbIsLine; }
538 : };
539 :
540 : //////////////////////////////////////////////////////////////////////////////
541 :
542 : namespace drawinglayer
543 : {
544 : namespace processor3d
545 : {
546 0 : void ZBufferProcessor3D::rasterconvertB3DPolygon(const attribute::MaterialAttribute3D& rMaterial, const basegfx::B3DPolygon& rHairline) const
547 : {
548 0 : if(mpBZPixelRaster)
549 : {
550 0 : if(getTransparenceCounter())
551 : {
552 : // transparent output; record for later sorting and painting from
553 : // back to front
554 0 : if(!mpRasterPrimitive3Ds)
555 : {
556 0 : const_cast< ZBufferProcessor3D* >(this)->mpRasterPrimitive3Ds = new std::vector< RasterPrimitive3D >;
557 : }
558 :
559 : mpRasterPrimitive3Ds->push_back(RasterPrimitive3D(
560 0 : getGeoTexSvx(),
561 0 : getTransparenceGeoTexSvx(),
562 : rMaterial,
563 : basegfx::B3DPolyPolygon(rHairline),
564 0 : getModulate(),
565 0 : getFilter(),
566 0 : getSimpleTextureActive(),
567 0 : true));
568 : }
569 : else
570 : {
571 : // do rasterconversion
572 0 : mpZBufferRasterConverter3D->setCurrentMaterial(rMaterial);
573 :
574 0 : if(mnAntiAlialize > 1)
575 : {
576 0 : const bool bForceLineSnap(getOptionsDrawinglayer().IsAntiAliasing() && getOptionsDrawinglayer().IsSnapHorVerLinesToDiscrete());
577 :
578 0 : if(bForceLineSnap)
579 : {
580 0 : basegfx::B3DHomMatrix aTransform;
581 0 : basegfx::B3DPolygon aSnappedHairline(rHairline);
582 0 : const double fScaleDown(1.0 / mnAntiAlialize);
583 0 : const double fScaleUp(mnAntiAlialize);
584 :
585 : // take oversampling out
586 0 : aTransform.scale(fScaleDown, fScaleDown, 1.0);
587 0 : aSnappedHairline.transform(aTransform);
588 :
589 : // snap to integer
590 0 : aSnappedHairline = basegfx::tools::snapPointsOfHorizontalOrVerticalEdges(aSnappedHairline);
591 :
592 : // add oversampling again
593 0 : aTransform.identity();
594 0 : aTransform.scale(fScaleUp, fScaleUp, 1.0);
595 :
596 0 : aSnappedHairline.transform(aTransform);
597 :
598 0 : mpZBufferRasterConverter3D->rasterconvertB3DPolygon(aSnappedHairline, 0, mpBZPixelRaster->getHeight(), mnAntiAlialize);
599 : }
600 : else
601 : {
602 0 : mpZBufferRasterConverter3D->rasterconvertB3DPolygon(rHairline, 0, mpBZPixelRaster->getHeight(), mnAntiAlialize);
603 : }
604 : }
605 : else
606 : {
607 0 : mpZBufferRasterConverter3D->rasterconvertB3DPolygon(rHairline, 0, mpBZPixelRaster->getHeight(), 1);
608 : }
609 : }
610 : }
611 0 : }
612 :
613 0 : void ZBufferProcessor3D::rasterconvertB3DPolyPolygon(const attribute::MaterialAttribute3D& rMaterial, const basegfx::B3DPolyPolygon& rFill) const
614 : {
615 0 : if(mpBZPixelRaster)
616 : {
617 0 : if(getTransparenceCounter())
618 : {
619 : // transparent output; record for later sorting and painting from
620 : // back to front
621 0 : if(!mpRasterPrimitive3Ds)
622 : {
623 0 : const_cast< ZBufferProcessor3D* >(this)->mpRasterPrimitive3Ds = new std::vector< RasterPrimitive3D >;
624 : }
625 :
626 : mpRasterPrimitive3Ds->push_back(RasterPrimitive3D(
627 0 : getGeoTexSvx(),
628 0 : getTransparenceGeoTexSvx(),
629 : rMaterial,
630 : rFill,
631 0 : getModulate(),
632 0 : getFilter(),
633 0 : getSimpleTextureActive(),
634 0 : false));
635 : }
636 : else
637 : {
638 0 : mpZBufferRasterConverter3D->setCurrentMaterial(rMaterial);
639 0 : mpZBufferRasterConverter3D->rasterconvertB3DPolyPolygon(rFill, &maInvEyeToView, 0, mpBZPixelRaster->getHeight());
640 : }
641 : }
642 0 : }
643 :
644 0 : ZBufferProcessor3D::ZBufferProcessor3D(
645 : const geometry::ViewInformation3D& rViewInformation3D,
646 : const geometry::ViewInformation2D& rViewInformation2D,
647 : const attribute::SdrSceneAttribute& rSdrSceneAttribute,
648 : const attribute::SdrLightingAttribute& rSdrLightingAttribute,
649 : double fSizeX,
650 : double fSizeY,
651 : const basegfx::B2DRange& rVisiblePart,
652 : sal_uInt16 nAntiAlialize)
653 : : DefaultProcessor3D(rViewInformation3D, rSdrSceneAttribute, rSdrLightingAttribute),
654 : mpBZPixelRaster(0),
655 : maInvEyeToView(),
656 : mpZBufferRasterConverter3D(0),
657 : mnAntiAlialize(nAntiAlialize),
658 0 : mpRasterPrimitive3Ds(0)
659 : {
660 : // generate ViewSizes
661 0 : const double fFullViewSizeX((rViewInformation2D.getObjectToViewTransformation() * basegfx::B2DVector(fSizeX, 0.0)).getLength());
662 0 : const double fFullViewSizeY((rViewInformation2D.getObjectToViewTransformation() * basegfx::B2DVector(0.0, fSizeY)).getLength());
663 0 : const double fViewSizeX(fFullViewSizeX * rVisiblePart.getWidth());
664 0 : const double fViewSizeY(fFullViewSizeY * rVisiblePart.getHeight());
665 :
666 : // generate RasterWidth and RasterHeight
667 0 : const sal_uInt32 nRasterWidth((sal_uInt32)basegfx::fround(fViewSizeX) + 1);
668 0 : const sal_uInt32 nRasterHeight((sal_uInt32)basegfx::fround(fViewSizeY) + 1);
669 :
670 0 : if(nRasterWidth && nRasterHeight)
671 : {
672 : // create view unit buffer
673 : mpBZPixelRaster = new basegfx::BZPixelRaster(
674 : mnAntiAlialize ? nRasterWidth * mnAntiAlialize : nRasterWidth,
675 0 : mnAntiAlialize ? nRasterHeight * mnAntiAlialize : nRasterHeight);
676 : OSL_ENSURE(mpBZPixelRaster, "ZBufferProcessor3D: Could not allocate basegfx::BZPixelRaster (!)");
677 :
678 : // create DeviceToView for Z-Buffer renderer since Z is handled
679 : // different from standard 3D transformations (Z is mirrored). Also
680 : // the transformation includes the step from unit device coordinates
681 : // to discrete units ([-1.0 .. 1.0] -> [minDiscrete .. maxDiscrete]
682 :
683 0 : basegfx::B3DHomMatrix aDeviceToView;
684 :
685 : {
686 : // step one:
687 : //
688 : // bring from [-1.0 .. 1.0] in X,Y and Z to [0.0 .. 1.0]. Also
689 : // necessary to
690 : // - flip Y due to screen orientation
691 : // - flip Z due to Z-Buffer orientation from back to front
692 :
693 0 : aDeviceToView.scale(0.5, -0.5, -0.5);
694 0 : aDeviceToView.translate(0.5, 0.5, 0.5);
695 : }
696 :
697 : {
698 : // step two:
699 : //
700 : // bring from [0.0 .. 1.0] in X,Y and Z to view cordinates
701 : //
702 : // #i102611#
703 : // also: scale Z to [1.5 .. 65534.5]. Normally, a range of [0.0 .. 65535.0]
704 : // could be used, but a 'unused' value is needed, so '0' is used what reduces
705 : // the range to [1.0 .. 65535.0]. It has also shown that small numerical errors
706 : // (smaller as basegfx::fTools::mfSmallValue, which is 0.000000001) happen.
707 : // Instead of checking those by basegfx::fTools methods which would cost
708 : // runtime, just add another 0.5 tolerance to the start and end of the Z-Buffer
709 : // range, thus resulting in [1.5 .. 65534.5]
710 0 : const double fMaxZDepth(65533.0);
711 0 : aDeviceToView.translate(-rVisiblePart.getMinX(), -rVisiblePart.getMinY(), 0.0);
712 :
713 0 : if(mnAntiAlialize)
714 0 : aDeviceToView.scale(fFullViewSizeX * mnAntiAlialize, fFullViewSizeY * mnAntiAlialize, fMaxZDepth);
715 : else
716 0 : aDeviceToView.scale(fFullViewSizeX, fFullViewSizeY, fMaxZDepth);
717 :
718 0 : aDeviceToView.translate(0.0, 0.0, 1.5);
719 : }
720 :
721 : // update local ViewInformation3D with own DeviceToView
722 : const geometry::ViewInformation3D aNewViewInformation3D(
723 0 : getViewInformation3D().getObjectTransformation(),
724 0 : getViewInformation3D().getOrientation(),
725 0 : getViewInformation3D().getProjection(),
726 : aDeviceToView,
727 0 : getViewInformation3D().getViewTime(),
728 0 : getViewInformation3D().getExtendedInformationSequence());
729 0 : updateViewInformation(aNewViewInformation3D);
730 :
731 : // prepare inverse EyeToView transformation. This can be done in constructor
732 : // since changes in object transformations when processing TransformPrimitive3Ds
733 : // do not influence this prepared partial transformation
734 0 : maInvEyeToView = getViewInformation3D().getDeviceToView() * getViewInformation3D().getProjection();
735 0 : maInvEyeToView.invert();
736 :
737 : // prepare maRasterRange
738 0 : maRasterRange.reset();
739 0 : maRasterRange.expand(basegfx::B2DPoint(0.0, 0.0));
740 0 : maRasterRange.expand(basegfx::B2DPoint(mpBZPixelRaster->getWidth(), mpBZPixelRaster->getHeight()));
741 :
742 : // create the raster converter
743 0 : mpZBufferRasterConverter3D = new ZBufferRasterConverter3D(*mpBZPixelRaster, *this);
744 : }
745 0 : }
746 :
747 0 : ZBufferProcessor3D::~ZBufferProcessor3D()
748 : {
749 0 : if(mpBZPixelRaster)
750 : {
751 0 : delete mpZBufferRasterConverter3D;
752 0 : delete mpBZPixelRaster;
753 : }
754 :
755 0 : if(mpRasterPrimitive3Ds)
756 : {
757 : OSL_FAIL("ZBufferProcessor3D: destructed, but there are unrendered transparent geometries. Use ZBufferProcessor3D::finish() to render these (!)");
758 0 : delete mpRasterPrimitive3Ds;
759 : }
760 0 : }
761 :
762 0 : void ZBufferProcessor3D::finish()
763 : {
764 0 : if(mpRasterPrimitive3Ds)
765 : {
766 : // there are transparent rasterprimitives
767 0 : const sal_uInt32 nSize(mpRasterPrimitive3Ds->size());
768 :
769 0 : if(nSize > 1)
770 : {
771 : // sort them from back to front
772 0 : std::sort(mpRasterPrimitive3Ds->begin(), mpRasterPrimitive3Ds->end());
773 : }
774 :
775 0 : for(sal_uInt32 a(0); a < nSize; a++)
776 : {
777 : // paint each one by setting the remembered data and calling
778 : // the render method
779 0 : const RasterPrimitive3D& rCandidate = (*mpRasterPrimitive3Ds)[a];
780 :
781 0 : mpGeoTexSvx = rCandidate.getGeoTexSvx();
782 0 : mpTransparenceGeoTexSvx = rCandidate.getTransparenceGeoTexSvx();
783 0 : mbModulate = rCandidate.getModulate();
784 0 : mbFilter = rCandidate.getFilter();
785 0 : mbSimpleTextureActive = rCandidate.getSimpleTextureActive();
786 :
787 0 : if(rCandidate.getIsLine())
788 : {
789 : rasterconvertB3DPolygon(
790 0 : rCandidate.getMaterial(),
791 0 : rCandidate.getPolyPolygon().getB3DPolygon(0));
792 : }
793 : else
794 : {
795 : rasterconvertB3DPolyPolygon(
796 0 : rCandidate.getMaterial(),
797 0 : rCandidate.getPolyPolygon());
798 : }
799 : }
800 :
801 : // delete them to signal the destructor that all is done and
802 : // to allow asserting there
803 0 : delete mpRasterPrimitive3Ds;
804 0 : mpRasterPrimitive3Ds = 0;
805 : }
806 0 : }
807 :
808 0 : BitmapEx ZBufferProcessor3D::getBitmapEx() const
809 : {
810 0 : if(mpBZPixelRaster)
811 : {
812 0 : return BPixelRasterToBitmapEx(*mpBZPixelRaster, mnAntiAlialize);
813 : }
814 :
815 0 : return BitmapEx();
816 : }
817 : } // end of namespace processor3d
818 : } // end of namespace drawinglayer
819 :
820 : /* vim:set shiftwidth=4 softtabstop=4 expandtab: */
|