Line data Source code
1 : /* -*- Mode: C++; tab-width: 4; indent-tabs-mode: nil; c-basic-offset: 4 -*- */
2 : /*
3 : * This file is part of the LibreOffice project.
4 : *
5 : * This Source Code Form is subject to the terms of the Mozilla Public
6 : * License, v. 2.0. If a copy of the MPL was not distributed with this
7 : * file, You can obtain one at http://mozilla.org/MPL/2.0/.
8 : *
9 : * This file incorporates work covered by the following license notice:
10 : *
11 : * Licensed to the Apache Software Foundation (ASF) under one or more
12 : * contributor license agreements. See the NOTICE file distributed
13 : * with this work for additional information regarding copyright
14 : * ownership. The ASF licenses this file to you under the Apache
15 : * License, Version 2.0 (the "License"); you may not use this file
16 : * except in compliance with the License. You may obtain a copy of
17 : * the License at http://www.apache.org/licenses/LICENSE-2.0 .
18 : */
19 :
20 :
21 : #include <stdlib.h>
22 : #include <math.h>
23 :
24 : #include "calendar_hijri.hxx"
25 :
26 : using namespace ::com::sun::star::uno;
27 : using namespace ::com::sun::star::lang;
28 :
29 : #define ERROR RuntimeException()
30 :
31 : #define GREGORIAN_CROSSOVER 2299161
32 :
33 : namespace com { namespace sun { namespace star { namespace i18n {
34 :
35 : // not used
36 : //static UErrorCode status; // status is shared in all calls to Calendar, it has to be reset for each call.
37 :
38 : // radians per degree (pi/180)
39 : const double Calendar_hijri::RadPerDeg = 0.01745329251994329577;
40 :
41 : // Synodic Period (mean time between 2 successive new moon: 29d, 12 hr, 44min, 3sec
42 : const double Calendar_hijri::SynPeriod = 29.53058868;
43 : const double Calendar_hijri::SynMonth = 365.25/29.53058868; // Solar days in a year/SynPeriod
44 :
45 : // Julian day on Jan 1, 1900
46 : const double Calendar_hijri::jd1900 = 2415020.75933;
47 :
48 : // Reference point: March 26, 2001 == 1422 Hijri == 1252 Synodial month from 1900
49 : const sal_Int32 Calendar_hijri::SynRef = 1252;
50 : const sal_Int32 Calendar_hijri::GregRef = 1422;
51 :
52 : // Local time specific to Saudi Arabia
53 : const double Calendar_hijri::SA_TimeZone = 3.0;
54 :
55 : const double Calendar_hijri::EveningPeriod = 6.0;
56 :
57 : const sal_Int32 Calendar_hijri::LeapYear[] = {
58 : 2, 5, 7, 10, 13, 16, 18, 21, 24, 26, 29
59 : };
60 :
61 0 : Calendar_hijri::Calendar_hijri()
62 : {
63 0 : cCalendar = "com.sun.star.i18n.Calendar_hijri";
64 0 : }
65 :
66 : #define FIELDS ((1 << CalendarFieldIndex::ERA) | (1 << CalendarFieldIndex::YEAR) | (1 << CalendarFieldIndex::MONTH) | (1 << CalendarFieldIndex::DAY_OF_MONTH))
67 :
68 : // map field value from hijri calendar to gregorian calendar
69 0 : void Calendar_hijri::mapToGregorian() throw(RuntimeException)
70 : {
71 0 : if (fieldSet & FIELDS) {
72 0 : sal_Int32 day = (sal_Int32)fieldSetValue[CalendarFieldIndex::DAY_OF_MONTH];
73 0 : sal_Int32 month = (sal_Int32)fieldSetValue[CalendarFieldIndex::MONTH] + 1;
74 0 : sal_Int32 year = (sal_Int32)fieldSetValue[CalendarFieldIndex::YEAR];
75 0 : if (fieldSetValue[CalendarFieldIndex::ERA] == 0)
76 0 : year *= -1;
77 :
78 0 : ToGregorian(&day, &month, &year);
79 :
80 0 : fieldSetValue[CalendarFieldIndex::ERA] = year <= 0 ? 0 : 1;
81 0 : fieldSetValue[CalendarFieldIndex::MONTH] = sal::static_int_cast<sal_Int16>(month - 1);
82 0 : fieldSetValue[CalendarFieldIndex::DAY_OF_MONTH] = (sal_Int16) day;
83 0 : fieldSetValue[CalendarFieldIndex::YEAR] = (sal_Int16) abs(year);
84 0 : fieldSet |= FIELDS;
85 : }
86 0 : }
87 :
88 : // map field value from gregorian calendar to hijri calendar
89 0 : void Calendar_hijri::mapFromGregorian() throw(RuntimeException)
90 : {
91 : sal_Int32 month, day, year;
92 :
93 0 : day = (sal_Int32)fieldValue[CalendarFieldIndex::DAY_OF_MONTH];
94 0 : month = (sal_Int32)fieldValue[CalendarFieldIndex::MONTH] + 1;
95 0 : year = (sal_Int32)fieldValue[CalendarFieldIndex::YEAR];
96 0 : if (fieldValue[CalendarFieldIndex::ERA] == 0)
97 0 : year *= -1;
98 :
99 : // Get Hijri date
100 0 : getHijri(&day, &month, &year);
101 :
102 0 : fieldValue[CalendarFieldIndex::DAY_OF_MONTH] = (sal_Int16)day;
103 0 : fieldValue[CalendarFieldIndex::MONTH] = sal::static_int_cast<sal_Int16>(month - 1);
104 0 : fieldValue[CalendarFieldIndex::YEAR] = (sal_Int16) abs(year);
105 0 : fieldValue[CalendarFieldIndex::ERA] = (sal_Int16) year < 1 ? 0 : 1;
106 0 : }
107 :
108 : //
109 : // This function returns the Julian date/time of the Nth new moon since
110 : // January 1900. The synodic month is passed as parameter.
111 : //
112 : // Adapted from "Astronomical Formulae for Calculators" by
113 : // Jean Meeus, Third Edition, Willmann-Bell, 1985.
114 : //
115 : double
116 0 : Calendar_hijri::NewMoon(sal_Int32 n)
117 : {
118 : double jd, t, t2, t3, k, ma, sa, tf, xtra;
119 0 : k = n;
120 0 : t = k/1236.85; // Time in Julian centuries from 1900 January 0.5
121 0 : t2 = t * t;
122 0 : t3 = t2 * t;
123 :
124 : // Mean time of phase
125 : jd = jd1900
126 : + SynPeriod * k
127 : - 0.0001178 * t2
128 : - 0.000000155 * t3
129 0 : + 0.00033 * sin(RadPerDeg * (166.56 + 132.87 * t - 0.009173 * t2));
130 :
131 : // Sun's mean anomaly in radian
132 : sa = RadPerDeg * (359.2242
133 : + 29.10535608 * k
134 : - 0.0000333 * t2
135 0 : - 0.00000347 * t3);
136 :
137 : // Moon's mean anomaly
138 : ma = RadPerDeg * (306.0253
139 : + 385.81691806 * k
140 : + 0.0107306 * t2
141 0 : + 0.00001236 * t3);
142 :
143 : // Moon's argument of latitude
144 : tf = RadPerDeg * 2.0 * (21.2964
145 : + 390.67050646 * k
146 : - 0.0016528 * t2
147 0 : - 0.00000239 * t3);
148 :
149 : // should reduce to interval between 0 to 1.0 before calculating further
150 : // Corrections for New Moon
151 0 : xtra = (0.1734 - 0.000393 * t) * sin(sa)
152 0 : + 0.0021 * sin(sa * 2)
153 0 : - 0.4068 * sin(ma)
154 0 : + 0.0161 * sin(2 * ma)
155 0 : - 0.0004 * sin(3 * ma)
156 0 : + 0.0104 * sin(tf)
157 0 : - 0.0051 * sin(sa + ma)
158 0 : - 0.0074 * sin(sa - ma)
159 0 : + 0.0004 * sin(tf + sa)
160 0 : - 0.0004 * sin(tf - sa)
161 0 : - 0.0006 * sin(tf + ma)
162 0 : + 0.0010 * sin(tf - ma)
163 0 : + 0.0005 * sin(sa + 2 * ma);
164 :
165 : // convert from Ephemeris Time (ET) to (approximate) Universal Time (UT)
166 0 : jd += xtra - (0.41 + 1.2053 * t + 0.4992 * t2)/1440;
167 :
168 0 : return (jd);
169 : }
170 :
171 : // Get Hijri Date
172 : void
173 0 : Calendar_hijri::getHijri(sal_Int32 *day, sal_Int32 *month, sal_Int32 *year)
174 : {
175 : double prevday;
176 : // double dayfraction;
177 : sal_Int32 syndiff;
178 : sal_Int32 newsyn;
179 : double newjd;
180 : double julday;
181 : sal_Int32 synmonth;
182 :
183 : // Get Julian Day from Gregorian
184 0 : julday = getJulianDay(*day, *month, *year);
185 :
186 : // obtain approx. of how many Synodic months since the beginning of the year 1900
187 0 : synmonth = (sal_Int32)(0.5 + (julday - jd1900)/SynPeriod);
188 :
189 0 : newsyn = synmonth;
190 0 : prevday = (sal_Int32)julday - 0.5;
191 :
192 0 : do {
193 0 : newjd = NewMoon(newsyn);
194 :
195 : // Decrement syndonic months
196 0 : newsyn--;
197 : } while (newjd > prevday);
198 0 : newsyn++;
199 :
200 : // difference from reference point
201 0 : syndiff = newsyn - SynRef;
202 :
203 : // Round up the day
204 0 : *day = (sal_Int32)(((sal_Int32)julday) - newjd + 0.5);
205 0 : *month = (syndiff % 12) + 1;
206 :
207 : // currently not supported
208 : //dayOfYear = (sal_Int32)(month * SynPeriod + day);
209 0 : *year = GregRef + (sal_Int32)(syndiff / 12);
210 :
211 : // If month negative, consider it previous year
212 0 : if (syndiff != 0 && *month <= 0) {
213 0 : *month += 12;
214 0 : (*year)--;
215 : }
216 :
217 : // If Before Hijri subtract 1
218 0 : if (*year <= 0) (*year)--;
219 0 : }
220 :
221 : void
222 0 : Calendar_hijri::ToGregorian(sal_Int32 *day, sal_Int32 *month, sal_Int32 *year)
223 : {
224 : sal_Int32 nmonth;
225 : // double dayfraction;
226 : double jday;
227 : // sal_Int32 dayint;
228 :
229 0 : if ( *year < 0 ) (*year)++;
230 :
231 : // Number of month from reference point
232 0 : nmonth = *month + *year * 12 - (GregRef * 12 + 1);
233 :
234 : // Add Synodic Reference point
235 0 : nmonth += SynRef;
236 :
237 : // Get Julian days add time too
238 0 : jday = NewMoon(nmonth) + *day;
239 :
240 : // Round-up
241 0 : jday = (double)((sal_Int32)(jday + 0.5));
242 :
243 : // Use algorithm from "Numerical Recipes in C"
244 0 : getGregorianDay((sal_Int32)jday, day, month, year);
245 :
246 : // Julian -> Gregorian only works for non-negative year
247 0 : if ( *year <= 0 ) {
248 0 : *day = -1;
249 0 : *month = -1;
250 0 : *year = -1;
251 : }
252 0 : }
253 :
254 : /* this algorithm is taken from "Numerical Recipes in C", 2nd ed, pp 14-15. */
255 : /* this algorithm only valid for non-negative gregorian year */
256 : void
257 0 : Calendar_hijri::getGregorianDay(sal_Int32 lJulianDay, sal_Int32 *pnDay, sal_Int32 *pnMonth, sal_Int32 *pnYear)
258 : {
259 : /* working variables */
260 : long lFactorA, lFactorB, lFactorC, lFactorD, lFactorE;
261 :
262 : /* test whether to adjust for the Gregorian calendar crossover */
263 0 : if (lJulianDay >= GREGORIAN_CROSSOVER) {
264 : /* calculate a small adjustment */
265 0 : long lAdjust = (long) (((float) (lJulianDay - 1867216) - 0.25) / 36524.25);
266 :
267 0 : lFactorA = lJulianDay + 1 + lAdjust - ((long) (0.25 * lAdjust));
268 :
269 : } else {
270 : /* no adjustment needed */
271 0 : lFactorA = lJulianDay;
272 : }
273 :
274 0 : lFactorB = lFactorA + 1524;
275 0 : lFactorC = (long) (6680.0 + ((float) (lFactorB - 2439870) - 122.1) / 365.25);
276 0 : lFactorD = (long) (365 * lFactorC + (0.25 * lFactorC));
277 0 : lFactorE = (long) ((lFactorB - lFactorD) / 30.6001);
278 :
279 : /* now, pull out the day number */
280 0 : *pnDay = lFactorB - lFactorD - (long) (30.6001 * lFactorE);
281 :
282 : /* ...and the month, adjusting it if necessary */
283 0 : *pnMonth = lFactorE - 1;
284 0 : if (*pnMonth > 12)
285 0 : (*pnMonth) -= 12;
286 :
287 : /* ...and similarly for the year */
288 0 : *pnYear = lFactorC - 4715;
289 0 : if (*pnMonth > 2)
290 0 : (*pnYear)--;
291 :
292 : // Negative year adjustments
293 0 : if (*pnYear <= 0)
294 0 : (*pnYear)--;
295 0 : }
296 :
297 : double
298 0 : Calendar_hijri::getJulianDay(sal_Int32 day, sal_Int32 month, sal_Int32 year)
299 : {
300 : double jy, jm;
301 :
302 0 : if( year == 0 ) {
303 0 : return -1.0;
304 : }
305 :
306 0 : if( year == 1582 && month == 10 && day > 4 && day < 15 ) {
307 0 : return -1.0;
308 : }
309 :
310 0 : if( month > 2 ) {
311 0 : jy = year;
312 0 : jm = month + 1;
313 : } else {
314 0 : jy = year - 1;
315 0 : jm = month + 13;
316 : }
317 :
318 0 : sal_Int32 intgr = (sal_Int32)((sal_Int32)(365.25 * jy) + (sal_Int32)(30.6001 * jm) + day + 1720995 );
319 :
320 : //check for switch to Gregorian calendar
321 0 : double gregcal = 15 + 31 * ( 10 + 12 * 1582 );
322 :
323 0 : if( day + 31 * (month + 12 * year) >= gregcal ) {
324 : double ja;
325 0 : ja = (sal_Int32)(0.01 * jy);
326 0 : intgr += (sal_Int32)(2 - ja + (sal_Int32)(0.25 * ja));
327 : }
328 :
329 0 : return (double) intgr;
330 : }
331 :
332 : }}}}
333 :
334 : /* vim:set shiftwidth=4 softtabstop=4 expandtab: */
|