Line data Source code
1 : /* -*- Mode: C++; tab-width: 4; indent-tabs-mode: nil; c-basic-offset: 4 -*- */
2 : /*
3 : * This file is part of the LibreOffice project.
4 : *
5 : * This Source Code Form is subject to the terms of the Mozilla Public
6 : * License, v. 2.0. If a copy of the MPL was not distributed with this
7 : * file, You can obtain one at http://mozilla.org/MPL/2.0/.
8 : *
9 : * This file incorporates work covered by the following license notice:
10 : *
11 : * Licensed to the Apache Software Foundation (ASF) under one or more
12 : * contributor license agreements. See the NOTICE file distributed
13 : * with this work for additional information regarding copyright
14 : * ownership. The ASF licenses this file to you under the Apache
15 : * License, Version 2.0 (the "License"); you may not use this file
16 : * except in compliance with the License. You may obtain a copy of
17 : * the License at http://www.apache.org/licenses/LICENSE-2.0 .
18 : */
19 :
20 :
21 : #include <unistd.h>
22 : #include <cstdio>
23 : #include <cstring>
24 :
25 : #include <bmp.hxx>
26 :
27 : #include <X11_selection.hxx>
28 : #include <unx/x11/xlimits.hxx>
29 : #include <sal/macros.h>
30 :
31 : using namespace x11;
32 : using namespace com::sun::star::uno;
33 : using namespace com::sun::star::script;
34 : using namespace com::sun::star::awt;
35 :
36 : /*
37 : * helper functions
38 : */
39 :
40 0 : inline void writeLE( sal_uInt16 nNumber, sal_uInt8* pBuffer )
41 : {
42 0 : pBuffer[ 0 ] = (nNumber & 0xff);
43 0 : pBuffer[ 1 ] = ((nNumber>>8)&0xff);
44 0 : }
45 :
46 0 : inline void writeLE( sal_uInt32 nNumber, sal_uInt8* pBuffer )
47 : {
48 0 : pBuffer[ 0 ] = (nNumber & 0xff);
49 0 : pBuffer[ 1 ] = ((nNumber>>8)&0xff);
50 0 : pBuffer[ 2 ] = ((nNumber>>16)&0xff);
51 0 : pBuffer[ 3 ] = ((nNumber>>24)&0xff);
52 0 : }
53 :
54 0 : inline sal_uInt16 readLE16( const sal_uInt8* pBuffer )
55 : {
56 0 : return (((sal_uInt16)pBuffer[1]) << 8 ) | pBuffer[0];
57 : }
58 :
59 0 : inline sal_uInt16 readLE32( const sal_uInt8* pBuffer )
60 : {
61 : return
62 : (((sal_uInt32)pBuffer[3]) << 24 ) |
63 : (((sal_uInt32)pBuffer[2]) << 16 ) |
64 0 : (((sal_uInt32)pBuffer[1]) << 8 ) |
65 0 : pBuffer[0];
66 : }
67 :
68 :
69 : /*
70 : * BmpTransporter
71 : */
72 :
73 0 : BmpTransporter::BmpTransporter( const Sequence<sal_Int8>& rBmp ) :
74 0 : m_aBM( rBmp )
75 : {
76 0 : const sal_uInt8* pData = (const sal_uInt8*)rBmp.getConstArray();
77 :
78 0 : if( pData[0] == 'B' || pData[1] == 'M' )
79 : {
80 0 : pData = pData+14;
81 0 : m_aSize.Width = readLE32( pData+4 );
82 0 : m_aSize.Height = readLE32( pData+8 );
83 : }
84 : else
85 0 : m_aSize.Width = m_aSize.Height = 0;
86 0 : }
87 :
88 0 : BmpTransporter::~BmpTransporter()
89 : {
90 0 : }
91 :
92 0 : com::sun::star::awt::Size SAL_CALL BmpTransporter::getSize() throw()
93 : {
94 0 : return m_aSize;
95 : }
96 :
97 0 : Sequence< sal_Int8 > SAL_CALL BmpTransporter::getDIB() throw()
98 : {
99 0 : return m_aBM;
100 : }
101 :
102 0 : Sequence< sal_Int8 > SAL_CALL BmpTransporter::getMaskDIB() throw()
103 : {
104 0 : return Sequence< sal_Int8 >();
105 : }
106 :
107 : /*
108 : * scanline helpers
109 : */
110 :
111 0 : inline void X11_writeScanlinePixel( unsigned long nColor, sal_uInt8* pScanline, int depth, int x )
112 : {
113 0 : switch( depth )
114 : {
115 : case 1:
116 0 : pScanline[ x/8 ] &= ~(1 << (x&7));
117 0 : pScanline[ x/8 ] |= ((nColor & 1) << (x&7));
118 0 : break;
119 : case 4:
120 0 : pScanline[ x/2 ] &= ((x&1) ? 0x0f : 0xf0);
121 0 : pScanline[ x/2 ] |= ((x&1) ? (nColor & 0x0f) : ((nColor & 0x0f) << 4));
122 0 : break;
123 : default:
124 : case 8:
125 0 : pScanline[ x ] = (nColor & 0xff);
126 0 : break;
127 : }
128 0 : }
129 :
130 0 : static sal_uInt8* X11_getPaletteBmpFromImage(
131 : Display* pDisplay,
132 : XImage* pImage,
133 : Colormap aColormap,
134 : sal_Int32& rOutSize
135 : )
136 : {
137 0 : sal_uInt32 nColors = 0;
138 :
139 0 : rOutSize = 0;
140 :
141 0 : sal_uInt8* pBuffer = 0;
142 : sal_uInt32 nHeaderSize, nScanlineSize;
143 : sal_uInt16 nBitCount;
144 : // determine header and scanline size
145 0 : switch( pImage->depth )
146 : {
147 : case 1:
148 0 : nHeaderSize = 64;
149 0 : nScanlineSize = (pImage->width+31)/32;
150 0 : nBitCount = 1;
151 0 : break;
152 : case 4:
153 0 : nHeaderSize = 72;
154 0 : nScanlineSize = (pImage->width+1)/2;
155 0 : nBitCount = 4;
156 0 : break;
157 : default:
158 : case 8:
159 0 : nHeaderSize = 1084;
160 0 : nScanlineSize = pImage->width;
161 0 : nBitCount = 8;
162 0 : break;
163 : }
164 : // adjust scan lines to begin on %4 boundaries
165 0 : if( nScanlineSize & 3 )
166 : {
167 0 : nScanlineSize &= 0xfffffffc;
168 0 : nScanlineSize += 4;
169 : }
170 :
171 : // allocate buffer to hold header and scanlines, initialize to zero
172 0 : rOutSize = nHeaderSize + nScanlineSize*pImage->height;
173 0 : pBuffer = (sal_uInt8*)rtl_allocateZeroMemory( rOutSize );
174 0 : for( int y = 0; y < pImage->height; y++ )
175 : {
176 0 : sal_uInt8* pScanline = pBuffer + nHeaderSize + (pImage->height-1-y)*nScanlineSize;
177 0 : for( int x = 0; x < pImage->width; x++ )
178 : {
179 0 : unsigned long nPixel = XGetPixel( pImage, x, y );
180 0 : if( nPixel >= nColors )
181 0 : nColors = nPixel+1;
182 0 : X11_writeScanlinePixel( nPixel, pScanline, pImage->depth, x );
183 : }
184 : }
185 :
186 : // fill in header fields
187 0 : pBuffer[ 0 ] = 'B';
188 0 : pBuffer[ 1 ] = 'M';
189 :
190 0 : writeLE( nHeaderSize, pBuffer+10 );
191 0 : writeLE( (sal_uInt32)40, pBuffer+14 );
192 0 : writeLE( (sal_uInt32)pImage->width, pBuffer+18 );
193 0 : writeLE( (sal_uInt32)pImage->height, pBuffer+22 );
194 0 : writeLE( (sal_uInt16)1, pBuffer+26 );
195 0 : writeLE( nBitCount, pBuffer+28 );
196 0 : writeLE( (sal_uInt32)(DisplayWidth(pDisplay,DefaultScreen(pDisplay))*1000/DisplayWidthMM(pDisplay,DefaultScreen(pDisplay))), pBuffer+38);
197 0 : writeLE( (sal_uInt32)(DisplayHeight(pDisplay,DefaultScreen(pDisplay))*1000/DisplayHeightMM(pDisplay,DefaultScreen(pDisplay))), pBuffer+42);
198 0 : writeLE( nColors, pBuffer+46 );
199 0 : writeLE( nColors, pBuffer+50 );
200 :
201 : XColor aColors[256];
202 0 : if( nColors > (1U << nBitCount) ) // paranoia
203 0 : nColors = (1U << nBitCount);
204 0 : for( unsigned long nPixel = 0; nPixel < nColors; nPixel++ )
205 : {
206 0 : aColors[nPixel].flags = DoRed | DoGreen | DoBlue;
207 0 : aColors[nPixel].pixel = nPixel;
208 : }
209 0 : XQueryColors( pDisplay, aColormap, aColors, nColors );
210 0 : for( sal_uInt32 i = 0; i < nColors; i++ )
211 : {
212 0 : pBuffer[ 54 + i*4 ] = (sal_uInt8)(aColors[i].blue >> 8);
213 0 : pBuffer[ 55 + i*4 ] = (sal_uInt8)(aColors[i].green >> 8);
214 0 : pBuffer[ 56 + i*4 ] = (sal_uInt8)(aColors[i].red >> 8);
215 : }
216 :
217 : // done
218 :
219 0 : return pBuffer;
220 : }
221 :
222 0 : inline unsigned long doRightShift( unsigned long nValue, int nShift )
223 : {
224 0 : return (nShift > 0) ? (nValue >> nShift) : (nValue << (-nShift));
225 : }
226 :
227 0 : inline unsigned long doLeftShift( unsigned long nValue, int nShift )
228 : {
229 0 : return (nShift > 0) ? (nValue << nShift) : (nValue >> (-nShift));
230 : }
231 :
232 0 : static void getShift( unsigned long nMask, int& rShift, int& rSigBits, int& rShift2 )
233 : {
234 0 : unsigned long nUseMask = nMask;
235 0 : rShift = 0;
236 0 : while( nMask & 0xffffff00 )
237 : {
238 0 : rShift++;
239 0 : nMask >>= 1;
240 : }
241 0 : if( rShift == 0 )
242 0 : while( ! (nMask & 0x00000080) )
243 : {
244 0 : rShift--;
245 0 : nMask <<= 1;
246 : }
247 :
248 0 : int nRotate = sizeof(unsigned long)*8 - rShift;
249 0 : rSigBits = 0;
250 0 : nMask = doRightShift( nUseMask, rShift) ;
251 0 : while( nRotate-- )
252 : {
253 0 : if( nMask & 1 )
254 0 : rSigBits++;
255 0 : nMask >>= 1;
256 : }
257 :
258 0 : rShift2 = 0;
259 0 : if( rSigBits < 8 )
260 0 : rShift2 = 8-rSigBits;
261 0 : }
262 :
263 0 : static sal_uInt8* X11_getTCBmpFromImage(
264 : Display* pDisplay,
265 : XImage* pImage,
266 : sal_Int32& rOutSize,
267 : int nScreenNo
268 : )
269 : {
270 : // get masks from visual info (guesswork)
271 : XVisualInfo aVInfo;
272 0 : if( ! XMatchVisualInfo( pDisplay, nScreenNo, pImage->depth, TrueColor, &aVInfo ) )
273 0 : return NULL;
274 :
275 0 : rOutSize = 0;
276 :
277 0 : sal_uInt8* pBuffer = 0;
278 0 : sal_uInt32 nHeaderSize = 60;
279 0 : sal_uInt32 nScanlineSize = pImage->width*3;
280 :
281 : // adjust scan lines to begin on %4 boundaries
282 0 : if( nScanlineSize & 3 )
283 : {
284 0 : nScanlineSize &= 0xfffffffc;
285 0 : nScanlineSize += 4;
286 : }
287 0 : int nRedShift, nRedSig, nRedShift2 = 0;
288 0 : getShift( aVInfo.red_mask, nRedShift, nRedSig, nRedShift2 );
289 0 : int nGreenShift, nGreenSig, nGreenShift2 = 0;
290 0 : getShift( aVInfo.green_mask, nGreenShift, nGreenSig, nGreenShift2 );
291 0 : int nBlueShift, nBlueSig, nBlueShift2 = 0;
292 0 : getShift( aVInfo.blue_mask, nBlueShift, nBlueSig, nBlueShift2 );
293 :
294 : // allocate buffer to hold header and scanlines, initialize to zero
295 0 : rOutSize = nHeaderSize + nScanlineSize*pImage->height;
296 0 : pBuffer = (sal_uInt8*)rtl_allocateZeroMemory( rOutSize );
297 0 : for( int y = 0; y < pImage->height; y++ )
298 : {
299 0 : sal_uInt8* pScanline = pBuffer + nHeaderSize + (pImage->height-1-y)*nScanlineSize;
300 0 : for( int x = 0; x < pImage->width; x++ )
301 : {
302 0 : unsigned long nPixel = XGetPixel( pImage, x, y );
303 :
304 0 : sal_uInt8 nValue = (sal_uInt8)doRightShift( nPixel&aVInfo.blue_mask, nBlueShift);
305 0 : if( nBlueShift2 )
306 0 : nValue |= (nValue >> nBlueShift2 );
307 0 : *pScanline++ = nValue;
308 :
309 0 : nValue = (sal_uInt8)doRightShift( nPixel&aVInfo.green_mask, nGreenShift);
310 0 : if( nGreenShift2 )
311 0 : nValue |= (nValue >> nGreenShift2 );
312 0 : *pScanline++ = nValue;
313 :
314 0 : nValue = (sal_uInt8)doRightShift( nPixel&aVInfo.red_mask, nRedShift);
315 0 : if( nRedShift2 )
316 0 : nValue |= (nValue >> nRedShift2 );
317 0 : *pScanline++ = nValue;
318 : }
319 : }
320 :
321 : // fill in header fields
322 0 : pBuffer[ 0 ] = 'B';
323 0 : pBuffer[ 1 ] = 'M';
324 :
325 0 : writeLE( nHeaderSize, pBuffer+10 );
326 0 : writeLE( (sal_uInt32)40, pBuffer+14 );
327 0 : writeLE( (sal_uInt32)pImage->width, pBuffer+18 );
328 0 : writeLE( (sal_uInt32)pImage->height, pBuffer+22 );
329 0 : writeLE( (sal_uInt16)1, pBuffer+26 );
330 0 : writeLE( (sal_uInt16)24, pBuffer+28 );
331 0 : writeLE( (sal_uInt32)(DisplayWidth(pDisplay,DefaultScreen(pDisplay))*1000/DisplayWidthMM(pDisplay,DefaultScreen(pDisplay))), pBuffer+38);
332 0 : writeLE( (sal_uInt32)(DisplayHeight(pDisplay,DefaultScreen(pDisplay))*1000/DisplayHeightMM(pDisplay,DefaultScreen(pDisplay))), pBuffer+42);
333 :
334 : // done
335 :
336 0 : return pBuffer;
337 : }
338 :
339 0 : sal_uInt8* x11::X11_getBmpFromPixmap(
340 : Display* pDisplay,
341 : Drawable aDrawable,
342 : Colormap aColormap,
343 : sal_Int32& rOutSize
344 : )
345 : {
346 : // get geometry of drawable
347 : XLIB_Window aRoot;
348 : int x,y;
349 : unsigned int w, h, bw, d;
350 0 : XGetGeometry( pDisplay, aDrawable, &aRoot, &x, &y, &w, &h, &bw, &d );
351 :
352 : // find which screen we are on
353 0 : int nScreenNo = ScreenCount( pDisplay );
354 0 : while( nScreenNo-- )
355 : {
356 0 : if( RootWindow( pDisplay, nScreenNo ) == aRoot )
357 0 : break;
358 : }
359 0 : if( nScreenNo < 0 )
360 0 : return NULL;
361 :
362 0 : if( aColormap == None )
363 0 : aColormap = DefaultColormap( pDisplay, nScreenNo );
364 :
365 : // get the image
366 0 : XImage* pImage = XGetImage( pDisplay, aDrawable, 0, 0, w, h, AllPlanes, ZPixmap );
367 0 : if( ! pImage )
368 0 : return NULL;
369 :
370 : sal_uInt8* pBmp = d <= 8 ?
371 : X11_getPaletteBmpFromImage( pDisplay, pImage, aColormap, rOutSize ) :
372 0 : X11_getTCBmpFromImage( pDisplay, pImage, rOutSize, nScreenNo );
373 0 : XDestroyImage( pImage );
374 :
375 0 : return pBmp;
376 : }
377 :
378 0 : void x11::X11_freeBmp( sal_uInt8* pBmp )
379 : {
380 0 : rtl_freeMemory( pBmp );
381 0 : }
382 :
383 : /*
384 : * PixmapHolder
385 : */
386 :
387 0 : PixmapHolder::PixmapHolder( Display* pDisplay ) :
388 : m_pDisplay( pDisplay ),
389 : m_aColormap( None ),
390 : m_aPixmap( None ),
391 0 : m_aBitmap( None )
392 : {
393 : /* try to get a 24 bit true color visual, if that fails,
394 : * revert to default visual
395 : */
396 0 : if( ! XMatchVisualInfo( m_pDisplay, DefaultScreen( m_pDisplay ), 24, TrueColor, &m_aInfo ) )
397 : {
398 : #if OSL_DEBUG_LEVEL > 1
399 : fprintf( stderr, "PixmapHolder reverting to default visual\n" );
400 : #endif
401 0 : Visual* pVisual = DefaultVisual( m_pDisplay, DefaultScreen( m_pDisplay ) );
402 0 : m_aInfo.screen = DefaultScreen( m_pDisplay );
403 0 : m_aInfo.visual = pVisual;
404 0 : m_aInfo.visualid = pVisual->visualid;
405 0 : m_aInfo.c_class = pVisual->c_class;
406 0 : m_aInfo.red_mask = pVisual->red_mask;
407 0 : m_aInfo.green_mask = pVisual->green_mask;
408 0 : m_aInfo.blue_mask = pVisual->blue_mask;
409 0 : m_aInfo.depth = DefaultDepth( m_pDisplay, m_aInfo.screen );
410 : }
411 0 : m_aColormap = DefaultColormap( m_pDisplay, m_aInfo.screen );
412 : #if OSL_DEBUG_LEVEL > 1
413 : static const char* pClasses[] =
414 : { "StaticGray", "GrayScale", "StaticColor", "PseudoColor", "TrueColor", "DirectColor" };
415 : fprintf( stderr, "PixmapHolder visual: id = 0x%lx, class = %s (%d), depth=%d; color map = 0x%lx\n",
416 : m_aInfo.visualid,
417 : (m_aInfo.c_class >= 0 && unsigned(m_aInfo.c_class) < SAL_N_ELEMENTS(pClasses)) ? pClasses[m_aInfo.c_class] : "<unknown>",
418 : m_aInfo.c_class,
419 : m_aInfo.depth,
420 : m_aColormap );
421 : #endif
422 0 : if( m_aInfo.c_class == TrueColor )
423 : {
424 : int nRedSig, nGreenSig, nBlueSig;
425 0 : m_nRedShift = m_nRedShift2 = 0;
426 0 : getShift( m_aInfo.red_mask, m_nRedShift, nRedSig, m_nRedShift2 );
427 0 : m_nGreenShift = m_nGreenShift2 = 0;
428 0 : getShift( m_aInfo.green_mask, m_nGreenShift, nGreenSig, m_nGreenShift2 );
429 0 : m_nBlueShift = m_nBlueShift2 = 0;
430 0 : getShift( m_aInfo.blue_mask, m_nBlueShift, nBlueSig, m_nBlueShift2 );
431 :
432 0 : m_nBlueShift2Mask = m_nBlueShift2 ? ~((unsigned long)((1<<m_nBlueShift2)-1)) : ~0L;
433 0 : m_nGreenShift2Mask = m_nGreenShift2 ? ~((unsigned long)((1<<m_nGreenShift2)-1)) : ~0L;
434 0 : m_nRedShift2Mask = m_nRedShift2 ? ~((unsigned long)((1<<m_nRedShift2)-1)) : ~0L;
435 : }
436 0 : }
437 :
438 0 : PixmapHolder::~PixmapHolder()
439 : {
440 0 : if( m_aPixmap != None )
441 0 : XFreePixmap( m_pDisplay, m_aPixmap );
442 0 : if( m_aBitmap != None )
443 0 : XFreePixmap( m_pDisplay, m_aBitmap );
444 0 : }
445 :
446 0 : unsigned long PixmapHolder::getTCPixel( sal_uInt8 r, sal_uInt8 g, sal_uInt8 b ) const
447 : {
448 0 : unsigned long nPixel = 0;
449 0 : unsigned long nValue = (unsigned long)b;
450 0 : nValue &= m_nBlueShift2Mask;
451 0 : nPixel |= doLeftShift( nValue, m_nBlueShift );
452 :
453 0 : nValue = (unsigned long)g;
454 0 : nValue &= m_nGreenShift2Mask;
455 0 : nPixel |= doLeftShift( nValue, m_nGreenShift );
456 :
457 0 : nValue = (unsigned long)r;
458 0 : nValue &= m_nRedShift2Mask;
459 0 : nPixel |= doLeftShift( nValue, m_nRedShift );
460 :
461 0 : return nPixel;
462 : }
463 :
464 0 : void PixmapHolder::setBitmapDataPalette( const sal_uInt8* pData, XImage* pImage )
465 : {
466 : // setup palette
467 : XColor aPalette[256];
468 :
469 0 : sal_uInt32 nColors = readLE32( pData+32 );
470 0 : sal_uInt32 nWidth = readLE32( pData+4 );
471 0 : sal_uInt32 nHeight = readLE32( pData+8 );
472 0 : sal_uInt16 nDepth = readLE16( pData+14 );
473 :
474 0 : for( sal_uInt16 i = 0 ; i < nColors; i++ )
475 : {
476 0 : if( m_aInfo.c_class != TrueColor )
477 : {
478 0 : aPalette[i].red = ((unsigned short)pData[42 + i*4]) << 8 | ((unsigned short)pData[42 + i*4]);
479 0 : aPalette[i].green = ((unsigned short)pData[41 + i*4]) << 8 | ((unsigned short)pData[41 + i*4]);
480 0 : aPalette[i].blue = ((unsigned short)pData[40 + i*4]) << 8 | ((unsigned short)pData[40 + i*4]);
481 0 : XAllocColor( m_pDisplay, m_aColormap, aPalette+i );
482 : }
483 : else
484 0 : aPalette[i].pixel = getTCPixel( pData[42+i*4], pData[41+i*4], pData[40+i*4] );
485 : }
486 0 : const sal_uInt8* pBMData = pData + readLE32( pData ) + 4*nColors;
487 :
488 0 : sal_uInt32 nScanlineSize = 0;
489 0 : switch( nDepth )
490 : {
491 : case 1:
492 0 : nScanlineSize = (nWidth+31)/32;
493 0 : break;
494 : case 4:
495 0 : nScanlineSize = (nWidth+1)/2;
496 0 : break;
497 : case 8:
498 0 : nScanlineSize = nWidth;
499 0 : break;
500 : }
501 : // adjust scan lines to begin on %4 boundaries
502 0 : if( nScanlineSize & 3 )
503 : {
504 0 : nScanlineSize &= 0xfffffffc;
505 0 : nScanlineSize += 4;
506 : }
507 :
508 : // allocate buffer to hold header and scanlines, initialize to zero
509 0 : for( unsigned int y = 0; y < nHeight; y++ )
510 : {
511 0 : const sal_uInt8* pScanline = pBMData + (nHeight-1-y)*nScanlineSize;
512 0 : for( unsigned int x = 0; x < nWidth; x++ )
513 : {
514 0 : int nCol = 0;
515 0 : switch( nDepth )
516 : {
517 0 : case 1: nCol = (pScanline[ x/8 ] & (0x80 >> (x&7))) != 0 ? 0 : 1; break;
518 : case 4:
519 0 : if( x & 1 )
520 0 : nCol = (int)(pScanline[ x/2 ] >> 4);
521 : else
522 0 : nCol = (int)(pScanline[ x/2 ] & 0x0f);
523 0 : break;
524 0 : case 8: nCol = (int)pScanline[x];
525 : }
526 0 : XPutPixel( pImage, x, y, aPalette[nCol].pixel );
527 : }
528 : }
529 0 : }
530 :
531 0 : void PixmapHolder::setBitmapDataTCDither( const sal_uInt8* pData, XImage* pImage )
532 : {
533 : XColor aPalette[216];
534 :
535 0 : int nNonAllocs = 0;
536 :
537 0 : for( int r = 0; r < 6; r++ )
538 : {
539 0 : for( int g = 0; g < 6; g++ )
540 : {
541 0 : for( int b = 0; b < 6; b++ )
542 : {
543 0 : int i = r*36+g*6+b;
544 0 : aPalette[i].red = r == 5 ? 0xffff : r*10922;
545 0 : aPalette[i].green = g == 5 ? 0xffff : g*10922;
546 0 : aPalette[i].blue = b == 5 ? 0xffff : b*10922;
547 0 : aPalette[i].pixel = 0;
548 0 : if( ! XAllocColor( m_pDisplay, m_aColormap, aPalette+i ) )
549 0 : nNonAllocs++;
550 : }
551 : }
552 : }
553 :
554 0 : if( nNonAllocs )
555 : {
556 : XColor aRealPalette[256];
557 0 : int nColors = 1 << m_aInfo.depth;
558 : int i;
559 0 : for( i = 0; i < nColors; i++ )
560 0 : aRealPalette[i].pixel = (unsigned long)i;
561 0 : XQueryColors( m_pDisplay, m_aColormap, aRealPalette, nColors );
562 0 : for( i = 0; i < nColors; i++ )
563 : {
564 : sal_uInt8 nIndex =
565 : 36*(sal_uInt8)(aRealPalette[i].red/10923) +
566 : 6*(sal_uInt8)(aRealPalette[i].green/10923) +
567 0 : (sal_uInt8)(aRealPalette[i].blue/10923);
568 0 : if( aPalette[nIndex].pixel == 0 )
569 0 : aPalette[nIndex] = aRealPalette[i];
570 : }
571 : }
572 :
573 0 : sal_uInt32 nWidth = readLE32( pData+4 );
574 0 : sal_uInt32 nHeight = readLE32( pData+8 );
575 :
576 0 : const sal_uInt8* pBMData = pData + readLE32( pData );
577 0 : sal_uInt32 nScanlineSize = nWidth*3;
578 : // adjust scan lines to begin on %4 boundaries
579 0 : if( nScanlineSize & 3 )
580 : {
581 0 : nScanlineSize &= 0xfffffffc;
582 0 : nScanlineSize += 4;
583 : }
584 :
585 0 : for( int y = 0; y < (int)nHeight; y++ )
586 : {
587 0 : const sal_uInt8* pScanline = pBMData + (nHeight-1-(sal_uInt32)y)*nScanlineSize;
588 0 : for( int x = 0; x < (int)nWidth; x++ )
589 : {
590 0 : sal_uInt8 b = pScanline[3*x];
591 0 : sal_uInt8 g = pScanline[3*x+1];
592 0 : sal_uInt8 r = pScanline[3*x+2];
593 0 : sal_uInt8 i = 36*(r/43) + 6*(g/43) + (b/43);
594 :
595 0 : XPutPixel( pImage, x, y, aPalette[ i ].pixel );
596 : }
597 : }
598 0 : }
599 :
600 0 : void PixmapHolder::setBitmapDataTC( const sal_uInt8* pData, XImage* pImage )
601 : {
602 0 : sal_uInt32 nWidth = readLE32( pData+4 );
603 0 : sal_uInt32 nHeight = readLE32( pData+8 );
604 :
605 0 : const sal_uInt8* pBMData = pData + readLE32( pData );
606 0 : sal_uInt32 nScanlineSize = nWidth*3;
607 : // adjust scan lines to begin on %4 boundaries
608 0 : if( nScanlineSize & 3 )
609 : {
610 0 : nScanlineSize &= 0xfffffffc;
611 0 : nScanlineSize += 4;
612 : }
613 :
614 0 : for( int y = 0; y < (int)nHeight; y++ )
615 : {
616 0 : const sal_uInt8* pScanline = pBMData + (nHeight-1-(sal_uInt32)y)*nScanlineSize;
617 0 : for( int x = 0; x < (int)nWidth; x++ )
618 : {
619 0 : unsigned long nPixel = getTCPixel( pScanline[3*x+2], pScanline[3*x+1], pScanline[3*x] );
620 0 : XPutPixel( pImage, x, y, nPixel );
621 : }
622 : }
623 0 : }
624 :
625 0 : bool PixmapHolder::needsConversion( const sal_uInt8* pData )
626 : {
627 0 : if( pData[0] != 'B' || pData[1] != 'M' )
628 0 : return true;
629 :
630 0 : pData = pData+14;
631 0 : sal_uInt32 nDepth = readLE32( pData+14 );
632 0 : if( nDepth == 24 )
633 : {
634 0 : if( m_aInfo.c_class != TrueColor )
635 0 : return true;
636 : }
637 0 : else if( nDepth != (sal_uInt32)m_aInfo.depth )
638 : {
639 0 : if( m_aInfo.c_class != TrueColor )
640 0 : return true;
641 : }
642 :
643 0 : return false;
644 : }
645 :
646 0 : Pixmap PixmapHolder::setBitmapData( const sal_uInt8* pData )
647 : {
648 0 : if( pData[0] != 'B' || pData[1] != 'M' )
649 0 : return None;
650 :
651 0 : pData = pData+14;
652 :
653 : // reject compressed data
654 0 : if( readLE32( pData + 16 ) != 0 )
655 0 : return None;
656 :
657 0 : sal_uInt32 nWidth = readLE32( pData+4 );
658 0 : sal_uInt32 nHeight = readLE32( pData+8 );
659 :
660 0 : if( m_aPixmap != None )
661 0 : XFreePixmap( m_pDisplay, m_aPixmap ), m_aPixmap = None;
662 0 : if( m_aBitmap != None )
663 0 : XFreePixmap( m_pDisplay, m_aBitmap ), m_aBitmap = None;
664 :
665 : m_aPixmap = limitXCreatePixmap( m_pDisplay,
666 0 : RootWindow( m_pDisplay, m_aInfo.screen ),
667 0 : nWidth, nHeight, m_aInfo.depth );
668 :
669 0 : if( m_aPixmap != None )
670 : {
671 : XImage aImage;
672 0 : aImage.width = (int)nWidth;
673 0 : aImage.height = (int)nHeight;
674 0 : aImage.xoffset = 0;
675 0 : aImage.format = ZPixmap;
676 0 : aImage.data = NULL;
677 0 : aImage.byte_order = ImageByteOrder( m_pDisplay );
678 0 : aImage.bitmap_unit = BitmapUnit( m_pDisplay );
679 0 : aImage.bitmap_bit_order = BitmapBitOrder( m_pDisplay );
680 0 : aImage.bitmap_pad = BitmapPad( m_pDisplay );
681 0 : aImage.depth = m_aInfo.depth;
682 0 : aImage.red_mask = m_aInfo.red_mask;
683 0 : aImage.green_mask = m_aInfo.green_mask;
684 0 : aImage.blue_mask = m_aInfo.blue_mask;
685 0 : aImage.bytes_per_line = 0; // filled in by XInitImage
686 0 : if( m_aInfo.depth <= 8 )
687 0 : aImage.bits_per_pixel = m_aInfo.depth;
688 : else
689 0 : aImage.bits_per_pixel = 8*((m_aInfo.depth+7)/8);
690 0 : aImage.obdata = NULL;
691 :
692 0 : XInitImage( &aImage );
693 0 : aImage.data = (char*)rtl_allocateMemory( nHeight*aImage.bytes_per_line );
694 :
695 0 : if( readLE32( pData+14 ) == 24 )
696 : {
697 0 : if( m_aInfo.c_class == TrueColor )
698 0 : setBitmapDataTC( pData, &aImage );
699 : else
700 0 : setBitmapDataTCDither( pData, &aImage );
701 : }
702 : else
703 0 : setBitmapDataPalette( pData, &aImage );
704 :
705 : // put the image
706 : XPutImage( m_pDisplay,
707 : m_aPixmap,
708 0 : DefaultGC( m_pDisplay, m_aInfo.screen ),
709 : &aImage,
710 : 0, 0,
711 : 0, 0,
712 0 : nWidth, nHeight );
713 :
714 : // clean up
715 0 : rtl_freeMemory( aImage.data );
716 :
717 : // prepare bitmap (mask)
718 : m_aBitmap = limitXCreatePixmap( m_pDisplay,
719 0 : RootWindow( m_pDisplay, m_aInfo.screen ),
720 0 : nWidth, nHeight, 1 );
721 : XGCValues aVal;
722 0 : aVal.function = GXcopy;
723 0 : aVal.foreground = 0xffffffff;
724 0 : GC aGC = XCreateGC( m_pDisplay, m_aBitmap, GCFunction | GCForeground, &aVal );
725 0 : XFillRectangle( m_pDisplay, m_aBitmap, aGC, 0, 0, nWidth, nHeight );
726 0 : XFreeGC( m_pDisplay, aGC );
727 : }
728 :
729 0 : return m_aPixmap;
730 : }
731 :
732 : /* vim:set shiftwidth=4 softtabstop=4 expandtab: */
|