LCOV - code coverage report
Current view: top level - chart2/source/view/charttypes - Splines.cxx (source / functions) Hit Total Coverage
Test: commit c8344322a7af75b84dd3ca8f78b05543a976dfd5 Lines: 126 429 29.4 %
Date: 2015-06-13 12:38:46 Functions: 5 11 45.5 %
Legend: Lines: hit not hit

          Line data    Source code
       1             : /* -*- Mode: C++; tab-width: 4; indent-tabs-mode: nil; c-basic-offset: 4 -*- */
       2             : /*
       3             :  * This file is part of the LibreOffice project.
       4             :  *
       5             :  * This Source Code Form is subject to the terms of the Mozilla Public
       6             :  * License, v. 2.0. If a copy of the MPL was not distributed with this
       7             :  * file, You can obtain one at http://mozilla.org/MPL/2.0/.
       8             :  *
       9             :  * This file incorporates work covered by the following license notice:
      10             :  *
      11             :  *   Licensed to the Apache Software Foundation (ASF) under one or more
      12             :  *   contributor license agreements. See the NOTICE file distributed
      13             :  *   with this work for additional information regarding copyright
      14             :  *   ownership. The ASF licenses this file to you under the Apache
      15             :  *   License, Version 2.0 (the "License"); you may not use this file
      16             :  *   except in compliance with the License. You may obtain a copy of
      17             :  *   the License at http://www.apache.org/licenses/LICENSE-2.0 .
      18             :  */
      19             : 
      20             : #include "Splines.hxx"
      21             : #include <rtl/math.hxx>
      22             : #include <osl/diagnose.h>
      23             : 
      24             : #include <vector>
      25             : #include <algorithm>
      26             : #include <functional>
      27             : #include <boost/scoped_array.hpp>
      28             : 
      29             : #define MAX_BSPLINE_DEGREE 15
      30             : 
      31             : namespace chart
      32             : {
      33             : using namespace ::com::sun::star;
      34             : 
      35             : namespace
      36             : {
      37             : 
      38             : typedef ::std::pair< double, double >   tPointType;
      39             : typedef ::std::vector< tPointType >     tPointVecType;
      40             : typedef tPointVecType::size_type        lcl_tSizeType;
      41             : 
      42          30 : class lcl_SplineCalculation
      43             : {
      44             : public:
      45             :     /** @descr creates an object that calculates cublic splines on construction
      46             : 
      47             :         @param rSortedPoints  the points for which splines shall be calculated, they need to be sorted in x values
      48             :         @param fY1FirstDerivation the resulting spline should have the first
      49             :                derivation equal to this value at the x-value of the first point
      50             :                of rSortedPoints.  If fY1FirstDerivation is set to infinity, a natural
      51             :                spline is calculated.
      52             :         @param fYnFirstDerivation the resulting spline should have the first
      53             :                derivation equal to this value at the x-value of the last point
      54             :                of rSortedPoints
      55             :      */
      56             :     lcl_SplineCalculation( const tPointVecType & rSortedPoints,
      57             :                            double fY1FirstDerivation,
      58             :                            double fYnFirstDerivation );
      59             : 
      60             :     /** @descr creates an object that calculates cublic splines on construction
      61             :                for the special case of periodic cubic spline
      62             : 
      63             :         @param rSortedPoints  the points for which splines shall be calculated,
      64             :                they need to be sorted in x values. First and last y value must be equal
      65             :      */
      66             :     explicit lcl_SplineCalculation( const tPointVecType & rSortedPoints);
      67             : 
      68             :     /** @descr this function corresponds to the function splint in [1].
      69             : 
      70             :         [1] Numerical Recipies in C, 2nd edition
      71             :             William H. Press, et al.,
      72             :             Section 3.3, page 116
      73             :     */
      74             :     double GetInterpolatedValue( double x );
      75             : 
      76             : private:
      77             :     /// a copy of the points given in the CTOR
      78             :     tPointVecType            m_aPoints;
      79             : 
      80             :     /// the result of the Calculate() method
      81             :     ::std::vector< double >         m_aSecDerivY;
      82             : 
      83             :     double m_fYp1;
      84             :     double m_fYpN;
      85             : 
      86             :     // these values are cached for performance reasons
      87             :     lcl_tSizeType m_nKLow;
      88             :     lcl_tSizeType m_nKHigh;
      89             :     double m_fLastInterpolatedValue;
      90             : 
      91             :     /** @descr this function corresponds to the function spline in [1].
      92             : 
      93             :         [1] Numerical Recipies in C, 2nd edition
      94             :             William H. Press, et al.,
      95             :             Section 3.3, page 115
      96             :     */
      97             :     void Calculate();
      98             : 
      99             :     /** @descr this function corresponds to the algorithm 4.76 in [2] and
     100             :         theorem 5.3.7 in [3]
     101             : 
     102             :         [2] Engeln-Müllges, Gisela: Numerik-Algorithmen: Verfahren, Beispiele, Anwendungen
     103             :             Springer, Berlin; Auflage: 9., überarb. und erw. A. (8. Dezember 2004)
     104             :             Section 4.10.2, page 175
     105             : 
     106             :         [3] Hanrath, Wilhelm: Mathematik III / Numerik, Vorlesungsskript zur
     107             :             Veranstaltung im WS 2007/2008
     108             :             Fachhochschule Aachen, 2009-09-19
     109             :             Numerik_01.pdf, downloaded 2011-04-19 via
     110             :             http://www.fh-aachen.de/index.php?id=11424&no_cache=1&file=5016&uid=44191
     111             :             Section 5.3, page 129
     112             :     */
     113             :     void CalculatePeriodic();
     114             : };
     115             : 
     116          30 : lcl_SplineCalculation::lcl_SplineCalculation(
     117             :     const tPointVecType & rSortedPoints,
     118             :     double fY1FirstDerivation,
     119             :     double fYnFirstDerivation )
     120             :         : m_aPoints( rSortedPoints ),
     121             :           m_fYp1( fY1FirstDerivation ),
     122             :           m_fYpN( fYnFirstDerivation ),
     123             :           m_nKLow( 0 ),
     124          30 :           m_nKHigh( rSortedPoints.size() - 1 ),
     125          60 :           m_fLastInterpolatedValue(0.0)
     126             : {
     127          30 :     ::rtl::math::setInf( &m_fLastInterpolatedValue, false );
     128          30 :     Calculate();
     129          30 : }
     130             : 
     131           0 : lcl_SplineCalculation::lcl_SplineCalculation(
     132             :     const tPointVecType & rSortedPoints)
     133             :         : m_aPoints( rSortedPoints ),
     134             :           m_fYp1( 0.0 ),  /*dummy*/
     135             :           m_fYpN( 0.0 ),  /*dummy*/
     136             :           m_nKLow( 0 ),
     137           0 :           m_nKHigh( rSortedPoints.size() - 1 ),
     138           0 :           m_fLastInterpolatedValue(0.0)
     139             : {
     140           0 :     ::rtl::math::setInf( &m_fLastInterpolatedValue, false );
     141           0 :     CalculatePeriodic();
     142           0 : }
     143             : 
     144          30 : void lcl_SplineCalculation::Calculate()
     145             : {
     146          30 :     if( m_aPoints.size() <= 1 )
     147          30 :         return;
     148             : 
     149             :     // n is the last valid index to m_aPoints
     150          30 :     const lcl_tSizeType n = m_aPoints.size() - 1;
     151          30 :     ::std::vector< double > u( n );
     152          30 :     m_aSecDerivY.resize( n + 1, 0.0 );
     153             : 
     154          30 :     if( ::rtl::math::isInf( m_fYp1 ) )
     155             :     {
     156             :         // natural spline
     157          30 :         m_aSecDerivY[ 0 ] = 0.0;
     158          30 :         u[ 0 ] = 0.0;
     159             :     }
     160             :     else
     161             :     {
     162           0 :         m_aSecDerivY[ 0 ] = -0.5;
     163           0 :         double xDiff = ( m_aPoints[ 1 ].first - m_aPoints[ 0 ].first );
     164           0 :         u[ 0 ] = ( 3.0 / xDiff ) *
     165           0 :             ((( m_aPoints[ 1 ].second - m_aPoints[ 0 ].second ) / xDiff ) - m_fYp1 );
     166             :     }
     167             : 
     168          52 :     for( lcl_tSizeType i = 1; i < n; ++i )
     169             :     {
     170             :         tPointType
     171          22 :             p_i = m_aPoints[ i ],
     172          22 :             p_im1 = m_aPoints[ i - 1 ],
     173          22 :             p_ip1 = m_aPoints[ i + 1 ];
     174             : 
     175          22 :         double sig = ( p_i.first - p_im1.first ) /
     176          22 :             ( p_ip1.first - p_im1.first );
     177          22 :         double p = sig * m_aSecDerivY[ i - 1 ] + 2.0;
     178             : 
     179          22 :         m_aSecDerivY[ i ] = ( sig - 1.0 ) / p;
     180          22 :         u[ i ] =
     181          44 :             ( ( p_ip1.second - p_i.second ) /
     182          44 :               ( p_ip1.first - p_i.first ) ) -
     183          44 :             ( ( p_i.second - p_im1.second ) /
     184          44 :               ( p_i.first - p_im1.first ) );
     185          22 :         u[ i ] =
     186          22 :             ( 6.0 * u[ i ] / ( p_ip1.first - p_im1.first )
     187          22 :               - sig * u[ i - 1 ] ) / p;
     188             :     }
     189             : 
     190             :     // initialize to values for natural splines (used for m_fYpN equal to
     191             :     // infinity)
     192          30 :     double qn = 0.0;
     193          30 :     double un = 0.0;
     194             : 
     195          30 :     if( ! ::rtl::math::isInf( m_fYpN ) )
     196             :     {
     197           0 :         qn = 0.5;
     198           0 :         double xDiff = ( m_aPoints[ n ].first - m_aPoints[ n - 1 ].first );
     199           0 :         un = ( 3.0 / xDiff ) *
     200           0 :             ( m_fYpN - ( m_aPoints[ n ].second - m_aPoints[ n - 1 ].second ) / xDiff );
     201             :     }
     202             : 
     203          30 :     m_aSecDerivY[ n ] = ( un - qn * u[ n - 1 ] ) * ( qn * m_aSecDerivY[ n - 1 ] + 1.0 );
     204             : 
     205             :     // note: the algorithm in [1] iterates from n-1 to 0, but as size_type
     206             :     // may be (usuall is) an unsigned type, we can not write k >= 0, as this
     207             :     // is always true.
     208          82 :     for( lcl_tSizeType k = n; k > 0; --k )
     209             :     {
     210          52 :         ( m_aSecDerivY[ k - 1 ] *= m_aSecDerivY[ k ] ) += u[ k - 1 ];
     211          30 :     }
     212             : }
     213             : 
     214           0 : void lcl_SplineCalculation::CalculatePeriodic()
     215             : {
     216           0 :     if( m_aPoints.size() <= 1 )
     217           0 :         return;
     218             : 
     219             :     // n is the last valid index to m_aPoints
     220           0 :     const lcl_tSizeType n = m_aPoints.size() - 1;
     221             : 
     222             :     // u is used for vector f in A*c=f in [3], vector a in  Ax=a in [2],
     223             :     // vector z in Rtranspose z = a and Dr=z in [2]
     224           0 :     ::std::vector< double > u( n + 1, 0.0 );
     225             : 
     226             :     // used for vector c in A*c=f and vector x in Ax=a in [2]
     227           0 :     m_aSecDerivY.resize( n + 1, 0.0 );
     228             : 
     229             :     // diagonal of matrix A, used index 1 to n
     230           0 :     ::std::vector< double > Adiag( n + 1, 0.0 );
     231             : 
     232             :     // secondary diagonal of matrix A with index 1 to n-1 and upper right element in A[n]
     233           0 :     ::std::vector< double > Aupper( n + 1, 0.0 );
     234             : 
     235             :     // diagonal of matrix D in A=(R transpose)*D*R in [2], used index 1 to n
     236           0 :     ::std::vector< double > Ddiag( n+1, 0.0 );
     237             : 
     238             :     // right column of matrix R, used index 1 to n-2
     239           0 :     ::std::vector< double > Rright( n-1, 0.0 );
     240             : 
     241             :     // secondary diagonal of matrix R, used index 1 to n-1
     242           0 :     ::std::vector< double > Rupper( n, 0.0 );
     243             : 
     244           0 :     if (n<4)
     245             :     {
     246           0 :         if (n==3)
     247             :         {   // special handling of three polynomials, that are four points
     248           0 :             double xDiff0 = m_aPoints[ 1 ].first - m_aPoints[ 0 ].first ;
     249           0 :             double xDiff1 = m_aPoints[ 2 ].first - m_aPoints[ 1 ].first ;
     250           0 :             double xDiff2 = m_aPoints[ 3 ].first - m_aPoints[ 2 ].first ;
     251           0 :             double xDiff2p1 = xDiff2 + xDiff1;
     252           0 :             double xDiff0p2 = xDiff0 + xDiff2;
     253           0 :             double xDiff1p0 = xDiff1 + xDiff0;
     254           0 :             double fFactor = 1.5 / (xDiff0*xDiff1 + xDiff1*xDiff2 + xDiff2*xDiff0);
     255           0 :             double yDiff0 = (m_aPoints[ 1 ].second - m_aPoints[ 0 ].second) / xDiff0;
     256           0 :             double yDiff1 = (m_aPoints[ 2 ].second - m_aPoints[ 1 ].second) / xDiff1;
     257           0 :             double yDiff2 = (m_aPoints[ 0 ].second - m_aPoints[ 2 ].second) / xDiff2;
     258           0 :             m_aSecDerivY[ 1 ] = fFactor * (yDiff1*xDiff2p1 - yDiff0*xDiff0p2);
     259           0 :             m_aSecDerivY[ 2 ] = fFactor * (yDiff2*xDiff0p2 - yDiff1*xDiff1p0);
     260           0 :             m_aSecDerivY[ 3 ] = fFactor * (yDiff0*xDiff1p0 - yDiff2*xDiff2p1);
     261           0 :             m_aSecDerivY[ 0 ] = m_aSecDerivY[ 3 ];
     262             :         }
     263           0 :         else if (n==2)
     264             :         {
     265             :         // special handling of two polynomials, that are three points
     266           0 :             double xDiff0 = m_aPoints[ 1 ].first - m_aPoints[ 0 ].first;
     267           0 :             double xDiff1 = m_aPoints[ 2 ].first - m_aPoints[ 1 ].first;
     268           0 :             double fHelp = 3.0 * (m_aPoints[ 0 ].second - m_aPoints[ 1 ].second) / (xDiff0*xDiff1);
     269           0 :             m_aSecDerivY[ 1 ] = fHelp ;
     270           0 :             m_aSecDerivY[ 2 ] = -fHelp ;
     271           0 :             m_aSecDerivY[ 0 ] = m_aSecDerivY[ 2 ] ;
     272             :         }
     273             :         else
     274             :         {
     275             :             // should be handled with natural spline, periodic not possible.
     276             :         }
     277             :     }
     278             :     else
     279             :     {
     280           0 :         double xDiff_i =1.0; // values are dummy;
     281           0 :         double xDiff_im1 =1.0;
     282           0 :         double yDiff_i = 1.0;
     283           0 :         double yDiff_im1 = 1.0;
     284             :         // fill matrix A and fill right side vector u
     285           0 :         for( lcl_tSizeType i=1; i<n; ++i )
     286             :         {
     287           0 :             xDiff_im1 = m_aPoints[ i ].first - m_aPoints[ i-1 ].first;
     288           0 :             xDiff_i = m_aPoints[ i+1 ].first - m_aPoints[ i ].first;
     289           0 :             yDiff_im1 = (m_aPoints[ i ].second - m_aPoints[ i-1 ].second) / xDiff_im1;
     290           0 :             yDiff_i = (m_aPoints[ i+1 ].second - m_aPoints[ i ].second) / xDiff_i;
     291           0 :             Adiag[ i ] = 2 * (xDiff_im1 + xDiff_i);
     292           0 :             Aupper[ i ] = xDiff_i;
     293           0 :             u [ i ] = 3 * (yDiff_i - yDiff_im1);
     294             :         }
     295           0 :         xDiff_im1 = m_aPoints[ n ].first - m_aPoints[ n-1 ].first;
     296           0 :         xDiff_i = m_aPoints[ 1 ].first - m_aPoints[ 0 ].first;
     297           0 :         yDiff_im1 = (m_aPoints[ n ].second - m_aPoints[ n-1 ].second) / xDiff_im1;
     298           0 :         yDiff_i = (m_aPoints[ 1 ].second - m_aPoints[ 0 ].second) / xDiff_i;
     299           0 :         Adiag[ n ] = 2 * (xDiff_im1 + xDiff_i);
     300           0 :         Aupper[ n ] = xDiff_i;
     301           0 :         u [ n ] = 3 * (yDiff_i - yDiff_im1);
     302             : 
     303             :         // decomposite A=(R transpose)*D*R
     304           0 :         Ddiag[1] = Adiag[1];
     305           0 :         Rupper[1] = Aupper[1] / Ddiag[1];
     306           0 :         Rright[1] = Aupper[n] / Ddiag[1];
     307           0 :         for( lcl_tSizeType i=2; i<=n-2; ++i )
     308             :         {
     309           0 :             Ddiag[i] = Adiag[i] - Aupper[ i-1 ] * Rupper[ i-1 ];
     310           0 :             Rupper[ i ] = Aupper[ i ] / Ddiag[ i ];
     311           0 :             Rright[ i ] = - Rright[ i-1 ] * Aupper[ i-1 ] / Ddiag[ i ];
     312             :         }
     313           0 :         Ddiag[ n-1 ] = Adiag[ n-1 ] - Aupper[ n-2 ] * Rupper[ n-2 ];
     314           0 :         Rupper[ n-1 ] = ( Aupper[ n-1 ] - Aupper[ n-2 ] * Rright[ n-2] ) / Ddiag[ n-1 ];
     315           0 :         double fSum = 0.0;
     316           0 :         for ( lcl_tSizeType i=1; i<=n-2; ++i )
     317             :         {
     318           0 :             fSum += Ddiag[ i ] * Rright[ i ] * Rright[ i ];
     319             :         }
     320           0 :         Ddiag[ n ] = Adiag[ n ] - fSum - Ddiag[ n-1 ] * Rupper[ n-1 ] * Rupper[ n-1 ]; // bug in [2]!
     321             : 
     322             :         // solve forward (R transpose)*z=u, overwrite u with z
     323           0 :         for ( lcl_tSizeType i=2; i<=n-1; ++i )
     324             :         {
     325           0 :             u[ i ] -= u[ i-1 ]* Rupper[ i-1 ];
     326             :         }
     327           0 :         fSum = 0.0;
     328           0 :         for ( lcl_tSizeType i=1; i<=n-2; ++i )
     329             :         {
     330           0 :             fSum += Rright[ i ] * u[ i ];
     331             :         }
     332           0 :         u[ n ] = u[ n ] - fSum - Rupper[ n - 1] * u[ n-1 ];
     333             : 
     334             :         // solve forward D*r=z, z is in u, overwrite u with r
     335           0 :         for ( lcl_tSizeType i=1; i<=n; ++i )
     336             :         {
     337           0 :             u[ i ] = u[i] / Ddiag[ i ];
     338             :         }
     339             : 
     340             :         // solve backward R*x= r, r is in u
     341           0 :         m_aSecDerivY[ n ] = u[ n ];
     342           0 :         m_aSecDerivY[ n-1 ] = u[ n-1 ] - Rupper[ n-1 ] * m_aSecDerivY[ n ];
     343           0 :         for ( lcl_tSizeType i=n-2; i>=1; --i)
     344             :         {
     345           0 :             m_aSecDerivY[ i ] = u[ i ] - Rupper[ i ] * m_aSecDerivY[ i+1 ] - Rright[ i ] * m_aSecDerivY[ n ];
     346             :         }
     347             :         // periodic
     348           0 :         m_aSecDerivY[ 0 ] = m_aSecDerivY[ n ];
     349             :     }
     350             : 
     351             :     // adapt m_aSecDerivY for usage in GetInterpolatedValue()
     352           0 :     for( lcl_tSizeType i = 0; i <= n ; ++i )
     353             :     {
     354           0 :         m_aSecDerivY[ i ] *= 2.0;
     355           0 :     }
     356             : 
     357             : }
     358             : 
     359         988 : double lcl_SplineCalculation::GetInterpolatedValue( double x )
     360             : {
     361             :     OSL_PRECOND( ( m_aPoints[ 0 ].first <= x ) &&
     362             :                 ( x <= m_aPoints[ m_aPoints.size() - 1 ].first ),
     363             :                 "Trying to extrapolate" );
     364             : 
     365         988 :     const lcl_tSizeType n = m_aPoints.size() - 1;
     366         988 :     if( x < m_fLastInterpolatedValue )
     367             :     {
     368          30 :         m_nKLow = 0;
     369          30 :         m_nKHigh = n;
     370             : 
     371             :         // calculate m_nKLow and m_nKHigh
     372             :         // first initialization is done in CTOR
     373          78 :         while( m_nKHigh - m_nKLow > 1 )
     374             :         {
     375          18 :             lcl_tSizeType k = ( m_nKHigh + m_nKLow ) / 2;
     376          18 :             if( m_aPoints[ k ].first > x )
     377          18 :                 m_nKHigh = k;
     378             :             else
     379           0 :                 m_nKLow = k;
     380             :         }
     381             :     }
     382             :     else
     383             :     {
     384        1960 :         while( ( m_aPoints[ m_nKHigh ].first < x ) &&
     385          22 :                ( m_nKHigh <= n ) )
     386             :         {
     387          22 :             ++m_nKHigh;
     388          22 :             ++m_nKLow;
     389             :         }
     390             :         OSL_ENSURE( m_nKHigh <= n, "Out of Bounds" );
     391             :     }
     392         988 :     m_fLastInterpolatedValue = x;
     393             : 
     394         988 :     double h = m_aPoints[ m_nKHigh ].first - m_aPoints[ m_nKLow ].first;
     395             :     OSL_ENSURE( h != 0, "Bad input to GetInterpolatedValue()" );
     396             : 
     397         988 :     double a = ( m_aPoints[ m_nKHigh ].first - x ) / h;
     398         988 :     double b = ( x - m_aPoints[ m_nKLow ].first  ) / h;
     399             : 
     400        1976 :     return ( a * m_aPoints[ m_nKLow ].second +
     401         988 :              b * m_aPoints[ m_nKHigh ].second +
     402        1976 :              (( a*a*a - a ) * m_aSecDerivY[ m_nKLow ] +
     403        1976 :               ( b*b*b - b ) * m_aSecDerivY[ m_nKHigh ] ) *
     404        1976 :              ( h*h ) / 6.0 );
     405             : }
     406             : 
     407             : // helper methods for B-spline
     408             : 
     409             : // Create parameter t_0 to t_n using the centripetal method with a power of 0.5
     410           0 : bool createParameterT(const tPointVecType& rUniquePoints, double* t)
     411             : {   // precondition: no adjacent identical points
     412             :     // postcondition: 0 = t_0 < t_1 < ... < t_n = 1
     413           0 :     bool bIsSuccessful = true;
     414           0 :     const lcl_tSizeType n = rUniquePoints.size() - 1;
     415           0 :     t[0]=0.0;
     416           0 :     double dx = 0.0;
     417           0 :     double dy = 0.0;
     418           0 :     double fDiffMax = 1.0; //dummy values
     419           0 :     double fDenominator = 0.0; // initialized for summing up
     420           0 :     for (lcl_tSizeType i=1; i<=n ; ++i)
     421             :     {   // 4th root(dx^2+dy^2)
     422           0 :         dx = rUniquePoints[i].first - rUniquePoints[i-1].first;
     423           0 :         dy = rUniquePoints[i].second - rUniquePoints[i-1].second;
     424             :         // scaling to avoid underflow or overflow
     425           0 :         fDiffMax = (fabs(dx)>fabs(dy)) ? fabs(dx) : fabs(dy);
     426           0 :         if (fDiffMax == 0.0)
     427             :         {
     428           0 :             bIsSuccessful = false;
     429           0 :             break;
     430             :         }
     431             :         else
     432             :         {
     433           0 :             dx /= fDiffMax;
     434           0 :             dy /= fDiffMax;
     435           0 :             fDenominator += sqrt(sqrt(dx * dx + dy * dy)) * sqrt(fDiffMax);
     436             :         }
     437             :     }
     438           0 :     if (fDenominator == 0.0)
     439             :     {
     440           0 :         bIsSuccessful = false;
     441             :     }
     442           0 :     if (bIsSuccessful)
     443             :     {
     444           0 :         for (lcl_tSizeType j=1; j<=n ; ++j)
     445             :         {
     446           0 :             double fNumerator = 0.0;
     447           0 :             for (lcl_tSizeType i=1; i<=j ; ++i)
     448             :             {
     449           0 :                 dx = rUniquePoints[i].first - rUniquePoints[i-1].first;
     450           0 :                 dy = rUniquePoints[i].second - rUniquePoints[i-1].second;
     451           0 :                 fDiffMax = (fabs(dx)>fabs(dy)) ? fabs(dx) : fabs(dy);
     452             :                 // same as above, so should not be zero
     453           0 :                 dx /= fDiffMax;
     454           0 :                 dy /= fDiffMax;
     455           0 :                 fNumerator += sqrt(sqrt(dx * dx + dy * dy)) * sqrt(fDiffMax);
     456             :             }
     457           0 :             t[j] = fNumerator / fDenominator;
     458             : 
     459             :         }
     460             :         // postcondition check
     461           0 :         t[n] = 1.0;
     462           0 :         double fPrevious = 0.0;
     463           0 :         for (lcl_tSizeType i=1; i <= n && bIsSuccessful ; ++i)
     464             :         {
     465           0 :             if (fPrevious >= t[i])
     466             :             {
     467           0 :                 bIsSuccessful = false;
     468             :             }
     469             :             else
     470             :             {
     471           0 :                 fPrevious = t[i];
     472             :             }
     473             :         }
     474             :     }
     475           0 :     return bIsSuccessful;
     476             : }
     477             : 
     478           0 : void createKnotVector(const lcl_tSizeType n, const sal_uInt32 p, double* t, double* u)
     479             : {  // precondition: 0 = t_0 < t_1 < ... < t_n = 1
     480           0 :         for (lcl_tSizeType j = 0; j <= p; ++j)
     481             :         {
     482           0 :             u[j] = 0.0;
     483             :         }
     484           0 :         for (lcl_tSizeType j = 1; j <= n-p; ++j )
     485             :         {
     486           0 :             double fSum = 0.0;
     487           0 :             for (lcl_tSizeType i = j; i <= j+p-1; ++i)
     488             :             {
     489           0 :                 fSum += t[i];
     490             :             }
     491             :             assert(p != 0);
     492           0 :             u[j+p] = fSum / p ;
     493             :         }
     494           0 :         for (lcl_tSizeType j = n+1; j <= n+1+p; ++j)
     495             :         {
     496           0 :             u[j] = 1.0;
     497             :         }
     498           0 : }
     499             : 
     500           0 : void applyNtoParameterT(const lcl_tSizeType i,const double tk,const sal_uInt32 p,const double* u, double* rowN)
     501             : {
     502             :     // get N_p(t_k) recursively, only N_(i-p) till N_(i) are relevant, all other N_# are zero
     503             : 
     504             :     // initialize with indicator function degree 0
     505           0 :     rowN[p] = 1.0; // all others are zero
     506             : 
     507             :     // calculate up to degree p
     508           0 :     for (sal_uInt32 s = 1; s <= p; ++s)
     509             :     {
     510             :         // first element
     511           0 :         double fLeftFactor = 0.0;
     512           0 :         double fRightFactor = ( u[i+1] - tk ) / ( u[i+1]- u[i-s+1] );
     513             :         // i-s "true index" - (i-p)"shift" = p-s
     514           0 :         rowN[p-s] = fRightFactor * rowN[p-s+1];
     515             : 
     516             :         // middle elements
     517           0 :         for (sal_uInt32 j = s-1; j>=1 ; --j)
     518             :         {
     519           0 :             fLeftFactor = ( tk - u[i-j] ) / ( u[i-j+s] - u[i-j] ) ;
     520           0 :             fRightFactor = ( u[i-j+s+1] - tk ) / ( u[i-j+s+1] - u[i-j+1] );
     521             :             // i-j "true index" - (i-p)"shift" = p-j
     522           0 :             rowN[p-j] = fLeftFactor * rowN[p-j] + fRightFactor *  rowN[p-j+1];
     523             :         }
     524             : 
     525             :         // last element
     526           0 :         fLeftFactor = ( tk - u[i] ) / ( u[i+s] - u[i] );
     527             :         // i "true index" - (i-p)"shift" = p
     528           0 :         rowN[p] = fLeftFactor * rowN[p];
     529             :     }
     530           0 : }
     531             : 
     532             : } //  anonymous namespace
     533             : 
     534             : // Calculates uniform parametric splines with subinterval length 1,
     535             : // according ODF1.2 part 1, chapter 'chart interpolation'.
     536          11 : void SplineCalculater::CalculateCubicSplines(
     537             :     const drawing::PolyPolygonShape3D& rInput
     538             :     , drawing::PolyPolygonShape3D& rResult
     539             :     , sal_uInt32 nGranularity )
     540             : {
     541             :     OSL_PRECOND( nGranularity > 0, "Granularity is invalid" );
     542             : 
     543          11 :     rResult.SequenceX.realloc(0);
     544          11 :     rResult.SequenceY.realloc(0);
     545          11 :     rResult.SequenceZ.realloc(0);
     546             : 
     547          11 :     sal_uInt32 nOuterCount = rInput.SequenceX.getLength();
     548          11 :     if( !nOuterCount )
     549          11 :         return;
     550             : 
     551          11 :     rResult.SequenceX.realloc(nOuterCount);
     552          11 :     rResult.SequenceY.realloc(nOuterCount);
     553          11 :     rResult.SequenceZ.realloc(nOuterCount);
     554             : 
     555          30 :     for( sal_uInt32 nOuter = 0; nOuter < nOuterCount; ++nOuter )
     556             :     {
     557          19 :         if( rInput.SequenceX[nOuter].getLength() <= 1 )
     558           4 :             continue; //we need at least two points
     559             : 
     560          15 :         sal_uInt32 nMaxIndexPoints = rInput.SequenceX[nOuter].getLength()-1; // is >=1
     561          15 :         const double* pOldX = rInput.SequenceX[nOuter].getConstArray();
     562          15 :         const double* pOldY = rInput.SequenceY[nOuter].getConstArray();
     563          15 :         const double* pOldZ = rInput.SequenceZ[nOuter].getConstArray();
     564             : 
     565          15 :         ::std::vector < double > aParameter(nMaxIndexPoints+1);
     566          15 :         aParameter[0]=0.0;
     567          41 :         for( sal_uInt32 nIndex=1; nIndex<=nMaxIndexPoints; nIndex++ )
     568             :         {
     569          26 :             aParameter[nIndex]=aParameter[nIndex-1]+1;
     570             :         }
     571             : 
     572             :         // Split the calculation to X, Y and Z coordinate
     573          30 :         tPointVecType aInputX;
     574          15 :         aInputX.resize(nMaxIndexPoints+1);
     575          30 :         tPointVecType aInputY;
     576          15 :         aInputY.resize(nMaxIndexPoints+1);
     577          30 :         tPointVecType aInputZ;
     578          15 :         aInputZ.resize(nMaxIndexPoints+1);
     579          56 :         for (sal_uInt32 nN=0;nN<=nMaxIndexPoints; nN++ )
     580             :         {
     581          41 :           aInputX[ nN ].first=aParameter[nN];
     582          41 :           aInputX[ nN ].second=pOldX[ nN ];
     583          41 :           aInputY[ nN ].first=aParameter[nN];
     584          41 :           aInputY[ nN ].second=pOldY[ nN ];
     585          41 :           aInputZ[ nN ].first=aParameter[nN];
     586          41 :           aInputZ[ nN ].second=pOldZ[ nN ];
     587             :         }
     588             : 
     589             :         // generate a spline for each coordinate. It holds the complete
     590             :         // information to calculate each point of the curve
     591             :         lcl_SplineCalculation* aSplineX;
     592             :         lcl_SplineCalculation* aSplineY;
     593             :         // lcl_SplineCalculation* aSplineZ; the z-coordinates of all points in
     594             :         // a data series are equal. No spline calculation needed, but copy
     595             :         // coordinate to output
     596             : 
     597          15 :         if( pOldX[ 0 ] == pOldX[nMaxIndexPoints] &&
     598           0 :             pOldY[ 0 ] == pOldY[nMaxIndexPoints] &&
     599           0 :             pOldZ[ 0 ] == pOldZ[nMaxIndexPoints] &&
     600             :             nMaxIndexPoints >=2 )
     601             :         {   // periodic spline
     602           0 :             aSplineX = new lcl_SplineCalculation( aInputX) ;
     603           0 :             aSplineY = new lcl_SplineCalculation( aInputY) ;
     604             :             // aSplineZ = new lcl_SplineCalculation( aInputZ) ;
     605             :         }
     606             :         else // generate the kind "natural spline"
     607             :         {
     608             :             double fInfty;
     609          15 :             ::rtl::math::setInf( &fInfty, false );
     610          15 :             double fXDerivation = fInfty;
     611          15 :             double fYDerivation = fInfty;
     612          15 :             aSplineX = new lcl_SplineCalculation( aInputX, fXDerivation, fXDerivation );
     613          15 :             aSplineY = new lcl_SplineCalculation( aInputY, fYDerivation, fYDerivation );
     614             :         }
     615             : 
     616             :         // fill result polygon with calculated values
     617          15 :         rResult.SequenceX[nOuter].realloc( nMaxIndexPoints*nGranularity + 1);
     618          15 :         rResult.SequenceY[nOuter].realloc( nMaxIndexPoints*nGranularity + 1);
     619          15 :         rResult.SequenceZ[nOuter].realloc( nMaxIndexPoints*nGranularity + 1);
     620             : 
     621          15 :         double* pNewX = rResult.SequenceX[nOuter].getArray();
     622          15 :         double* pNewY = rResult.SequenceY[nOuter].getArray();
     623          15 :         double* pNewZ = rResult.SequenceZ[nOuter].getArray();
     624             : 
     625          15 :         sal_uInt32 nNewPointIndex = 0; // Index in result points
     626             : 
     627          41 :         for( sal_uInt32 ni = 0; ni < nMaxIndexPoints; ni++ )
     628             :         {
     629             :             // given point is surely a curve point
     630          26 :             pNewX[nNewPointIndex] = pOldX[ni];
     631          26 :             pNewY[nNewPointIndex] = pOldY[ni];
     632          26 :             pNewZ[nNewPointIndex] = pOldZ[ni];
     633          26 :             nNewPointIndex++;
     634             : 
     635             :             // calculate intermediate points
     636          26 :             double fInc = ( aParameter[ ni+1 ] - aParameter[ni] ) / static_cast< double >( nGranularity );
     637         520 :             for(sal_uInt32 nj = 1; nj < nGranularity; nj++)
     638             :             {
     639         494 :                 double fParam = aParameter[ni] + ( fInc * static_cast< double >( nj ) );
     640             : 
     641         494 :                 pNewX[nNewPointIndex]=aSplineX->GetInterpolatedValue( fParam );
     642         494 :                 pNewY[nNewPointIndex]=aSplineY->GetInterpolatedValue( fParam );
     643             :                 // pNewZ[nNewPointIndex]=aSplineZ->GetInterpolatedValue( fParam );
     644         494 :                 pNewZ[nNewPointIndex] = pOldZ[ni];
     645         494 :                 nNewPointIndex++;
     646             :             }
     647             :         }
     648             :         // add last point
     649          15 :         pNewX[nNewPointIndex] = pOldX[nMaxIndexPoints];
     650          15 :         pNewY[nNewPointIndex] = pOldY[nMaxIndexPoints];
     651          15 :         pNewZ[nNewPointIndex] = pOldZ[nMaxIndexPoints];
     652          15 :         delete aSplineX;
     653          15 :         delete aSplineY;
     654             :         // delete aSplineZ;
     655          15 :     }
     656             : }
     657             : 
     658             : // The implementation follows closely ODF1.2 spec, chapter chart:interpolation
     659             : // using the same names as in spec as far as possible, without prefix.
     660             : // More details can be found on
     661             : // Dr. C.-K. Shene: CS3621 Introduction to Computing with Geometry Notes
     662             : // Unit 9: Interpolation and Approximation/Curve Global Interpolation
     663             : // Department of Computer Science, Michigan Technological University
     664             : // http://www.cs.mtu.edu/~shene/COURSES/cs3621/NOTES/
     665             : // [last called 2011-05-20]
     666           0 : void SplineCalculater::CalculateBSplines(
     667             :             const ::com::sun::star::drawing::PolyPolygonShape3D& rInput
     668             :             , ::com::sun::star::drawing::PolyPolygonShape3D& rResult
     669             :             , sal_uInt32 nResolution
     670             :             , sal_uInt32 nDegree )
     671             : {
     672             :     // nResolution is ODF1.2 file format attribute chart:spline-resolution and
     673             :     // ODF1.2 spec variable k. Causion, k is used as index in the spec in addition.
     674             :     // nDegree is ODF1.2 file format attribute chart:spline-order and
     675             :     // ODF1.2 spec variable p
     676             :     OSL_ASSERT( nResolution > 1 );
     677             :     OSL_ASSERT( nDegree >= 1 );
     678             : 
     679             :     // limit the b-spline degree to prevent insanely large sets of points
     680           0 :     sal_uInt32 p = std::min<sal_uInt32>(nDegree, MAX_BSPLINE_DEGREE);
     681             : 
     682           0 :     rResult.SequenceX.realloc(0);
     683           0 :     rResult.SequenceY.realloc(0);
     684           0 :     rResult.SequenceZ.realloc(0);
     685             : 
     686           0 :     sal_Int32 nOuterCount = rInput.SequenceX.getLength();
     687           0 :     if( !nOuterCount )
     688           0 :         return; // no input
     689             : 
     690           0 :     rResult.SequenceX.realloc(nOuterCount);
     691           0 :     rResult.SequenceY.realloc(nOuterCount);
     692           0 :     rResult.SequenceZ.realloc(nOuterCount);
     693             : 
     694           0 :     for( sal_Int32 nOuter = 0; nOuter < nOuterCount; ++nOuter )
     695             :     {
     696           0 :         if( rInput.SequenceX[nOuter].getLength() <= 1 )
     697           0 :             continue; // need at least 2 points, next piece of the series
     698             : 
     699             :         // Copy input to vector of points and remove adjacent double points. The
     700             :         // Z-coordinate is equal for all points in a series and holds the depth
     701             :         // in 3D mode, simple copying is enough.
     702           0 :         lcl_tSizeType nMaxIndexPoints = rInput.SequenceX[nOuter].getLength()-1; // is >=1
     703           0 :         const double* pOldX = rInput.SequenceX[nOuter].getConstArray();
     704           0 :         const double* pOldY = rInput.SequenceY[nOuter].getConstArray();
     705           0 :         const double* pOldZ = rInput.SequenceZ[nOuter].getConstArray();
     706           0 :         double fZCoordinate = pOldZ[0];
     707           0 :         tPointVecType aPointsIn;
     708           0 :         aPointsIn.resize(nMaxIndexPoints+1);
     709           0 :         for (lcl_tSizeType i = 0; i <= nMaxIndexPoints; ++i )
     710             :         {
     711           0 :           aPointsIn[ i ].first = pOldX[i];
     712           0 :           aPointsIn[ i ].second = pOldY[i];
     713             :         }
     714             :         aPointsIn.erase( ::std::unique( aPointsIn.begin(), aPointsIn.end()),
     715           0 :                      aPointsIn.end() );
     716             : 
     717             :         // n is the last valid index to the reduced aPointsIn
     718             :         // There are n+1 valid data points.
     719           0 :         const lcl_tSizeType n = aPointsIn.size() - 1;
     720           0 :         if (n < 1 || p > n)
     721           0 :             continue; // need at least 2 points, degree p needs at least n+1 points
     722             :                       // next piece of series
     723             : 
     724           0 :         boost::scoped_array<double> t(new double [n+1]);
     725           0 :         if (!createParameterT(aPointsIn, t.get()))
     726             :         {
     727           0 :             continue; // next piece of series
     728             :         }
     729             : 
     730           0 :         lcl_tSizeType m = n + p + 1;
     731           0 :         boost::scoped_array<double> u(new double [m+1]);
     732           0 :         createKnotVector(n, p, t.get(), u.get());
     733             : 
     734             :         // The matrix N contains the B-spline basis functions applied to parameters.
     735             :         // In each row only p+1 adjacent elements are non-zero. The starting
     736             :         // column in a higher row is equal or greater than in the lower row.
     737             :         // To store this matrix the non-zero elements are shifted to column 0
     738             :         // and the amount of shifting is remembered in an array.
     739           0 :         boost::scoped_array<double*> aMatN(new double*[n+1]);
     740           0 :         for (lcl_tSizeType row = 0; row <=n; ++row)
     741             :         {
     742           0 :             aMatN[row] = new double[p+1];
     743           0 :             for (sal_uInt32 col = 0; col <= p; ++col)
     744           0 :             aMatN[row][col] = 0.0;
     745             :         }
     746           0 :         boost::scoped_array<lcl_tSizeType> aShift(new lcl_tSizeType[n+1]);
     747           0 :         aMatN[0][0] = 1.0; //all others are zero
     748           0 :         aShift[0] = 0;
     749           0 :         aMatN[n][0] = 1.0;
     750           0 :         aShift[n] = n;
     751           0 :         for (lcl_tSizeType k = 1; k<=n-1; ++k)
     752             :         { // all basis functions are applied to t_k,
     753             :             // results are elements in row k in matrix N
     754             : 
     755             :             // find the one interval with u_i <= t_k < u_(i+1)
     756             :             // remember u_0 = ... = u_p = 0.0 and u_(m-p) = ... u_m = 1.0 and 0<t_k<1
     757           0 :             lcl_tSizeType i = p;
     758           0 :             while (!(u[i] <= t[k] && t[k] < u[i+1]))
     759             :             {
     760           0 :                 ++i;
     761             :             }
     762             : 
     763             :             // index in reduced matrix aMatN = (index in full matrix N) - (i-p)
     764           0 :             aShift[k] = i - p;
     765             : 
     766           0 :             applyNtoParameterT(i, t[k], p, u.get(), aMatN[k]);
     767             :         } // next row k
     768             : 
     769             :         // Get matrix C of control points from the matrix equation aMatN * C = aPointsIn
     770             :         // aPointsIn is overwritten with C.
     771             :         // Gaussian elimination is possible without pivoting, see reference
     772           0 :         lcl_tSizeType r = 0; // true row index
     773           0 :         lcl_tSizeType c = 0; // true column index
     774           0 :         double fDivisor = 1.0; // used for diagonal element
     775           0 :         double fEliminate = 1.0; // used for the element, that will become zero
     776             :         double fHelp;
     777           0 :         tPointType aHelp;
     778             :         lcl_tSizeType nHelp; // used in triangle change
     779           0 :         bool bIsSuccessful = true;
     780           0 :         for (c = 0 ; c <= n && bIsSuccessful; ++c)
     781             :         {
     782             :             // search for first non-zero downwards
     783           0 :             r = c;
     784           0 :             while ( r < n && aMatN[r][c-aShift[r]] == 0 )
     785             :             {
     786           0 :                 ++r;
     787             :             }
     788           0 :             if (aMatN[r][c-aShift[r]] == 0.0)
     789             :             {
     790             :                 // Matrix N is singular, although this is mathematically impossible
     791           0 :                 bIsSuccessful = false;
     792             :             }
     793             :             else
     794             :             {
     795             :                 // exchange total row r with total row c if necessary
     796           0 :                 if (r != c)
     797             :                 {
     798           0 :                     for ( sal_uInt32 i = 0; i <= p ; ++i)
     799             :                     {
     800           0 :                         fHelp = aMatN[r][i];
     801           0 :                         aMatN[r][i] = aMatN[c][i];
     802           0 :                         aMatN[c][i] = fHelp;
     803             :                     }
     804           0 :                     aHelp = aPointsIn[r];
     805           0 :                     aPointsIn[r] = aPointsIn[c];
     806           0 :                     aPointsIn[c] = aHelp;
     807           0 :                     nHelp = aShift[r];
     808           0 :                     aShift[r] = aShift[c];
     809           0 :                     aShift[c] = nHelp;
     810             :                 }
     811             : 
     812             :                 // divide row c, so that element(c,c) becomes 1
     813           0 :                 fDivisor = aMatN[c][c-aShift[c]]; // not zero, see above
     814           0 :                 for (sal_uInt32 i = 0; i <= p; ++i)
     815             :                 {
     816           0 :                     aMatN[c][i] /= fDivisor;
     817             :                 }
     818           0 :                 aPointsIn[c].first /= fDivisor;
     819           0 :                 aPointsIn[c].second /= fDivisor;
     820             : 
     821             :                 // eliminate forward, examine row c+1 to n-1 (worst case)
     822             :                 // stop if first non-zero element in row has an higher column as c
     823             :                 // look at nShift for that, elements in nShift are equal or increasing
     824           0 :                 for ( r = c+1; r < n && aShift[r]<=c ; ++r)
     825             :                 {
     826           0 :                     fEliminate = aMatN[r][0];
     827           0 :                     if (fEliminate != 0.0) // else accidentally zero, nothing to do
     828             :                     {
     829           0 :                         for (sal_uInt32 i = 1; i <= p; ++i)
     830             :                         {
     831           0 :                             aMatN[r][i-1] = aMatN[r][i] - fEliminate * aMatN[c][i];
     832             :                         }
     833           0 :                         aMatN[r][p]=0;
     834           0 :                         aPointsIn[r].first -= fEliminate * aPointsIn[c].first;
     835           0 :                         aPointsIn[r].second -= fEliminate * aPointsIn[c].second;
     836           0 :                         ++aShift[r];
     837             :                     }
     838             :                 }
     839             :             }
     840             :         }// upper triangle form is reached
     841           0 :         if( bIsSuccessful)
     842             :         {
     843             :             // eliminate backwards, begin with last column
     844           0 :             for (lcl_tSizeType cc = n; cc >= 1; --cc )
     845             :             {
     846             :                 // In row cc the diagonal element(cc,cc) == 1 and all elements left from
     847             :                 // diagonal are zero and do not influence other rows.
     848             :                 // Full matrix N has semibandwidth < p, therefore element(r,c) is
     849             :                 // zero, if abs(r-cc)>=p.  abs(r-cc)=cc-r, because r<cc.
     850           0 :                 r = cc - 1;
     851           0 :                 while ( r !=0 && cc-r < p )
     852             :                 {
     853           0 :                     fEliminate = aMatN[r][ cc - aShift[r] ];
     854           0 :                     if ( fEliminate != 0.0) // else element is accidentically zero, no action needed
     855             :                     {
     856             :                         // row r -= fEliminate * row cc only relevant for right side
     857           0 :                         aMatN[r][cc - aShift[r]] = 0.0;
     858           0 :                         aPointsIn[r].first -= fEliminate * aPointsIn[cc].first;
     859           0 :                         aPointsIn[r].second -= fEliminate * aPointsIn[cc].second;
     860             :                     }
     861           0 :                     --r;
     862             :                 }
     863             :             }
     864             :         }   // aPointsIn contains the control points now.
     865           0 :         if (bIsSuccessful)
     866             :         {
     867             :             // calculate the intermediate points according given resolution
     868             :             // using deBoor-Cox algorithm
     869           0 :             lcl_tSizeType nNewSize = nResolution * n + 1;
     870           0 :             rResult.SequenceX[nOuter].realloc(nNewSize);
     871           0 :             rResult.SequenceY[nOuter].realloc(nNewSize);
     872           0 :             rResult.SequenceZ[nOuter].realloc(nNewSize);
     873           0 :             double* pNewX = rResult.SequenceX[nOuter].getArray();
     874           0 :             double* pNewY = rResult.SequenceY[nOuter].getArray();
     875           0 :             double* pNewZ = rResult.SequenceZ[nOuter].getArray();
     876           0 :             pNewX[0] = aPointsIn[0].first;
     877           0 :             pNewY[0] = aPointsIn[0].second;
     878           0 :             pNewZ[0] = fZCoordinate; // Precondition: z-coordinates of all points of a series are equal
     879           0 :             pNewX[nNewSize -1 ] = aPointsIn[n].first;
     880           0 :             pNewY[nNewSize -1 ] = aPointsIn[n].second;
     881           0 :             pNewZ[nNewSize -1 ] = fZCoordinate;
     882           0 :             boost::scoped_array<double> aP(new double[m+1]);
     883           0 :             lcl_tSizeType nLow = 0;
     884           0 :             for ( lcl_tSizeType nTIndex = 0; nTIndex <= n-1; ++nTIndex)
     885             :             {
     886           0 :                 for (sal_uInt32 nResolutionStep = 1;
     887           0 :                      nResolutionStep <= nResolution && !( nTIndex == n-1 && nResolutionStep == nResolution);
     888             :                      ++nResolutionStep)
     889             :                 {
     890           0 :                     lcl_tSizeType nNewIndex = nTIndex * nResolution + nResolutionStep;
     891           0 :                     double ux = t[nTIndex] + nResolutionStep * ( t[nTIndex+1] - t[nTIndex]) /nResolution;
     892             : 
     893             :                     // get index nLow, so that u[nLow]<= ux < u[nLow +1]
     894             :                     // continue from previous nLow
     895           0 :                     while ( u[nLow] <= ux)
     896             :                     {
     897           0 :                         ++nLow;
     898             :                     }
     899           0 :                     --nLow;
     900             : 
     901             :                     // x-coordinate
     902           0 :                     for (lcl_tSizeType i = nLow-p; i <= nLow; ++i)
     903             :                     {
     904           0 :                         aP[i] = aPointsIn[i].first;
     905             :                     }
     906           0 :                     for (sal_uInt32 lcl_Degree = 1; lcl_Degree <= p; ++lcl_Degree)
     907             :                     {
     908           0 :                         for (lcl_tSizeType i = nLow; i >= nLow + lcl_Degree - p; --i)
     909             :                         {
     910           0 :                             double fFactor = ( ux - u[i] ) / ( u[i+p+1-lcl_Degree] - u[i]);
     911           0 :                             aP[i] = (1 - fFactor)* aP[i-1] + fFactor * aP[i];
     912             :                         }
     913             :                     }
     914           0 :                     pNewX[nNewIndex] = aP[nLow];
     915             : 
     916             :                     // y-coordinate
     917           0 :                     for (lcl_tSizeType i = nLow - p; i <= nLow; ++i)
     918             :                     {
     919           0 :                         aP[i] = aPointsIn[i].second;
     920             :                     }
     921           0 :                     for (sal_uInt32 lcl_Degree = 1; lcl_Degree <= p; ++lcl_Degree)
     922             :                     {
     923           0 :                         for (lcl_tSizeType i = nLow; i >= nLow +lcl_Degree - p; --i)
     924             :                         {
     925           0 :                             double fFactor = ( ux - u[i] ) / ( u[i+p+1-lcl_Degree] - u[i]);
     926           0 :                             aP[i] = (1 - fFactor)* aP[i-1] + fFactor * aP[i];
     927             :                         }
     928             :                     }
     929           0 :                     pNewY[nNewIndex] = aP[nLow];
     930           0 :                     pNewZ[nNewIndex] = fZCoordinate;
     931             :                 }
     932           0 :             }
     933             :         }
     934           0 :         for (lcl_tSizeType row = 0; row <=n; ++row)
     935             :         {
     936           0 :             delete[] aMatN[row];
     937             :         }
     938           0 :     } // next piece of the series
     939             : }
     940             : 
     941             : } //namespace chart
     942             : 
     943             : /* vim:set shiftwidth=4 softtabstop=4 expandtab: */

Generated by: LCOV version 1.11