Line data Source code
1 : /* -*- Mode: C++; tab-width: 4; indent-tabs-mode: nil; c-basic-offset: 4 -*- */
2 : /*
3 : * This file is part of the LibreOffice project.
4 : *
5 : * This Source Code Form is subject to the terms of the Mozilla Public
6 : * License, v. 2.0. If a copy of the MPL was not distributed with this
7 : * file, You can obtain one at http://mozilla.org/MPL/2.0/.
8 : *
9 : * This file incorporates work covered by the following license notice:
10 : *
11 : * Licensed to the Apache Software Foundation (ASF) under one or more
12 : * contributor license agreements. See the NOTICE file distributed
13 : * with this work for additional information regarding copyright
14 : * ownership. The ASF licenses this file to you under the Apache
15 : * License, Version 2.0 (the "License"); you may not use this file
16 : * except in compliance with the License. You may obtain a copy of
17 : * the License at http://www.apache.org/licenses/LICENSE-2.0 .
18 : */
19 :
20 : #include "PlottingPositionHelper.hxx"
21 : #include "CommonConverters.hxx"
22 : #include "ViewDefines.hxx"
23 : #include "Linear3DTransformation.hxx"
24 : #include "VPolarTransformation.hxx"
25 : #include "AbstractShapeFactory.hxx"
26 : #include "PropertyMapper.hxx"
27 : #include "DateHelper.hxx"
28 : #include "defines.hxx"
29 :
30 : #include <com/sun/star/chart/TimeUnit.hpp>
31 : #include <com/sun/star/chart2/AxisType.hpp>
32 : #include <com/sun/star/drawing/DoubleSequence.hpp>
33 : #include <com/sun/star/drawing/Position3D.hpp>
34 :
35 : #include <rtl/math.hxx>
36 :
37 : namespace chart
38 : {
39 : using namespace ::com::sun::star;
40 : using namespace ::com::sun::star::chart2;
41 :
42 5290 : PlottingPositionHelper::PlottingPositionHelper()
43 : : m_aScales()
44 : , m_aMatrixScreenToScene()
45 : , m_xTransformationLogicToScene(NULL)
46 : , m_bSwapXAndY( false )
47 : , m_nXResolution( 1000 )
48 : , m_nYResolution( 1000 )
49 : , m_nZResolution( 1000 )
50 : , m_bMaySkipPointsInRegressionCalculation( true )
51 : , m_bDateAxis(false)
52 : , m_nTimeResolution( ::com::sun::star::chart::TimeUnit::DAY )
53 : , m_aNullDate(30,12,1899)
54 : , m_fScaledCategoryWidth(1.0)
55 : , m_bAllowShiftXAxisPos(false)
56 5290 : , m_bAllowShiftZAxisPos(false)
57 : {
58 5290 : }
59 22 : PlottingPositionHelper::PlottingPositionHelper( const PlottingPositionHelper& rSource )
60 : : m_aScales( rSource.m_aScales )
61 : , m_aMatrixScreenToScene( rSource.m_aMatrixScreenToScene )
62 : , m_xTransformationLogicToScene( NULL ) //should be recalculated
63 : , m_bSwapXAndY( rSource.m_bSwapXAndY )
64 : , m_nXResolution( rSource.m_nXResolution )
65 : , m_nYResolution( rSource.m_nYResolution )
66 : , m_nZResolution( rSource.m_nZResolution )
67 : , m_bMaySkipPointsInRegressionCalculation( rSource.m_bMaySkipPointsInRegressionCalculation )
68 : , m_bDateAxis( rSource.m_bDateAxis )
69 : , m_nTimeResolution( rSource.m_nTimeResolution )
70 : , m_aNullDate( rSource.m_aNullDate )
71 : , m_fScaledCategoryWidth( rSource.m_fScaledCategoryWidth )
72 : , m_bAllowShiftXAxisPos( rSource.m_bAllowShiftXAxisPos )
73 22 : , m_bAllowShiftZAxisPos( rSource.m_bAllowShiftZAxisPos )
74 : {
75 22 : }
76 :
77 9615 : PlottingPositionHelper::~PlottingPositionHelper()
78 : {
79 :
80 9615 : }
81 :
82 18 : PlottingPositionHelper* PlottingPositionHelper::clone() const
83 : {
84 18 : PlottingPositionHelper* pRet = new PlottingPositionHelper(*this);
85 18 : return pRet;
86 : }
87 :
88 22 : PlottingPositionHelper* PlottingPositionHelper::createSecondaryPosHelper( const ExplicitScaleData& rSecondaryScale )
89 : {
90 22 : PlottingPositionHelper* pRet = this->clone();
91 22 : pRet->m_aScales[1]=rSecondaryScale;
92 22 : return pRet;
93 : }
94 :
95 22764 : void PlottingPositionHelper::setTransformationSceneToScreen( const drawing::HomogenMatrix& rMatrix)
96 : {
97 22764 : m_aMatrixScreenToScene = HomogenMatrixToB3DHomMatrix(rMatrix);
98 22764 : m_xTransformationLogicToScene = NULL;
99 22764 : }
100 :
101 8452 : void PlottingPositionHelper::setScales( const std::vector< ExplicitScaleData >& rScales, bool bSwapXAndYAxis )
102 : {
103 8452 : m_aScales = rScales;
104 8452 : m_bSwapXAndY = bSwapXAndYAxis;
105 8452 : m_xTransformationLogicToScene = NULL;
106 8452 : }
107 :
108 112433 : uno::Reference< XTransformation > PlottingPositionHelper::getTransformationScaledLogicToScene() const
109 : {
110 : //this is a standard transformation for a cartesian coordinate system
111 :
112 : //transformation from 2) to 4) //@todo 2) and 4) need a ink to a document
113 :
114 : //we need to apply this transformation to each geometric object because of a bug/problem
115 : //of the old drawing layer (the UNO_NAME_3D_EXTRUDE_DEPTH is an integer value instead of an double )
116 112433 : if(!m_xTransformationLogicToScene.is())
117 : {
118 11267 : ::basegfx::B3DHomMatrix aMatrix;
119 11267 : double MinX = getLogicMinX();
120 11267 : double MinY = getLogicMinY();
121 11267 : double MinZ = getLogicMinZ();
122 11267 : double MaxX = getLogicMaxX();
123 11267 : double MaxY = getLogicMaxY();
124 11267 : double MaxZ = getLogicMaxZ();
125 :
126 11267 : AxisOrientation nXAxisOrientation = m_aScales[0].Orientation;
127 11267 : AxisOrientation nYAxisOrientation = m_aScales[1].Orientation;
128 11267 : AxisOrientation nZAxisOrientation = m_aScales[2].Orientation;
129 :
130 : //apply scaling
131 11267 : doUnshiftedLogicScaling( &MinX, &MinY, &MinZ );
132 11267 : doUnshiftedLogicScaling( &MaxX, &MaxY, &MaxZ);
133 :
134 11267 : if(m_bSwapXAndY)
135 : {
136 286 : std::swap(MinX,MinY);
137 286 : std::swap(MaxX,MaxY);
138 286 : std::swap(nXAxisOrientation,nYAxisOrientation);
139 : }
140 :
141 11267 : double fWidthX = MaxX - MinX;
142 11267 : double fWidthY = MaxY - MinY;
143 11267 : double fWidthZ = MaxZ - MinZ;
144 :
145 11267 : double fScaleDirectionX = AxisOrientation_MATHEMATICAL==nXAxisOrientation ? 1.0 : -1.0;
146 11267 : double fScaleDirectionY = AxisOrientation_MATHEMATICAL==nYAxisOrientation ? 1.0 : -1.0;
147 11267 : double fScaleDirectionZ = AxisOrientation_MATHEMATICAL==nZAxisOrientation ? -1.0 : 1.0;
148 :
149 11267 : double fScaleX = fScaleDirectionX*FIXED_SIZE_FOR_3D_CHART_VOLUME/fWidthX;
150 11267 : double fScaleY = fScaleDirectionY*FIXED_SIZE_FOR_3D_CHART_VOLUME/fWidthY;
151 11267 : double fScaleZ = fScaleDirectionZ*FIXED_SIZE_FOR_3D_CHART_VOLUME/fWidthZ;
152 :
153 11267 : aMatrix.scale(fScaleX, fScaleY, fScaleZ);
154 :
155 11267 : if( AxisOrientation_MATHEMATICAL==nXAxisOrientation )
156 11267 : aMatrix.translate(-MinX*fScaleX, 0.0, 0.0);
157 : else
158 0 : aMatrix.translate(-MaxX*fScaleX, 0.0, 0.0);
159 11267 : if( AxisOrientation_MATHEMATICAL==nYAxisOrientation )
160 10803 : aMatrix.translate(0.0, -MinY*fScaleY, 0.0);
161 : else
162 464 : aMatrix.translate(0.0, -MaxY*fScaleY, 0.0);
163 11267 : if( AxisOrientation_MATHEMATICAL==nZAxisOrientation )
164 11267 : aMatrix.translate(0.0, 0.0, -MaxZ*fScaleZ);//z direction in draw is reverse mathematical direction
165 : else
166 0 : aMatrix.translate(0.0, 0.0, -MinZ*fScaleZ);
167 :
168 11267 : aMatrix = m_aMatrixScreenToScene*aMatrix;
169 :
170 11267 : m_xTransformationLogicToScene = new Linear3DTransformation(B3DHomMatrixToHomogenMatrix( aMatrix ),m_bSwapXAndY);
171 : }
172 112433 : return m_xTransformationLogicToScene;
173 : }
174 :
175 52131 : drawing::Position3D PlottingPositionHelper::transformLogicToScene(
176 : double fX, double fY, double fZ, bool bClip ) const
177 : {
178 52131 : this->doLogicScaling( &fX,&fY,&fZ );
179 52131 : if(bClip)
180 50020 : this->clipScaledLogicValues( &fX,&fY,&fZ );
181 :
182 52131 : return this->transformScaledLogicToScene( fX, fY, fZ, false );
183 : }
184 :
185 106632 : drawing::Position3D PlottingPositionHelper::transformScaledLogicToScene(
186 : double fX, double fY, double fZ, bool bClip ) const
187 : {
188 106632 : if( bClip )
189 53754 : this->clipScaledLogicValues( &fX,&fY,&fZ );
190 :
191 106632 : drawing::Position3D aPos( fX, fY, fZ);
192 :
193 : uno::Reference< XTransformation > xTransformation =
194 106632 : this->getTransformationScaledLogicToScene();
195 : uno::Sequence< double > aSeq =
196 213264 : xTransformation->transform( Position3DToSequence(aPos) );
197 213264 : return SequenceToPosition3D(aSeq);
198 : }
199 :
200 2634 : awt::Point PlottingPositionHelper::transformSceneToScreenPosition( const drawing::Position3D& rScenePosition3D
201 : , const uno::Reference< drawing::XShapes >& xSceneTarget
202 : , AbstractShapeFactory* pShapeFactory
203 : , sal_Int32 nDimensionCount )
204 : {
205 : //@todo would like to have a cheaper method to do this transformation
206 2634 : awt::Point aScreenPoint( static_cast<sal_Int32>(rScenePosition3D.PositionX), static_cast<sal_Int32>(rScenePosition3D.PositionY) );
207 :
208 : //transformation from scene to screen (only necessary for 3D):
209 2634 : if(3==nDimensionCount)
210 : {
211 : //create 3D anchor shape
212 656 : tPropertyNameMap aDummyPropertyNameMap;
213 : uno::Reference< drawing::XShape > xShape3DAnchor = pShapeFactory->createCube( xSceneTarget
214 : , rScenePosition3D,drawing::Direction3D(1,1,1)
215 1312 : , 0, 0, aDummyPropertyNameMap);
216 : //get 2D position from xShape3DAnchor
217 656 : aScreenPoint = xShape3DAnchor->getPosition();
218 1312 : xSceneTarget->remove(xShape3DAnchor);
219 : }
220 2634 : return aScreenPoint;
221 : }
222 :
223 10349 : void PlottingPositionHelper::transformScaledLogicToScene( drawing::PolyPolygonShape3D& rPolygon ) const
224 : {
225 10349 : drawing::Position3D aScenePosition;
226 31051 : for( sal_Int32 nS = rPolygon.SequenceX.getLength(); nS--;)
227 : {
228 10353 : drawing::DoubleSequence& xValues = rPolygon.SequenceX[nS];
229 10353 : drawing::DoubleSequence& yValues = rPolygon.SequenceY[nS];
230 10353 : drawing::DoubleSequence& zValues = rPolygon.SequenceZ[nS];
231 73789 : for( sal_Int32 nP = xValues.getLength(); nP--; )
232 : {
233 53083 : double& fX = xValues[nP];
234 53083 : double& fY = yValues[nP];
235 53083 : double& fZ = zValues[nP];
236 53083 : aScenePosition = this->transformScaledLogicToScene( fX,fY,fZ,true );
237 53083 : fX = aScenePosition.PositionX;
238 53083 : fY = aScenePosition.PositionY;
239 53083 : fZ = aScenePosition.PositionZ;
240 : }
241 : }
242 10349 : }
243 :
244 104549 : void PlottingPositionHelper::clipScaledLogicValues( double* pX, double* pY, double* pZ ) const
245 : {
246 : //get logic clip values:
247 104549 : double MinX = getLogicMinX();
248 104549 : double MinY = getLogicMinY();
249 104549 : double MinZ = getLogicMinZ();
250 104549 : double MaxX = getLogicMaxX();
251 104549 : double MaxY = getLogicMaxY();
252 104549 : double MaxZ = getLogicMaxZ();
253 :
254 : //apply scaling
255 104549 : doUnshiftedLogicScaling( &MinX, &MinY, &MinZ );
256 104549 : doUnshiftedLogicScaling( &MaxX, &MaxY, &MaxZ);
257 :
258 104549 : if(pX)
259 : {
260 104549 : if( *pX < MinX )
261 0 : *pX = MinX;
262 104549 : else if( *pX > MaxX )
263 0 : *pX = MaxX;
264 : }
265 104549 : if(pY)
266 : {
267 104549 : if( *pY < MinY )
268 79 : *pY = MinY;
269 104470 : else if( *pY > MaxY )
270 80 : *pY = MaxY;
271 : }
272 104549 : if(pZ)
273 : {
274 104549 : if( *pZ < MinZ )
275 964 : *pZ = MinZ;
276 103585 : else if( *pZ > MaxZ )
277 0 : *pZ = MaxZ;
278 : }
279 104549 : }
280 :
281 388 : basegfx::B2DRectangle PlottingPositionHelper::getScaledLogicClipDoubleRect() const
282 : {
283 : //get logic clip values:
284 388 : double MinX = getLogicMinX();
285 388 : double MinY = getLogicMinY();
286 388 : double MinZ = getLogicMinZ();
287 388 : double MaxX = getLogicMaxX();
288 388 : double MaxY = getLogicMaxY();
289 388 : double MaxZ = getLogicMaxZ();
290 :
291 : //apply scaling
292 388 : doUnshiftedLogicScaling( &MinX, &MinY, &MinZ );
293 388 : doUnshiftedLogicScaling( &MaxX, &MaxY, &MaxZ);
294 :
295 388 : basegfx::B2DRectangle aRet( MinX, MaxY, MaxX, MinY );
296 388 : return aRet;
297 : }
298 :
299 49 : drawing::Direction3D PlottingPositionHelper::getScaledLogicWidth() const
300 : {
301 49 : drawing::Direction3D aRet;
302 :
303 49 : double MinX = getLogicMinX();
304 49 : double MinY = getLogicMinY();
305 49 : double MinZ = getLogicMinZ();
306 49 : double MaxX = getLogicMaxX();
307 49 : double MaxY = getLogicMaxY();
308 49 : double MaxZ = getLogicMaxZ();
309 :
310 49 : doLogicScaling( &MinX, &MinY, &MinZ );
311 49 : doLogicScaling( &MaxX, &MaxY, &MaxZ);
312 :
313 49 : aRet.DirectionX = MaxX - MinX;
314 49 : aRet.DirectionY = MaxY - MinY;
315 49 : aRet.DirectionZ = MaxZ - MinZ;
316 49 : return aRet;
317 : }
318 :
319 59 : PolarPlottingPositionHelper::PolarPlottingPositionHelper( NormalAxis eNormalAxis )
320 : : m_fRadiusOffset(0.0)
321 : , m_fAngleDegreeOffset(90.0)
322 : , m_aUnitCartesianToScene()
323 59 : , m_eNormalAxis(eNormalAxis)
324 : {
325 59 : m_bMaySkipPointsInRegressionCalculation = false;
326 59 : }
327 :
328 0 : PolarPlottingPositionHelper::PolarPlottingPositionHelper( const PolarPlottingPositionHelper& rSource )
329 : : PlottingPositionHelper(rSource)
330 : , m_fRadiusOffset( rSource.m_fRadiusOffset )
331 : , m_fAngleDegreeOffset( rSource.m_fAngleDegreeOffset )
332 : , m_aUnitCartesianToScene( rSource.m_aUnitCartesianToScene )
333 0 : , m_eNormalAxis( rSource.m_eNormalAxis )
334 : {
335 0 : }
336 :
337 81 : PolarPlottingPositionHelper::~PolarPlottingPositionHelper()
338 : {
339 81 : }
340 :
341 0 : PlottingPositionHelper* PolarPlottingPositionHelper::clone() const
342 : {
343 0 : PolarPlottingPositionHelper* pRet = new PolarPlottingPositionHelper(*this);
344 0 : return pRet;
345 : }
346 :
347 138 : void PolarPlottingPositionHelper::setTransformationSceneToScreen( const drawing::HomogenMatrix& rMatrix)
348 : {
349 138 : PlottingPositionHelper::setTransformationSceneToScreen( rMatrix);
350 138 : m_aUnitCartesianToScene =impl_calculateMatrixUnitCartesianToScene( m_aMatrixScreenToScene );
351 138 : }
352 67 : void PolarPlottingPositionHelper::setScales( const std::vector< ExplicitScaleData >& rScales, bool bSwapXAndYAxis )
353 : {
354 67 : PlottingPositionHelper::setScales( rScales, bSwapXAndYAxis );
355 67 : m_aUnitCartesianToScene =impl_calculateMatrixUnitCartesianToScene( m_aMatrixScreenToScene );
356 67 : }
357 :
358 205 : ::basegfx::B3DHomMatrix PolarPlottingPositionHelper::impl_calculateMatrixUnitCartesianToScene( const ::basegfx::B3DHomMatrix& rMatrixScreenToScene ) const
359 : {
360 205 : ::basegfx::B3DHomMatrix aRet;
361 :
362 205 : if( m_aScales.empty() )
363 26 : return aRet;
364 :
365 179 : double fTranslate =1.0;
366 179 : double fScale =FIXED_SIZE_FOR_3D_CHART_VOLUME/2.0;
367 :
368 179 : double fTranslateLogicZ =fTranslate;
369 179 : double fScaleLogicZ =fScale;
370 : {
371 179 : double fScaleDirectionZ = AxisOrientation_MATHEMATICAL==m_aScales[2].Orientation ? 1.0 : -1.0;
372 179 : double MinZ = getLogicMinZ();
373 179 : double MaxZ = getLogicMaxZ();
374 179 : doLogicScaling( 0, 0, &MinZ );
375 179 : doLogicScaling( 0, 0, &MaxZ );
376 179 : double fWidthZ = MaxZ - MinZ;
377 :
378 179 : if( AxisOrientation_MATHEMATICAL==m_aScales[2].Orientation )
379 179 : fTranslateLogicZ=MinZ;
380 : else
381 0 : fTranslateLogicZ=MaxZ;
382 179 : fScaleLogicZ = fScaleDirectionZ*FIXED_SIZE_FOR_3D_CHART_VOLUME/fWidthZ;
383 : }
384 :
385 179 : double fTranslateX = fTranslate;
386 179 : double fTranslateY = fTranslate;
387 179 : double fTranslateZ = fTranslate;
388 :
389 179 : double fScaleX = fScale;
390 179 : double fScaleY = fScale;
391 179 : double fScaleZ = fScale;
392 :
393 179 : switch(m_eNormalAxis)
394 : {
395 : case NormalAxis_X:
396 : {
397 0 : fTranslateX = fTranslateLogicZ;
398 0 : fScaleX = fScaleLogicZ;
399 : }
400 0 : break;
401 : case NormalAxis_Y:
402 : {
403 0 : fTranslateY = fTranslateLogicZ;
404 0 : fScaleY = fScaleLogicZ;
405 : }
406 0 : break;
407 : default: //NormalAxis_Z:
408 : {
409 179 : fTranslateZ = fTranslateLogicZ;
410 179 : fScaleZ = fScaleLogicZ;
411 : }
412 179 : break;
413 : }
414 :
415 179 : aRet.translate(fTranslateX, fTranslateY, fTranslateZ);//x first
416 179 : aRet.scale(fScaleX, fScaleY, fScaleZ);//x first
417 :
418 179 : aRet = rMatrixScreenToScene * aRet;
419 179 : return aRet;
420 : }
421 :
422 0 : uno::Reference< XTransformation > PolarPlottingPositionHelper::getTransformationScaledLogicToScene() const
423 : {
424 0 : if( !m_xTransformationLogicToScene.is() )
425 0 : m_xTransformationLogicToScene = new VPolarTransformation(*this);
426 0 : return m_xTransformationLogicToScene;
427 : }
428 :
429 336 : double PolarPlottingPositionHelper::getWidthAngleDegree( double& fStartLogicValueOnAngleAxis, double& fEndLogicValueOnAngleAxis ) const
430 : {
431 336 : const ExplicitScaleData& rAngleScale = m_bSwapXAndY ? m_aScales[1] : m_aScales[0];
432 336 : if( AxisOrientation_MATHEMATICAL != rAngleScale.Orientation )
433 : {
434 224 : double fHelp = fEndLogicValueOnAngleAxis;
435 224 : fEndLogicValueOnAngleAxis = fStartLogicValueOnAngleAxis;
436 224 : fStartLogicValueOnAngleAxis = fHelp;
437 : }
438 :
439 336 : double fStartAngleDegree = this->transformToAngleDegree( fStartLogicValueOnAngleAxis );
440 336 : double fEndAngleDegree = this->transformToAngleDegree( fEndLogicValueOnAngleAxis );
441 336 : double fWidthAngleDegree = fEndAngleDegree - fStartAngleDegree;
442 :
443 672 : if( ::rtl::math::approxEqual( fStartAngleDegree, fEndAngleDegree )
444 336 : && !::rtl::math::approxEqual( fStartLogicValueOnAngleAxis, fEndLogicValueOnAngleAxis ) )
445 0 : fWidthAngleDegree = 360.0;
446 :
447 746 : while(fWidthAngleDegree<0.0)
448 74 : fWidthAngleDegree+=360.0;
449 672 : while(fWidthAngleDegree>360.0)
450 0 : fWidthAngleDegree-=360.0;
451 :
452 336 : return fWidthAngleDegree;
453 : }
454 :
455 : //This method does a lot of computation for understanding which scale to
456 : //utilize and if reverse orientation should be used. Indeed, for a pie or donut,
457 : //the final result is as simple as multiplying by 360 and adding
458 : //`m_fAngleDegreeOffset`.
459 1300 : double PolarPlottingPositionHelper::transformToAngleDegree( double fLogicValueOnAngleAxis, bool bDoScaling ) const
460 : {
461 1300 : double fRet=0.0;
462 :
463 1300 : double fAxisAngleScaleDirection = 1.0;
464 : {
465 1300 : const ExplicitScaleData& rScale = m_bSwapXAndY ? m_aScales[1] : m_aScales[0];
466 1300 : if(AxisOrientation_MATHEMATICAL != rScale.Orientation)
467 818 : fAxisAngleScaleDirection *= -1.0;
468 : }
469 :
470 1300 : double MinAngleValue = 0.0;
471 1300 : double MaxAngleValue = 0.0;
472 : {
473 1300 : double MinX = getLogicMinX();
474 1300 : double MinY = getLogicMinY();
475 1300 : double MaxX = getLogicMaxX();
476 1300 : double MaxY = getLogicMaxY();
477 1300 : double MinZ = getLogicMinZ();
478 1300 : double MaxZ = getLogicMaxZ();
479 :
480 1300 : doLogicScaling( &MinX, &MinY, &MinZ );
481 1300 : doLogicScaling( &MaxX, &MaxY, &MaxZ);
482 :
483 1300 : MinAngleValue = m_bSwapXAndY ? MinY : MinX;
484 1300 : MaxAngleValue = m_bSwapXAndY ? MaxY : MaxX;
485 : }
486 :
487 1300 : double fScaledLogicAngleValue = 0.0;
488 1300 : if(bDoScaling)
489 : {
490 1272 : double fX = m_bSwapXAndY ? getLogicMaxX() : fLogicValueOnAngleAxis;
491 1272 : double fY = m_bSwapXAndY ? fLogicValueOnAngleAxis : getLogicMaxY();
492 1272 : double fZ = getLogicMaxZ();
493 1272 : clipLogicValues( &fX, &fY, &fZ );
494 1272 : doLogicScaling( &fX, &fY, &fZ );
495 1272 : fScaledLogicAngleValue = m_bSwapXAndY ? fY : fX;
496 : }
497 : else
498 28 : fScaledLogicAngleValue = fLogicValueOnAngleAxis;
499 :
500 : fRet = m_fAngleDegreeOffset
501 1300 : + fAxisAngleScaleDirection*(fScaledLogicAngleValue-MinAngleValue)*360.0
502 1300 : /fabs(MaxAngleValue-MinAngleValue);
503 2750 : while(fRet>360.0)
504 150 : fRet-=360.0;
505 3254 : while(fRet<0)
506 654 : fRet+=360.0;
507 1300 : return fRet;
508 : }
509 :
510 : /**
511 : * Given a value in the radius axis scale range, it returns, in the simplest
512 : * case (that is when `m_fRadiusOffset` is zero), the normalized value; when
513 : * `m_fRadiusOffset` is not zero (e.g. as in the case of a donut), the interval
514 : * used for normalization is extended by `m_fRadiusOffset`: if the axis
515 : * orientation is not reversed the new interval becomes
516 : * [scale.Minimum - m_fRadiusOffset, scale.Maximum] else it becomes
517 : * [scale.Minimum, scale.Maximum + m_fRadiusOffset].
518 : * Pay attention here! For the latter case, since the axis orientation is
519 : * reversed, the normalization is reversed too. Indeed, we have
520 : * `transformToRadius(scale.Maximum + m_fRadiusOffset) = 0` and
521 : * `transformToRadius(scale.Minimum) = 1`.
522 : *
523 : * For a pie chart the radius axis scale range is initialized by the
524 : * `getMinimum` and `getMaximum` methods of the `PieChart` object (see notes
525 : * for `VCoordinateSystem::prepareAutomaticAxisScaling`).
526 : * So we have scale.Minimum = 0.5 (always constant!) and
527 : * scale.Maximum = 0.5 + number_of_rings + max_offset
528 : * (see notes for `PieChart::getMaxOffset`).
529 : * Hence we get the following general formulas for computing normalized inner
530 : * and outer radius:
531 : *
532 : * 1- transformToRadius(inner_radius) =
533 : * (number_of_rings - (ring_index + 1) + m_fRadiusOffset)
534 : * / (number_of_rings + max_offset + m_fRadiusOffset)
535 : *
536 : * 2- transformToRadius(outer_radius) =
537 : * (1 + number_of_rings - (ring_index + 1) + m_fRadiusOffset)
538 : * / (number_of_rings + max_offset + m_fRadiusOffset).
539 : *
540 : * Here you have to take into account that values for inner and outer radius
541 : * are swapped since the radius axis is reversed (See notes for
542 : * `PiePositionHelper::getInnerAndOuterRadius`). So indeed inner_radius is
543 : * the outer and outer_radius is the inner. Anyway still because of the reverse
544 : * orientation, the normalization performed by `transformToRadius` is reversed
545 : * too, as we have seen above. Hence `transformToRadius(inner_radius)` is
546 : * really the normalized inner radius and `transformToRadius(outer_radius)` is
547 : * really the normalized outer radius.
548 : *
549 : * Some basic examples where we apply the above formulas:
550 : * 1- For a non-exploded pie chart we have:
551 : * `transformToRadius(inner_radius) = 0`,
552 : * `transformToRadius(outer_radius) = 1`.
553 : * 2- For a non-exploded donut with a single ring we have:
554 : * `transformToRadius(inner_radius) =
555 : * m_fRadiusOffset/(1 + m_fRadiusOffset)`,
556 : * `transformToRadius(outer_radius) =
557 : * (1 + m_fRadiusOffset)/(1 + m_fRadiusOffset) = 1`.
558 : * 3- For an exploded pie chart we have:
559 : * `transformToRadius(inner_radius) = 0/(1 + max_offset) = 0`,
560 : * `transformToRadius(outer_radius) = 1/(1 + max_offset)`.
561 : *
562 : * The third example needs some remark. Both the logical inner and outer
563 : * radius passed to `transformToRadius` are offset by `max_offset`.
564 : * However the returned normalized values do not contain any (normalized)
565 : * offset term at all, otherwise the returned values would be
566 : * `max_offset/(1 + max_offset)` and `1`. Hence, for exploded pie/donut,
567 : * `transformToRadius` returns the normalized value of radii without any
568 : * offset term. These values are smaller than in the non-exploded case by an
569 : * amount equals to the value of the normalized maximum offset
570 : * (`max_offset/(1 + max_offset)` in the example above). That is due to the
571 : * fact that the normalization keeps into account the space needed for the
572 : * offset. This is the correct behavior, in fact the offset for the current
573 : * slice could be different from the maximum offset.
574 : * These remarks should clarify why the `PieChart::createDataPoint` and
575 : * `PieChart::createTextLabelShape` methods add the normalized offset (for the
576 : * current slice) to the normalized radii in order to achieve the correct
577 : * placement of slice and text shapes.
578 : */
579 964 : double PolarPlottingPositionHelper::transformToRadius( double fLogicValueOnRadiusAxis, bool bDoScaling ) const
580 : {
581 964 : double fNormalRadius = 0.0;
582 : {
583 964 : double fScaledLogicRadiusValue = 0.0;
584 964 : double fX = m_bSwapXAndY ? fLogicValueOnRadiusAxis: getLogicMaxX();
585 964 : double fY = m_bSwapXAndY ? getLogicMaxY() : fLogicValueOnRadiusAxis;
586 964 : if(bDoScaling)
587 936 : doLogicScaling( &fX, &fY, 0 );
588 :
589 964 : fScaledLogicRadiusValue = m_bSwapXAndY ? fX : fY;
590 :
591 964 : bool bMinIsInnerRadius = true;
592 964 : const ExplicitScaleData& rScale = m_bSwapXAndY ? m_aScales[0] : m_aScales[1];
593 964 : if(AxisOrientation_MATHEMATICAL != rScale.Orientation)
594 224 : bMinIsInnerRadius = false;
595 :
596 964 : double fInnerScaledLogicRadius=0.0;
597 964 : double fOuterScaledLogicRadius=0.0;
598 : {
599 964 : double MinX = getLogicMinX();
600 964 : double MinY = getLogicMinY();
601 964 : doLogicScaling( &MinX, &MinY, 0 );
602 964 : double MaxX = getLogicMaxX();
603 964 : double MaxY = getLogicMaxY();
604 964 : doLogicScaling( &MaxX, &MaxY, 0 );
605 :
606 964 : double fMin = m_bSwapXAndY ? MinX : MinY;
607 964 : double fMax = m_bSwapXAndY ? MaxX : MaxY;
608 :
609 964 : fInnerScaledLogicRadius = bMinIsInnerRadius ? fMin : fMax;
610 964 : fOuterScaledLogicRadius = bMinIsInnerRadius ? fMax : fMin;
611 : }
612 :
613 964 : if( bMinIsInnerRadius )
614 740 : fInnerScaledLogicRadius -= fabs(m_fRadiusOffset);
615 : else
616 224 : fInnerScaledLogicRadius += fabs(m_fRadiusOffset);
617 964 : fNormalRadius = (fScaledLogicRadiusValue-fInnerScaledLogicRadius)/(fOuterScaledLogicRadius-fInnerScaledLogicRadius);
618 : }
619 964 : return fNormalRadius;
620 : }
621 :
622 148 : drawing::Position3D PolarPlottingPositionHelper::transformLogicToScene( double fX, double fY, double fZ, bool bClip ) const
623 : {
624 148 : if(bClip)
625 128 : this->clipLogicValues( &fX,&fY,&fZ );
626 148 : double fLogicValueOnAngleAxis = m_bSwapXAndY ? fY : fX;
627 148 : double fLogicValueOnRadiusAxis = m_bSwapXAndY ? fX : fY;
628 148 : return this->transformAngleRadiusToScene( fLogicValueOnAngleAxis, fLogicValueOnRadiusAxis, fZ, true );
629 : }
630 :
631 28 : drawing::Position3D PolarPlottingPositionHelper::transformScaledLogicToScene( double fX, double fY, double fZ, bool bClip ) const
632 : {
633 28 : if(bClip)
634 28 : this->clipScaledLogicValues( &fX,&fY,&fZ );
635 28 : double fLogicValueOnAngleAxis = m_bSwapXAndY ? fY : fX;
636 28 : double fLogicValueOnRadiusAxis = m_bSwapXAndY ? fX : fY;
637 28 : return this->transformAngleRadiusToScene( fLogicValueOnAngleAxis, fLogicValueOnRadiusAxis, fZ, false );
638 : }
639 1436 : drawing::Position3D PolarPlottingPositionHelper::transformUnitCircleToScene( double fUnitAngleDegree, double fUnitRadius
640 : , double fLogicZ, bool /* bDoScaling */ ) const
641 : {
642 1436 : double fAnglePi = fUnitAngleDegree*F_PI/180.0;
643 :
644 1436 : double fX=fUnitRadius*rtl::math::cos(fAnglePi);
645 1436 : double fY=fUnitRadius*rtl::math::sin(fAnglePi);
646 1436 : double fZ=fLogicZ;
647 :
648 1436 : switch(m_eNormalAxis)
649 : {
650 : case NormalAxis_X:
651 0 : std::swap(fX,fZ);
652 0 : break;
653 : case NormalAxis_Y:
654 0 : std::swap(fY,fZ);
655 0 : fZ*=-1;
656 0 : break;
657 : default: //NormalAxis_Z
658 1436 : break;
659 : }
660 :
661 : //!! applying matrix to vector does ignore translation, so it is important to use a B3DPoint here instead of B3DVector
662 1436 : ::basegfx::B3DPoint aPoint(fX,fY,fZ);
663 2872 : ::basegfx::B3DPoint aRet = m_aUnitCartesianToScene * aPoint;
664 2872 : return B3DPointToPosition3D(aRet);
665 : }
666 :
667 224 : drawing::Position3D PolarPlottingPositionHelper::transformAngleRadiusToScene( double fLogicValueOnAngleAxis, double fLogicValueOnRadiusAxis, double fLogicZ, bool bDoScaling ) const
668 : {
669 224 : double fUnitAngleDegree = this->transformToAngleDegree(fLogicValueOnAngleAxis,bDoScaling);
670 224 : double fUnitRadius = this->transformToRadius(fLogicValueOnRadiusAxis,bDoScaling);
671 :
672 224 : return transformUnitCircleToScene( fUnitAngleDegree, fUnitRadius, fLogicZ, bDoScaling );
673 : }
674 :
675 10 : double PolarPlottingPositionHelper::getOuterLogicRadius() const
676 : {
677 10 : const ExplicitScaleData& rScale = m_bSwapXAndY ? m_aScales[0] : m_aScales[1];
678 10 : if( AxisOrientation_MATHEMATICAL==rScale.Orientation )
679 10 : return rScale.Maximum;
680 : else
681 0 : return rScale.Minimum;
682 : }
683 :
684 44124 : bool PlottingPositionHelper::isPercentY() const
685 : {
686 44124 : return m_aScales[1].AxisType==AxisType::PERCENT;
687 : }
688 :
689 10348 : double PlottingPositionHelper::getBaseValueY() const
690 : {
691 10348 : return m_aScales[1].Origin;
692 : }
693 :
694 13359 : void PlottingPositionHelper::setTimeResolution( long nTimeResolution, const Date& rNullDate )
695 : {
696 13359 : m_nTimeResolution = nTimeResolution;
697 13359 : m_aNullDate = rNullDate;
698 :
699 : //adapt category width
700 13359 : double fCategoryWidth = 1.0;
701 13359 : if( !m_aScales.empty() )
702 : {
703 13359 : if( m_aScales[0].AxisType == ::com::sun::star::chart2::AxisType::DATE )
704 : {
705 0 : m_bDateAxis = true;
706 0 : if( nTimeResolution == ::com::sun::star::chart::TimeUnit::YEAR )
707 : {
708 0 : const double fMonthCount = 12.0;//todo: this depends on the DateScaling and must be adjusted in case we use more generic calendars in future
709 0 : fCategoryWidth = fMonthCount;
710 : }
711 : }
712 : }
713 13359 : setScaledCategoryWidth(fCategoryWidth);
714 13359 : }
715 :
716 2866 : void PlottingPositionHelper::setScaledCategoryWidth( double fScaledCategoryWidth )
717 : {
718 2866 : m_fScaledCategoryWidth = fScaledCategoryWidth;
719 2866 : }
720 1034 : void PlottingPositionHelper::AllowShiftXAxisPos( bool bAllowShift )
721 : {
722 1034 : m_bAllowShiftXAxisPos = bAllowShift;
723 1034 : }
724 1034 : void PlottingPositionHelper::AllowShiftZAxisPos( bool bAllowShift )
725 : {
726 1034 : m_bAllowShiftZAxisPos = bAllowShift;
727 1034 : }
728 :
729 : }
730 :
731 : /* vim:set shiftwidth=4 softtabstop=4 expandtab: */
|