LCOV - code coverage report
Current view: top level - i18npool/source/calendar - calendar_hijri.cxx (source / functions) Hit Total Coverage
Test: commit c8344322a7af75b84dd3ca8f78b05543a976dfd5 Lines: 0 127 0.0 %
Date: 2015-06-13 12:38:46 Functions: 0 8 0.0 %
Legend: Lines: hit not hit

          Line data    Source code
       1             : /* -*- Mode: C++; tab-width: 4; indent-tabs-mode: nil; c-basic-offset: 4 -*- */
       2             : /*
       3             :  * This file is part of the LibreOffice project.
       4             :  *
       5             :  * This Source Code Form is subject to the terms of the Mozilla Public
       6             :  * License, v. 2.0. If a copy of the MPL was not distributed with this
       7             :  * file, You can obtain one at http://mozilla.org/MPL/2.0/.
       8             :  *
       9             :  * This file incorporates work covered by the following license notice:
      10             :  *
      11             :  *   Licensed to the Apache Software Foundation (ASF) under one or more
      12             :  *   contributor license agreements. See the NOTICE file distributed
      13             :  *   with this work for additional information regarding copyright
      14             :  *   ownership. The ASF licenses this file to you under the Apache
      15             :  *   License, Version 2.0 (the "License"); you may not use this file
      16             :  *   except in compliance with the License. You may obtain a copy of
      17             :  *   the License at http://www.apache.org/licenses/LICENSE-2.0 .
      18             :  */
      19             : 
      20             : 
      21             : #include <stdlib.h>
      22             : #include <math.h>
      23             : 
      24             : #include "calendar_hijri.hxx"
      25             : 
      26             : using namespace ::com::sun::star::uno;
      27             : using namespace ::com::sun::star::lang;
      28             : 
      29             : #define GREGORIAN_CROSSOVER 2299161
      30             : 
      31             : namespace com { namespace sun { namespace star { namespace i18n {
      32             : 
      33             : // not used
      34             : //static UErrorCode status; // status is shared in all calls to Calendar, it has to be reset for each call.
      35             : 
      36             : // radians per degree (pi/180)
      37             : const double Calendar_hijri::RadPerDeg      = 0.01745329251994329577;
      38             : 
      39             : // Synodic Period (mean time between 2 successive new moon: 29d, 12 hr, 44min, 3sec
      40             : const double Calendar_hijri::SynPeriod      = 29.53058868;
      41             : const double Calendar_hijri::SynMonth       = 365.25/29.53058868;   // Solar days in a year/SynPeriod
      42             : 
      43             : // Julian day on Jan 1, 1900
      44             : const double Calendar_hijri::jd1900     = 2415020.75933;
      45             : 
      46             : // Reference point: March 26, 2001 == 1422 Hijri == 1252 Synodial month from 1900
      47             : const sal_Int32 Calendar_hijri::SynRef      = 1252;
      48             : const sal_Int32 Calendar_hijri::GregRef     = 1422;
      49             : 
      50             : // Local time specific to Saudi Arabia
      51             : const double Calendar_hijri::SA_TimeZone    = 3.0;
      52             : 
      53             : const double Calendar_hijri::EveningPeriod  = 6.0;
      54             : 
      55             : const sal_Int32 Calendar_hijri::LeapYear[] = {
      56             :     2, 5, 7, 10, 13, 16, 18, 21, 24, 26, 29
      57             : };
      58             : 
      59           0 : Calendar_hijri::Calendar_hijri()
      60             : {
      61           0 :     cCalendar = "com.sun.star.i18n.Calendar_hijri";
      62           0 : }
      63             : 
      64             : #define FIELDS  ((1 << CalendarFieldIndex::ERA) | (1 << CalendarFieldIndex::YEAR) | (1 << CalendarFieldIndex::MONTH) | (1 << CalendarFieldIndex::DAY_OF_MONTH))
      65             : 
      66             : // map field value from hijri calendar to gregorian calendar
      67           0 : void Calendar_hijri::mapToGregorian() throw(RuntimeException)
      68             : {
      69           0 :     if (fieldSet & FIELDS) {
      70           0 :         sal_Int32 day = (sal_Int32)fieldSetValue[CalendarFieldIndex::DAY_OF_MONTH];
      71           0 :         sal_Int32 month = (sal_Int32)fieldSetValue[CalendarFieldIndex::MONTH] + 1;
      72           0 :         sal_Int32 year = (sal_Int32)fieldSetValue[CalendarFieldIndex::YEAR];
      73           0 :         if (fieldSetValue[CalendarFieldIndex::ERA] == 0)
      74           0 :             year *= -1;
      75             : 
      76           0 :         ToGregorian(&day, &month, &year);
      77             : 
      78           0 :         fieldSetValue[CalendarFieldIndex::ERA] = year <= 0 ? 0 : 1;
      79           0 :         fieldSetValue[CalendarFieldIndex::MONTH] = sal::static_int_cast<sal_Int16>(month - 1);
      80           0 :         fieldSetValue[CalendarFieldIndex::DAY_OF_MONTH] = (sal_Int16) day;
      81           0 :         fieldSetValue[CalendarFieldIndex::YEAR] = (sal_Int16) abs(year);
      82           0 :         fieldSet |= FIELDS;
      83             :     }
      84           0 : }
      85             : 
      86             : // map field value from gregorian calendar to hijri calendar
      87           0 : void Calendar_hijri::mapFromGregorian() throw(RuntimeException)
      88             : {
      89             :     sal_Int32 month, day, year;
      90             : 
      91           0 :     day = (sal_Int32)fieldValue[CalendarFieldIndex::DAY_OF_MONTH];
      92           0 :     month = (sal_Int32)fieldValue[CalendarFieldIndex::MONTH] + 1;
      93           0 :     year = (sal_Int32)fieldValue[CalendarFieldIndex::YEAR];
      94           0 :     if (fieldValue[CalendarFieldIndex::ERA] == 0)
      95           0 :         year *= -1;
      96             : 
      97             :     // Get Hijri date
      98           0 :     getHijri(&day, &month, &year);
      99             : 
     100           0 :     fieldValue[CalendarFieldIndex::DAY_OF_MONTH] = (sal_Int16)day;
     101           0 :     fieldValue[CalendarFieldIndex::MONTH] = sal::static_int_cast<sal_Int16>(month - 1);
     102           0 :     fieldValue[CalendarFieldIndex::YEAR] = (sal_Int16) abs(year);
     103           0 :     fieldValue[CalendarFieldIndex::ERA] = (sal_Int16) year < 1 ? 0 : 1;
     104           0 : }
     105             : 
     106             : 
     107             : // This function returns the Julian date/time of the Nth new moon since
     108             : // January 1900.  The synodic month is passed as parameter.
     109             : 
     110             : // Adapted from "Astronomical  Formulae for Calculators" by
     111             : // Jean Meeus, Third Edition, Willmann-Bell, 1985.
     112             : 
     113             : double
     114           0 : Calendar_hijri::NewMoon(sal_Int32 n)
     115             : {
     116             :     double jd, t, t2, t3, k, ma, sa, tf, xtra;
     117           0 :     k = n;
     118           0 :     t = k/1236.85;  // Time in Julian centuries from 1900 January 0.5
     119           0 :     t2 = t * t;
     120           0 :     t3 = t2 * t;
     121             : 
     122             :     // Mean time of phase
     123             :     jd =  jd1900
     124           0 :         + SynPeriod * k
     125           0 :         - 0.0001178 * t2
     126           0 :         - 0.000000155 * t3
     127           0 :         + 0.00033 * sin(RadPerDeg * (166.56 + 132.87 * t - 0.009173 * t2));
     128             : 
     129             :     // Sun's mean anomaly in radian
     130             :     sa =  RadPerDeg * (359.2242
     131           0 :                 + 29.10535608 * k
     132           0 :                 - 0.0000333 * t2
     133           0 :                 - 0.00000347 * t3);
     134             : 
     135             :     // Moon's mean anomaly
     136             :     ma =  RadPerDeg * (306.0253
     137           0 :                 + 385.81691806 * k
     138           0 :                 + 0.0107306 * t2
     139           0 :                 + 0.00001236 * t3);
     140             : 
     141             :     // Moon's argument of latitude
     142             :     tf = RadPerDeg * 2.0 * (21.2964
     143           0 :                 + 390.67050646 * k
     144           0 :                 - 0.0016528 * t2
     145           0 :                 - 0.00000239 * t3);
     146             : 
     147             :     // should reduce to interval between 0 to 1.0 before calculating further
     148             :     // Corrections for New Moon
     149           0 :     xtra = (0.1734 - 0.000393 * t) * sin(sa)
     150           0 :         + 0.0021 * sin(sa * 2)
     151           0 :         - 0.4068 * sin(ma)
     152           0 :         + 0.0161 * sin(2 * ma)
     153           0 :         - 0.0004 * sin(3 * ma)
     154           0 :         + 0.0104 * sin(tf)
     155           0 :         - 0.0051 * sin(sa + ma)
     156           0 :         - 0.0074 * sin(sa - ma)
     157           0 :         + 0.0004 * sin(tf + sa)
     158           0 :         - 0.0004 * sin(tf - sa)
     159           0 :         - 0.0006 * sin(tf + ma)
     160           0 :         + 0.0010 * sin(tf - ma)
     161           0 :         + 0.0005 * sin(sa + 2 * ma);
     162             : 
     163             :     // convert from Ephemeris Time (ET) to (approximate) Universal Time (UT)
     164           0 :     jd += xtra - (0.41 + 1.2053 * t + 0.4992 * t2)/1440;
     165             : 
     166           0 :     return jd;
     167             : }
     168             : 
     169             : // Get Hijri Date
     170             : void
     171           0 : Calendar_hijri::getHijri(sal_Int32 *day, sal_Int32 *month, sal_Int32 *year)
     172             : {
     173             :     double prevday;
     174             : //  double dayfraction;
     175             :     sal_Int32 syndiff;
     176             :     sal_Int32 newsyn;
     177             :     double newjd;
     178             :     double julday;
     179             :     sal_Int32 synmonth;
     180             : 
     181             :     // Get Julian Day from Gregorian
     182           0 :     julday = getJulianDay(*day, *month, *year);
     183             : 
     184             :     // obtain approx. of how many Synodic months since the beginning of the year 1900
     185           0 :     synmonth = (sal_Int32)(0.5 + (julday - jd1900)/SynPeriod);
     186             : 
     187           0 :     newsyn = synmonth;
     188           0 :     prevday = (sal_Int32)julday - 0.5;
     189             : 
     190           0 :     do {
     191           0 :         newjd = NewMoon(newsyn);
     192             : 
     193             :         // Decrement syndonic months
     194           0 :         newsyn--;
     195             :     } while (newjd > prevday);
     196           0 :     newsyn++;
     197             : 
     198             :     // difference from reference point
     199           0 :     syndiff = newsyn - SynRef;
     200             : 
     201             :     // Round up the day
     202           0 :     *day = (sal_Int32)(((sal_Int32)julday) - newjd + 0.5);
     203           0 :     *month =  (syndiff % 12) + 1;
     204             : 
     205             :     // currently not supported
     206             :     //dayOfYear = (sal_Int32)(month * SynPeriod + day);
     207           0 :     *year = GregRef + (sal_Int32)(syndiff / 12);
     208             : 
     209             :     // If month negative, consider it previous year
     210           0 :     if (syndiff != 0 && *month <= 0) {
     211           0 :         *month += 12;
     212           0 :         (*year)--;
     213             :     }
     214             : 
     215             :     // If Before Hijri subtract 1
     216           0 :     if (*year <= 0) (*year)--;
     217           0 : }
     218             : 
     219             : void
     220           0 : Calendar_hijri::ToGregorian(sal_Int32 *day, sal_Int32 *month, sal_Int32 *year)
     221             : {
     222             :     sal_Int32 nmonth;
     223             : //    double dayfraction;
     224             :     double jday;
     225             : //    sal_Int32 dayint;
     226             : 
     227           0 :     if ( *year < 0 ) (*year)++;
     228             : 
     229             :     // Number of month from reference point
     230           0 :     nmonth = *month + *year * 12 - (GregRef * 12 + 1);
     231             : 
     232             :     // Add Synodic Reference point
     233           0 :     nmonth += SynRef;
     234             : 
     235             :     // Get Julian days add time too
     236           0 :     jday = NewMoon(nmonth) + *day;
     237             : 
     238             :     // Round-up
     239           0 :     jday = (double)((sal_Int32)(jday + 0.5));
     240             : 
     241             :     // Use algorithm from "Numerical Recipes in C"
     242           0 :     getGregorianDay((sal_Int32)jday, day, month, year);
     243             : 
     244             :     // Julian -> Gregorian only works for non-negative year
     245           0 :     if ( *year <= 0 ) {
     246           0 :     *day = -1;
     247           0 :     *month = -1;
     248           0 :     *year = -1;
     249             :     }
     250           0 : }
     251             : 
     252             : /* this algorithm is taken from "Numerical Recipes in C", 2nd ed, pp 14-15. */
     253             : /* this algorithm only valid for non-negative gregorian year                */
     254             : void
     255           0 : Calendar_hijri::getGregorianDay(sal_Int32 lJulianDay, sal_Int32 *pnDay, sal_Int32 *pnMonth, sal_Int32 *pnYear)
     256             : {
     257             :     /* working variables */
     258             :     long lFactorA, lFactorB, lFactorC, lFactorD, lFactorE;
     259             : 
     260             :     /* test whether to adjust for the Gregorian calendar crossover */
     261           0 :     if (lJulianDay >= GREGORIAN_CROSSOVER) {
     262             :     /* calculate a small adjustment */
     263           0 :     long lAdjust = (long) (((float) (lJulianDay - 1867216) - 0.25) / 36524.25);
     264             : 
     265           0 :     lFactorA = lJulianDay + 1 + lAdjust - ((long) (0.25 * lAdjust));
     266             : 
     267             :     } else {
     268             :     /* no adjustment needed */
     269           0 :     lFactorA = lJulianDay;
     270             :     }
     271             : 
     272           0 :     lFactorB = lFactorA + 1524;
     273           0 :     lFactorC = (long) (6680.0 + ((float) (lFactorB - 2439870) - 122.1) / 365.25);
     274           0 :     lFactorD = (long) (365 * lFactorC + (0.25 * lFactorC));
     275           0 :     lFactorE = (long) ((lFactorB - lFactorD) / 30.6001);
     276             : 
     277             :     /* now, pull out the day number */
     278           0 :     *pnDay = lFactorB - lFactorD - (long) (30.6001 * lFactorE);
     279             : 
     280             :     /* ...and the month, adjusting it if necessary */
     281           0 :     *pnMonth = lFactorE - 1;
     282           0 :     if (*pnMonth > 12)
     283           0 :         (*pnMonth) -= 12;
     284             : 
     285             :     /* ...and similarly for the year */
     286           0 :     *pnYear = lFactorC - 4715;
     287           0 :     if (*pnMonth > 2)
     288           0 :         (*pnYear)--;
     289             : 
     290             :     // Negative year adjustments
     291           0 :     if (*pnYear <= 0)
     292           0 :         (*pnYear)--;
     293           0 : }
     294             : 
     295             : double
     296           0 : Calendar_hijri::getJulianDay(sal_Int32 day, sal_Int32 month, sal_Int32 year)
     297             : {
     298             :     double jy, jm;
     299             : 
     300           0 :     if( year == 0 ) {
     301           0 :     return -1.0;
     302             :     }
     303             : 
     304           0 :     if( year == 1582 && month == 10 && day > 4 && day < 15 ) {
     305           0 :     return -1.0;
     306             :     }
     307             : 
     308           0 :     if( month > 2 ) {
     309           0 :     jy = year;
     310           0 :     jm = month + 1;
     311             :     } else {
     312           0 :     jy = year - 1;
     313           0 :     jm = month + 13;
     314             :     }
     315             : 
     316           0 :     sal_Int32 intgr = (sal_Int32)((sal_Int32)(365.25 * jy) + (sal_Int32)(30.6001 * jm) + day + 1720995 );
     317             : 
     318             :     //check for switch to Gregorian calendar
     319           0 :     double gregcal = 15 + 31 * ( 10 + 12 * 1582 );
     320             : 
     321           0 :     if( day + 31 * (month + 12 * year) >= gregcal ) {
     322             :     double ja;
     323           0 :     ja = (sal_Int32)(0.01 * jy);
     324           0 :     intgr += (sal_Int32)(2 - ja + (sal_Int32)(0.25 * ja));
     325             :     }
     326             : 
     327           0 :     return (double) intgr;
     328             : }
     329             : 
     330             : }}}}
     331             : 
     332             : /* vim:set shiftwidth=4 softtabstop=4 expandtab: */

Generated by: LCOV version 1.11