LCOV - code coverage report
Current view: top level - sccomp/source/solver - CoinMPSolver.cxx (source / functions) Hit Total Coverage
Test: commit c8344322a7af75b84dd3ca8f78b05543a976dfd5 Lines: 0 165 0.0 %
Date: 2015-06-13 12:38:46 Functions: 0 9 0.0 %
Legend: Lines: hit not hit

          Line data    Source code
       1             : /* -*- Mode: C++; tab-width: 4; indent-tabs-mode: nil; c-basic-offset: 4 -*- */
       2             : /*
       3             :  * This file is part of the LibreOffice project.
       4             :  *
       5             :  * This Source Code Form is subject to the terms of the Mozilla Public
       6             :  * License, v. 2.0. If a copy of the MPL was not distributed with this
       7             :  * file, You can obtain one at http://mozilla.org/MPL/2.0/.
       8             :  *
       9             :  * This file incorporates work covered by the following license notice:
      10             :  *
      11             :  *   Licensed to the Apache Software Foundation (ASF) under one or more
      12             :  *   contributor license agreements. See the NOTICE file distributed
      13             :  *   with this work for additional information regarding copyright
      14             :  *   ownership. The ASF licenses this file to you under the Apache
      15             :  *   License, Version 2.0 (the "License"); you may not use this file
      16             :  *   except in compliance with the License. You may obtain a copy of
      17             :  *   the License at http://www.apache.org/licenses/LICENSE-2.0 .
      18             :  */
      19             : 
      20             : #include <CoinMP.h>
      21             : #include <CoinError.hpp>
      22             : 
      23             : #include "SolverComponent.hxx"
      24             : #include "solver.hrc"
      25             : 
      26             : #include <com/sun/star/frame/XModel.hpp>
      27             : #include <com/sun/star/table/CellAddress.hpp>
      28             : #include <com/sun/star/uno/XComponentContext.hpp>
      29             : 
      30             : #include <rtl/math.hxx>
      31             : #include <stdexcept>
      32             : #include <vector>
      33             : 
      34             : using namespace com::sun::star;
      35             : 
      36             : class CoinMPSolver : public SolverComponent
      37             : {
      38             : public:
      39           0 :     CoinMPSolver() {}
      40           0 :     virtual ~CoinMPSolver() {}
      41             : 
      42             : private:
      43             :     virtual void SAL_CALL solve() throw(css::uno::RuntimeException, std::exception) SAL_OVERRIDE;
      44           0 :     virtual OUString SAL_CALL getImplementationName()
      45             :         throw(css::uno::RuntimeException, std::exception) SAL_OVERRIDE
      46             :     {
      47           0 :         return OUString("com.sun.star.comp.Calc.CoinMPSolver");
      48             :     }
      49           0 :     virtual OUString SAL_CALL getComponentDescription()
      50             :         throw (uno::RuntimeException, std::exception) SAL_OVERRIDE
      51             :     {
      52           0 :         return SolverComponent::GetResourceString( RID_COINMP_SOLVER_COMPONENT );
      53             :     }
      54             : };
      55             : 
      56           0 : void SAL_CALL CoinMPSolver::solve() throw(uno::RuntimeException, std::exception)
      57             : {
      58           0 :     uno::Reference<frame::XModel> xModel( mxDoc, uno::UNO_QUERY );
      59           0 :     if ( !xModel.is() )
      60           0 :         throw uno::RuntimeException();
      61             : 
      62           0 :     maStatus.clear();
      63           0 :     mbSuccess = false;
      64             : 
      65           0 :     xModel->lockControllers();
      66             : 
      67             :     // collect variables in vector (?)
      68             : 
      69           0 :     std::vector<table::CellAddress> aVariableCells;
      70           0 :     for (sal_Int32 nPos=0; nPos<maVariables.getLength(); nPos++)
      71           0 :         aVariableCells.push_back( maVariables[nPos] );
      72           0 :     size_t nVariables = aVariableCells.size();
      73           0 :     size_t nVar = 0;
      74             : 
      75             :     // collect all dependent cells
      76             : 
      77           0 :     ScSolverCellHashMap aCellsHash;
      78           0 :     aCellsHash[maObjective].reserve( nVariables + 1 );                  // objective function
      79             : 
      80           0 :     for (sal_Int32 nConstrPos = 0; nConstrPos < maConstraints.getLength(); ++nConstrPos)
      81             :     {
      82           0 :         table::CellAddress aCellAddr = maConstraints[nConstrPos].Left;
      83           0 :         aCellsHash[aCellAddr].reserve( nVariables + 1 );                // constraints: left hand side
      84             : 
      85           0 :         if ( maConstraints[nConstrPos].Right >>= aCellAddr )
      86           0 :             aCellsHash[aCellAddr].reserve( nVariables + 1 );            // constraints: right hand side
      87             :     }
      88             : 
      89             :     // set all variables to zero
      90             :     //! store old values?
      91             :     //! use old values as initial values?
      92           0 :     std::vector<table::CellAddress>::const_iterator aVarIter;
      93           0 :     for ( aVarIter = aVariableCells.begin(); aVarIter != aVariableCells.end(); ++aVarIter )
      94             :     {
      95           0 :         SolverComponent::SetValue( mxDoc, *aVarIter, 0.0 );
      96             :     }
      97             : 
      98             :     // read initial values from all dependent cells
      99           0 :     ScSolverCellHashMap::iterator aCellsIter;
     100           0 :     for ( aCellsIter = aCellsHash.begin(); aCellsIter != aCellsHash.end(); ++aCellsIter )
     101             :     {
     102           0 :         double fValue = SolverComponent::GetValue( mxDoc, aCellsIter->first );
     103           0 :         aCellsIter->second.push_back( fValue );                         // store as first element, as-is
     104             :     }
     105             : 
     106             :     // loop through variables
     107           0 :     for ( aVarIter = aVariableCells.begin(); aVarIter != aVariableCells.end(); ++aVarIter )
     108             :     {
     109           0 :         SolverComponent::SetValue( mxDoc, *aVarIter, 1.0 );      // set to 1 to examine influence
     110             : 
     111             :         // read value change from all dependent cells
     112           0 :         for ( aCellsIter = aCellsHash.begin(); aCellsIter != aCellsHash.end(); ++aCellsIter )
     113             :         {
     114           0 :             double fChanged = SolverComponent::GetValue( mxDoc, aCellsIter->first );
     115           0 :             double fInitial = aCellsIter->second.front();
     116           0 :             aCellsIter->second.push_back( fChanged - fInitial );
     117             :         }
     118             : 
     119           0 :         SolverComponent::SetValue( mxDoc, *aVarIter, 2.0 );      // minimal test for linearity
     120             : 
     121           0 :         for ( aCellsIter = aCellsHash.begin(); aCellsIter != aCellsHash.end(); ++aCellsIter )
     122             :         {
     123           0 :             double fInitial = aCellsIter->second.front();
     124           0 :             double fCoeff   = aCellsIter->second.back();       // last appended: coefficient for this variable
     125           0 :             double fTwo     = SolverComponent::GetValue( mxDoc, aCellsIter->first );
     126             : 
     127           0 :             bool bLinear = rtl::math::approxEqual( fTwo, fInitial + 2.0 * fCoeff ) ||
     128           0 :                            rtl::math::approxEqual( fInitial, fTwo - 2.0 * fCoeff );
     129             :             // second comparison is needed in case fTwo is zero
     130           0 :             if ( !bLinear )
     131           0 :                 maStatus = SolverComponent::GetResourceString( RID_ERROR_NONLINEAR );
     132             :         }
     133             : 
     134           0 :         SolverComponent::SetValue( mxDoc, *aVarIter, 0.0 );      // set back to zero for examining next variable
     135             :     }
     136             : 
     137           0 :     xModel->unlockControllers();
     138             : 
     139           0 :     if ( !maStatus.isEmpty() )
     140           0 :         return;
     141             : 
     142             :     //
     143             :     // build parameter arrays for CoinMP
     144             :     //
     145             : 
     146             :     // set objective function
     147             : 
     148           0 :     const std::vector<double>& rObjCoeff = aCellsHash[maObjective];
     149           0 :     double* pObjectCoeffs = new double[nVariables];
     150           0 :     for (nVar=0; nVar<nVariables; nVar++)
     151           0 :         pObjectCoeffs[nVar] = rObjCoeff[nVar+1];
     152           0 :     double nObjectConst = rObjCoeff[0];             // constant term of objective
     153             : 
     154             :     // add rows
     155             : 
     156           0 :     size_t nRows = maConstraints.getLength();
     157           0 :     size_t nCompSize = nVariables * nRows;
     158           0 :     double* pCompMatrix = new double[nCompSize];    // first collect all coefficients, row-wise
     159           0 :     for (size_t i=0; i<nCompSize; i++)
     160           0 :         pCompMatrix[i] = 0.0;
     161             : 
     162           0 :     double* pRHS = new double[nRows];
     163           0 :     char* pRowType = new char[nRows];
     164           0 :     for (size_t i=0; i<nRows; i++)
     165             :     {
     166           0 :         pRHS[i] = 0.0;
     167           0 :         pRowType[i] = 'N';
     168             :     }
     169             : 
     170           0 :     for (sal_Int32 nConstrPos = 0; nConstrPos < maConstraints.getLength(); ++nConstrPos)
     171             :     {
     172             :         // integer constraints are set later
     173           0 :         sheet::SolverConstraintOperator eOp = maConstraints[nConstrPos].Operator;
     174           0 :         if ( eOp == sheet::SolverConstraintOperator_LESS_EQUAL ||
     175           0 :              eOp == sheet::SolverConstraintOperator_GREATER_EQUAL ||
     176             :              eOp == sheet::SolverConstraintOperator_EQUAL )
     177             :         {
     178           0 :             double fDirectValue = 0.0;
     179           0 :             bool bRightCell = false;
     180           0 :             table::CellAddress aRightAddr;
     181           0 :             const uno::Any& rRightAny = maConstraints[nConstrPos].Right;
     182           0 :             if ( rRightAny >>= aRightAddr )
     183           0 :                 bRightCell = true;                  // cell specified as right-hand side
     184             :             else
     185           0 :                 rRightAny >>= fDirectValue;         // constant value
     186             : 
     187           0 :             table::CellAddress aLeftAddr = maConstraints[nConstrPos].Left;
     188             : 
     189           0 :             const std::vector<double>& rLeftCoeff = aCellsHash[aLeftAddr];
     190           0 :             double* pValues = &pCompMatrix[nConstrPos * nVariables];
     191           0 :             for (nVar=0; nVar<nVariables; nVar++)
     192           0 :                 pValues[nVar] = rLeftCoeff[nVar+1];
     193             : 
     194             :             // if left hand cell has a constant term, put into rhs value
     195           0 :             double fRightValue = -rLeftCoeff[0];
     196             : 
     197           0 :             if ( bRightCell )
     198             :             {
     199           0 :                 const std::vector<double>& rRightCoeff = aCellsHash[aRightAddr];
     200             :                 // modify pValues with rhs coefficients
     201           0 :                 for (nVar=0; nVar<nVariables; nVar++)
     202           0 :                     pValues[nVar] -= rRightCoeff[nVar+1];
     203             : 
     204           0 :                 fRightValue += rRightCoeff[0];      // constant term
     205             :             }
     206             :             else
     207           0 :                 fRightValue += fDirectValue;
     208             : 
     209           0 :             switch ( eOp )
     210             :             {
     211           0 :                 case sheet::SolverConstraintOperator_LESS_EQUAL:    pRowType[nConstrPos] = 'L'; break;
     212           0 :                 case sheet::SolverConstraintOperator_GREATER_EQUAL: pRowType[nConstrPos] = 'G'; break;
     213           0 :                 case sheet::SolverConstraintOperator_EQUAL:         pRowType[nConstrPos] = 'E'; break;
     214             :                 default:
     215             :                     OSL_ENSURE( false, "unexpected enum type" );
     216             :             }
     217           0 :             pRHS[nConstrPos] = fRightValue;
     218             :         }
     219             :     }
     220             : 
     221             :     // Find non-zero coefficients, column-wise
     222             : 
     223           0 :     int* pMatrixBegin = new int[nVariables+1];
     224           0 :     int* pMatrixCount = new int[nVariables];
     225           0 :     double* pMatrix = new double[nCompSize];    // not always completely used
     226           0 :     int* pMatrixIndex = new int[nCompSize];
     227           0 :     int nMatrixPos = 0;
     228           0 :     for (nVar=0; nVar<nVariables; nVar++)
     229             :     {
     230           0 :         int nBegin = nMatrixPos;
     231           0 :         for (size_t nRow=0; nRow<nRows; nRow++)
     232             :         {
     233           0 :             double fCoeff = pCompMatrix[ nRow * nVariables + nVar ];    // row-wise
     234           0 :             if ( fCoeff != 0.0 )
     235             :             {
     236           0 :                 pMatrix[nMatrixPos] = fCoeff;
     237           0 :                 pMatrixIndex[nMatrixPos] = nRow;
     238           0 :                 ++nMatrixPos;
     239             :             }
     240             :         }
     241           0 :         pMatrixBegin[nVar] = nBegin;
     242           0 :         pMatrixCount[nVar] = nMatrixPos - nBegin;
     243             :     }
     244           0 :     pMatrixBegin[nVariables] = nMatrixPos;
     245           0 :     delete[] pCompMatrix;
     246           0 :     pCompMatrix = NULL;
     247             : 
     248             :     // apply settings to all variables
     249             : 
     250           0 :     double* pLowerBounds = new double[nVariables];
     251           0 :     double* pUpperBounds = new double[nVariables];
     252           0 :     for (nVar=0; nVar<nVariables; nVar++)
     253             :     {
     254           0 :         pLowerBounds[nVar] = mbNonNegative ? 0.0 : -DBL_MAX;
     255           0 :         pUpperBounds[nVar] = DBL_MAX;
     256             : 
     257             :         // bounds could possibly be further restricted from single-cell constraints
     258             :     }
     259             : 
     260           0 :     char* pColType = new char[nVariables];
     261           0 :     for (nVar=0; nVar<nVariables; nVar++)
     262           0 :         pColType[nVar] = mbInteger ? 'I' : 'C';
     263             : 
     264             :     // apply single-var integer constraints
     265             : 
     266           0 :     for (sal_Int32 nConstrPos = 0; nConstrPos < maConstraints.getLength(); ++nConstrPos)
     267             :     {
     268           0 :         sheet::SolverConstraintOperator eOp = maConstraints[nConstrPos].Operator;
     269           0 :         if ( eOp == sheet::SolverConstraintOperator_INTEGER ||
     270             :              eOp == sheet::SolverConstraintOperator_BINARY )
     271             :         {
     272           0 :             table::CellAddress aLeftAddr = maConstraints[nConstrPos].Left;
     273             :             // find variable index for cell
     274           0 :             for (nVar=0; nVar<nVariables; nVar++)
     275           0 :                 if ( AddressEqual( aVariableCells[nVar], aLeftAddr ) )
     276             :                 {
     277           0 :                     if ( eOp == sheet::SolverConstraintOperator_INTEGER )
     278           0 :                         pColType[nVar] = 'I';
     279             :                     else
     280             :                     {
     281           0 :                         pColType[nVar] = 'B';
     282           0 :                         pLowerBounds[nVar] = 0.0;
     283           0 :                         pUpperBounds[nVar] = 1.0;
     284             :                     }
     285             :                 }
     286             :         }
     287             :     }
     288             : 
     289           0 :     int nObjectSense = mbMaximize ? SOLV_OBJSENS_MAX : SOLV_OBJSENS_MIN;
     290             : 
     291           0 :     HPROB hProb = CoinCreateProblem("");
     292             :     int nResult = CoinLoadProblem( hProb, nVariables, nRows, nMatrixPos, 0,
     293             :                     nObjectSense, nObjectConst, pObjectCoeffs,
     294             :                     pLowerBounds, pUpperBounds, pRowType, pRHS, NULL,
     295             :                     pMatrixBegin, pMatrixCount, pMatrixIndex, pMatrix,
     296           0 :                     NULL, NULL, NULL );
     297           0 :     nResult = CoinLoadInteger( hProb, pColType );
     298             : 
     299           0 :     delete[] pColType;
     300           0 :     delete[] pMatrixIndex;
     301           0 :     delete[] pMatrix;
     302           0 :     delete[] pMatrixCount;
     303           0 :     delete[] pMatrixBegin;
     304           0 :     delete[] pUpperBounds;
     305           0 :     delete[] pLowerBounds;
     306           0 :     delete[] pRowType;
     307           0 :     delete[] pRHS;
     308           0 :     delete[] pObjectCoeffs;
     309             : 
     310           0 :     CoinSetRealOption( hProb, COIN_REAL_MAXSECONDS, mnTimeout );
     311           0 :     CoinSetRealOption( hProb, COIN_REAL_MIPMAXSEC, mnTimeout );
     312             : 
     313             :     // TODO: handle (or remove) settings: epsilon, B&B depth
     314             : 
     315             :     // solve model
     316             : 
     317           0 :     nResult = CoinCheckProblem( hProb );
     318             : 
     319             :     try
     320             :     {
     321           0 :         nResult = CoinOptimizeProblem( hProb, 0 );
     322             :     }
     323           0 :     catch (const CoinError& e)
     324             :     {
     325           0 :         throw std::runtime_error(e.message());
     326             :     }
     327             : 
     328           0 :     mbSuccess = ( nResult == SOLV_CALL_SUCCESS );
     329           0 :     if ( mbSuccess )
     330             :     {
     331             :         // get solution
     332             : 
     333           0 :         maSolution.realloc( nVariables );
     334           0 :         CoinGetSolutionValues( hProb, maSolution.getArray(), NULL, NULL, NULL );
     335           0 :         mfResultValue = CoinGetObjectValue( hProb );
     336             :     }
     337             :     else
     338             :     {
     339           0 :         int nSolutionStatus = CoinGetSolutionStatus( hProb );
     340           0 :         if ( nSolutionStatus == 1 )
     341           0 :             maStatus = SolverComponent::GetResourceString( RID_ERROR_INFEASIBLE );
     342           0 :         else if ( nSolutionStatus == 2 )
     343           0 :             maStatus = SolverComponent::GetResourceString( RID_ERROR_UNBOUNDED );
     344             :         // TODO: detect timeout condition and report as RID_ERROR_TIMEOUT
     345             :         // (currently reported as infeasible)
     346             :     }
     347             : 
     348           0 :     CoinUnloadProblem( hProb );
     349             : }
     350             : 
     351             : extern "C" SAL_DLLPUBLIC_EXPORT css::uno::XInterface * SAL_CALL
     352           0 : com_sun_star_comp_Calc_CoinMPSolver_get_implementation(
     353             :     css::uno::XComponentContext *,
     354             :     css::uno::Sequence<css::uno::Any> const &)
     355             : {
     356           0 :     return cppu::acquire(new CoinMPSolver());
     357           0 : }
     358             : 
     359             : /* vim:set shiftwidth=4 softtabstop=4 expandtab: */

Generated by: LCOV version 1.11