LCOV - code coverage report
Current view: top level - chart2/source/view/axes - Tickmarks_Equidistant.cxx (source / functions) Hit Total Coverage
Test: commit 10e77ab3ff6f4314137acd6e2702a6e5c1ce1fae Lines: 296 344 86.0 %
Date: 2014-11-03 Functions: 28 29 96.6 %
Legend: Lines: hit not hit

          Line data    Source code
       1             : /* -*- Mode: C++; tab-width: 4; indent-tabs-mode: nil; c-basic-offset: 4 -*- */
       2             : /*
       3             :  * This file is part of the LibreOffice project.
       4             :  *
       5             :  * This Source Code Form is subject to the terms of the Mozilla Public
       6             :  * License, v. 2.0. If a copy of the MPL was not distributed with this
       7             :  * file, You can obtain one at http://mozilla.org/MPL/2.0/.
       8             :  *
       9             :  * This file incorporates work covered by the following license notice:
      10             :  *
      11             :  *   Licensed to the Apache Software Foundation (ASF) under one or more
      12             :  *   contributor license agreements. See the NOTICE file distributed
      13             :  *   with this work for additional information regarding copyright
      14             :  *   ownership. The ASF licenses this file to you under the Apache
      15             :  *   License, Version 2.0 (the "License"); you may not use this file
      16             :  *   except in compliance with the License. You may obtain a copy of
      17             :  *   the License at http://www.apache.org/licenses/LICENSE-2.0 .
      18             :  */
      19             : 
      20             : #include "Tickmarks_Equidistant.hxx"
      21             : #include "ViewDefines.hxx"
      22             : #include <rtl/math.hxx>
      23             : 
      24             : #include <limits>
      25             : 
      26             : namespace chart
      27             : {
      28             : using namespace ::com::sun::star;
      29             : using namespace ::com::sun::star::chart2;
      30             : using namespace ::rtl::math;
      31             : using ::basegfx::B2DVector;
      32             : 
      33             : //static
      34        7132 : double EquidistantTickFactory::getMinimumAtIncrement( double fMin, const ExplicitIncrementData& rIncrement )
      35             : {
      36             :     //the returned value will be <= fMin and on a Major Tick given by rIncrement
      37        7132 :     if(rIncrement.Distance<=0.0)
      38           0 :         return fMin;
      39             : 
      40        7132 :     double fRet = rIncrement.BaseValue +
      41        7132 :         floor( approxSub( fMin, rIncrement.BaseValue )
      42        7132 :                     / rIncrement.Distance)
      43        7132 :             *rIncrement.Distance;
      44             : 
      45        7132 :     if( fRet > fMin )
      46             :     {
      47           0 :         if( !approxEqual(fRet, fMin) )
      48           0 :             fRet -= rIncrement.Distance;
      49             :     }
      50        7132 :     return fRet;
      51             : }
      52             : //static
      53        7117 : double EquidistantTickFactory::getMaximumAtIncrement( double fMax, const ExplicitIncrementData& rIncrement )
      54             : {
      55             :     //the returned value will be >= fMax and on a Major Tick given by rIncrement
      56        7117 :     if(rIncrement.Distance<=0.0)
      57           0 :         return fMax;
      58             : 
      59        7117 :     double fRet = rIncrement.BaseValue +
      60        7117 :         floor( approxSub( fMax, rIncrement.BaseValue )
      61        7117 :                     / rIncrement.Distance)
      62        7117 :             *rIncrement.Distance;
      63             : 
      64        7117 :     if( fRet < fMax )
      65             :     {
      66        2796 :         if( !approxEqual(fRet, fMax) )
      67        2796 :             fRet += rIncrement.Distance;
      68             :     }
      69        7117 :     return fRet;
      70             : }
      71             : 
      72        4476 : EquidistantTickFactory::EquidistantTickFactory(
      73             :           const ExplicitScaleData& rScale, const ExplicitIncrementData& rIncrement )
      74             :             : m_rScale( rScale )
      75             :             , m_rIncrement( rIncrement )
      76             :             , m_xInverseScaling(NULL)
      77        4476 :             , m_pfCurrentValues(NULL)
      78             : {
      79             :     //@todo: make sure that the scale is valid for the scaling
      80             : 
      81        4476 :     m_pfCurrentValues = new double[getTickDepth()];
      82             : 
      83        4476 :     if( m_rScale.Scaling.is() )
      84             :     {
      85        1657 :         m_xInverseScaling = m_rScale.Scaling->getInverseScaling();
      86             :         OSL_ENSURE( m_xInverseScaling.is(), "each Scaling needs to return a inverse Scaling" );
      87             :     }
      88             : 
      89        4476 :     double fMin = m_fScaledVisibleMin = m_rScale.Minimum;
      90        4476 :     if( m_xInverseScaling.is() )
      91             :     {
      92        1657 :         m_fScaledVisibleMin = m_rScale.Scaling->doScaling(m_fScaledVisibleMin);
      93        1657 :         if(m_rIncrement.PostEquidistant )
      94        1657 :             fMin = m_fScaledVisibleMin;
      95             :     }
      96             : 
      97        4476 :     double fMax = m_fScaledVisibleMax = m_rScale.Maximum;
      98        4476 :     if( m_xInverseScaling.is() )
      99             :     {
     100        1657 :         m_fScaledVisibleMax = m_rScale.Scaling->doScaling(m_fScaledVisibleMax);
     101        1657 :         if(m_rIncrement.PostEquidistant )
     102        1657 :             fMax = m_fScaledVisibleMax;
     103             :     }
     104             : 
     105        4476 :     m_fOuterMajorTickBorderMin = EquidistantTickFactory::getMinimumAtIncrement( fMin, m_rIncrement );
     106        4476 :     m_fOuterMajorTickBorderMax = EquidistantTickFactory::getMaximumAtIncrement( fMax, m_rIncrement );
     107             : 
     108        4476 :     m_fOuterMajorTickBorderMin_Scaled = m_fOuterMajorTickBorderMin;
     109        4476 :     m_fOuterMajorTickBorderMax_Scaled = m_fOuterMajorTickBorderMax;
     110        4476 :     if(!m_rIncrement.PostEquidistant && m_xInverseScaling.is() )
     111             :     {
     112           0 :         m_fOuterMajorTickBorderMin_Scaled = m_rScale.Scaling->doScaling(m_fOuterMajorTickBorderMin);
     113           0 :         m_fOuterMajorTickBorderMax_Scaled = m_rScale.Scaling->doScaling(m_fOuterMajorTickBorderMax);
     114             : 
     115             :         //check validity of new range: m_fOuterMajorTickBorderMin <-> m_fOuterMajorTickBorderMax
     116             :         //it is assumed here, that the original range in the given Scale is valid
     117           0 :         if( !rtl::math::isFinite(m_fOuterMajorTickBorderMin_Scaled) )
     118             :         {
     119           0 :             m_fOuterMajorTickBorderMin += m_rIncrement.Distance;
     120           0 :             m_fOuterMajorTickBorderMin_Scaled = m_rScale.Scaling->doScaling(m_fOuterMajorTickBorderMin);
     121             :         }
     122           0 :         if( !rtl::math::isFinite(m_fOuterMajorTickBorderMax_Scaled) )
     123             :         {
     124           0 :             m_fOuterMajorTickBorderMax -= m_rIncrement.Distance;
     125           0 :             m_fOuterMajorTickBorderMax_Scaled = m_rScale.Scaling->doScaling(m_fOuterMajorTickBorderMax);
     126             :         }
     127             :     }
     128        4476 : }
     129             : 
     130        8952 : EquidistantTickFactory::~EquidistantTickFactory()
     131             : {
     132        4476 :     delete[] m_pfCurrentValues;
     133        4476 : }
     134             : 
     135       15276 : sal_Int32 EquidistantTickFactory::getTickDepth() const
     136             : {
     137       15276 :     return static_cast<sal_Int32>(m_rIncrement.SubIncrements.size()) + 1;
     138             : }
     139             : 
     140        3600 : void EquidistantTickFactory::addSubTicks( sal_Int32 nDepth, uno::Sequence< uno::Sequence< double > >& rParentTicks ) const
     141             : {
     142        3600 :     EquidistantTickIter aIter( rParentTicks, m_rIncrement, 0, nDepth-1 );
     143        3600 :     double* pfNextParentTick = aIter.firstValue();
     144        3600 :     if(!pfNextParentTick)
     145           0 :         return;
     146        3600 :     double fLastParentTick = *pfNextParentTick;
     147        3600 :     pfNextParentTick = aIter.nextValue();
     148        3600 :     if(!pfNextParentTick)
     149           0 :         return;
     150             : 
     151        3600 :     sal_Int32 nMaxSubTickCount = this->getMaxTickCount( nDepth );
     152        3600 :     if(!nMaxSubTickCount)
     153           0 :         return;
     154             : 
     155        7200 :     uno::Sequence< double > aSubTicks(nMaxSubTickCount);
     156        3600 :     sal_Int32 nRealSubTickCount = 0;
     157        3600 :     sal_Int32 nIntervalCount = m_rIncrement.SubIncrements[nDepth-1].IntervalCount;
     158             : 
     159        3600 :     double* pValue = NULL;
     160       23716 :     for(; pfNextParentTick; fLastParentTick=*pfNextParentTick, pfNextParentTick = aIter.nextValue())
     161             :     {
     162       42231 :         for( sal_Int32 nPartTick = 1; nPartTick<nIntervalCount; nPartTick++ )
     163             :         {
     164             :             pValue = this->getMinorTick( nPartTick, nDepth
     165       22115 :                         , fLastParentTick, *pfNextParentTick );
     166       22115 :             if(!pValue)
     167           0 :                 continue;
     168             : 
     169       22115 :             aSubTicks[nRealSubTickCount] = *pValue;
     170       22115 :             nRealSubTickCount++;
     171             :         }
     172             :     }
     173             : 
     174        3600 :     aSubTicks.realloc(nRealSubTickCount);
     175        3600 :     rParentTicks[nDepth] = aSubTicks;
     176        3600 :     if(static_cast<sal_Int32>(m_rIncrement.SubIncrements.size())>nDepth)
     177        3600 :         addSubTicks( nDepth+1, rParentTicks );
     178             : }
     179             : 
     180        7200 : sal_Int32 EquidistantTickFactory::getMaxTickCount( sal_Int32 nDepth ) const
     181             : {
     182             :     //return the maximum amount of ticks
     183             :     //possibly open intervals at the two ends of the region are handled as if they were completely visible
     184             :     //(this is necessary for calculating the sub ticks at the borders correctly)
     185             : 
     186        7200 :     if( nDepth >= getTickDepth() )
     187           0 :         return 0;
     188        7200 :     if( m_fOuterMajorTickBorderMax < m_fOuterMajorTickBorderMin )
     189           0 :         return 0;
     190        7200 :     if( m_rIncrement.Distance<=0.0)
     191           0 :         return 0;
     192             : 
     193             :     double fSub;
     194        7200 :     if(m_rIncrement.PostEquidistant  )
     195        7200 :         fSub = approxSub( m_fScaledVisibleMax, m_fScaledVisibleMin );
     196             :     else
     197           0 :         fSub = approxSub( m_rScale.Maximum, m_rScale.Minimum );
     198             : 
     199        7200 :     if (!isFinite(fSub))
     200           0 :         return 0;
     201             : 
     202        7200 :     double fIntervalCount = fSub / m_rIncrement.Distance;
     203        7200 :     if (fIntervalCount > std::numeric_limits<sal_Int32>::max())
     204             :         // Interval count too high!  Bail out.
     205           0 :         return 0;
     206             : 
     207        7200 :     sal_Int32 nIntervalCount = static_cast<sal_Int32>(fIntervalCount);
     208             : 
     209        7200 :     nIntervalCount+=3;
     210        7200 :     for(sal_Int32 nN=0; nN<nDepth-1; nN++)
     211             :     {
     212           0 :         if( m_rIncrement.SubIncrements[nN].IntervalCount>1 )
     213           0 :             nIntervalCount *= m_rIncrement.SubIncrements[nN].IntervalCount;
     214             :     }
     215             : 
     216        7200 :     sal_Int32 nTickCount = nIntervalCount;
     217        7200 :     if(nDepth>0 && m_rIncrement.SubIncrements[nDepth-1].IntervalCount>1)
     218        3594 :         nTickCount = nIntervalCount * (m_rIncrement.SubIncrements[nDepth-1].IntervalCount-1);
     219             : 
     220        7200 :     return nTickCount;
     221             : }
     222             : 
     223       30016 : double* EquidistantTickFactory::getMajorTick( sal_Int32 nTick ) const
     224             : {
     225       30016 :     m_pfCurrentValues[0] = m_fOuterMajorTickBorderMin + nTick*m_rIncrement.Distance;
     226             : 
     227       30016 :     if(m_pfCurrentValues[0]>m_fOuterMajorTickBorderMax)
     228             :     {
     229        6300 :         if( !approxEqual(m_pfCurrentValues[0],m_fOuterMajorTickBorderMax) )
     230        6300 :             return NULL;
     231             :     }
     232       23716 :     if(m_pfCurrentValues[0]<m_fOuterMajorTickBorderMin)
     233             :     {
     234           0 :         if( !approxEqual(m_pfCurrentValues[0],m_fOuterMajorTickBorderMin) )
     235           0 :             return NULL;
     236             :     }
     237             : 
     238             :     //return always the value after scaling
     239       23716 :     if(!m_rIncrement.PostEquidistant && m_xInverseScaling.is() )
     240           0 :         m_pfCurrentValues[0] = m_rScale.Scaling->doScaling( m_pfCurrentValues[0] );
     241             : 
     242       23716 :     return &m_pfCurrentValues[0];
     243             : }
     244             : 
     245       22115 : double* EquidistantTickFactory::getMinorTick( sal_Int32 nTick, sal_Int32 nDepth
     246             :                             , double fStartParentTick, double fNextParentTick ) const
     247             : {
     248             :     //check validity of arguments
     249             :     {
     250             :         //OSL_ENSURE( fStartParentTick < fNextParentTick, "fStartParentTick >= fNextParentTick");
     251       22115 :         if(fStartParentTick >= fNextParentTick)
     252           0 :             return NULL;
     253       22115 :         if(nDepth>static_cast<sal_Int32>(m_rIncrement.SubIncrements.size()) || nDepth<=0)
     254           0 :             return NULL;
     255             : 
     256             :         //subticks are only calculated if they are laying between parent ticks:
     257       22115 :         if(nTick<=0)
     258           0 :             return NULL;
     259       22115 :         if(nTick>=m_rIncrement.SubIncrements[nDepth-1].IntervalCount)
     260           0 :             return NULL;
     261             :     }
     262             : 
     263       22115 :     bool    bPostEquidistant = m_rIncrement.SubIncrements[nDepth-1].PostEquidistant;
     264             : 
     265       22115 :     double fAdaptedStartParent = fStartParentTick;
     266       22115 :     double fAdaptedNextParent  = fNextParentTick;
     267             : 
     268       22115 :     if( !bPostEquidistant && m_xInverseScaling.is() )
     269             :     {
     270       11862 :         fAdaptedStartParent = m_xInverseScaling->doScaling(fStartParentTick);
     271       11862 :         fAdaptedNextParent  = m_xInverseScaling->doScaling(fNextParentTick);
     272             :     }
     273             : 
     274       22115 :     double fDistance = (fAdaptedNextParent - fAdaptedStartParent)/m_rIncrement.SubIncrements[nDepth-1].IntervalCount;
     275             : 
     276       22115 :     m_pfCurrentValues[nDepth] = fAdaptedStartParent + nTick*fDistance;
     277             : 
     278             :     //return always the value after scaling
     279       22115 :     if(!bPostEquidistant && m_xInverseScaling.is() )
     280       11862 :         m_pfCurrentValues[nDepth] = m_rScale.Scaling->doScaling( m_pfCurrentValues[nDepth] );
     281             : 
     282       22115 :     if( !isWithinOuterBorder( m_pfCurrentValues[nDepth] ) )
     283           0 :         return NULL;
     284             : 
     285       22115 :     return &m_pfCurrentValues[nDepth];
     286             : }
     287             : 
     288       22115 : bool EquidistantTickFactory::isWithinOuterBorder( double fScaledValue ) const
     289             : {
     290       22115 :     if(fScaledValue>m_fOuterMajorTickBorderMax_Scaled)
     291           0 :         return false;
     292       22115 :     if(fScaledValue<m_fOuterMajorTickBorderMin_Scaled)
     293           0 :         return false;
     294             : 
     295       22115 :     return true;
     296             : }
     297             : 
     298       24140 : bool EquidistantTickFactory::isVisible( double fScaledValue ) const
     299             : {
     300       24140 :     if(fScaledValue>m_fScaledVisibleMax)
     301             :     {
     302         918 :         if( !approxEqual(fScaledValue,m_fScaledVisibleMax) )
     303         918 :             return false;
     304             :     }
     305       23222 :     if(fScaledValue<m_fScaledVisibleMin)
     306             :     {
     307         876 :         if( !approxEqual(fScaledValue,m_fScaledVisibleMin) )
     308         876 :             return false;
     309             :     }
     310       22346 :     return true;
     311             : }
     312             : 
     313        3600 : void EquidistantTickFactory::getAllTicks( TickInfoArraysType& rAllTickInfos ) const
     314             : {
     315        3600 :     uno::Sequence< uno::Sequence< double > > aAllTicks;
     316             : 
     317             :     //create point sequences for each tick depth
     318        3600 :     sal_Int32 nDepthCount = this->getTickDepth();
     319        3600 :     sal_Int32 nMaxMajorTickCount = this->getMaxTickCount( 0 );
     320             : 
     321        3600 :     if (nDepthCount <= 0 || nMaxMajorTickCount <= 0)
     322           0 :         return;
     323             : 
     324        3600 :     aAllTicks.realloc(nDepthCount);
     325        3600 :     aAllTicks[0].realloc(nMaxMajorTickCount);
     326             : 
     327        3600 :     sal_Int32 nRealMajorTickCount = 0;
     328        3600 :     double* pValue = NULL;
     329       33616 :     for( sal_Int32 nMajorTick=0; nMajorTick<nMaxMajorTickCount; nMajorTick++ )
     330             :     {
     331       30016 :         pValue = this->getMajorTick( nMajorTick );
     332       30016 :         if(!pValue)
     333        6300 :             continue;
     334       23716 :         aAllTicks[0][nRealMajorTickCount] = *pValue;
     335       23716 :         nRealMajorTickCount++;
     336             :     }
     337        3600 :     if(!nRealMajorTickCount)
     338           0 :         return;
     339        3600 :     aAllTicks[0].realloc(nRealMajorTickCount);
     340             : 
     341        3600 :     if(nDepthCount>0)
     342        3600 :         this->addSubTicks( 1, aAllTicks );
     343             : 
     344             :     //so far we have added all ticks between the outer major tick marks
     345             :     //this was necessary to create sub ticks correctly
     346             :     //now we reduce all ticks to the visible ones that lie between the real borders
     347        3600 :     sal_Int32 nDepth = 0;
     348        3600 :     sal_Int32 nTick = 0;
     349       10800 :     for( nDepth = 0; nDepth < nDepthCount; nDepth++)
     350             :     {
     351        7200 :         sal_Int32 nInvisibleAtLowerBorder = 0;
     352        7200 :         sal_Int32 nInvisibleAtUpperBorder = 0;
     353             :         //we need only to check all ticks within the first major interval at each border
     354        7200 :         sal_Int32 nCheckCount = 1;
     355       10800 :         for(sal_Int32 nN=0; nN<nDepth; nN++)
     356             :         {
     357        3600 :             if( m_rIncrement.SubIncrements[nN].IntervalCount>1 )
     358        3594 :                 nCheckCount *= m_rIncrement.SubIncrements[nN].IntervalCount;
     359             :         }
     360        7200 :         uno::Sequence< double >& rTicks = aAllTicks[nDepth];
     361        7200 :         sal_Int32 nCount = rTicks.getLength();
     362             :         //check lower border
     363       19270 :         for( nTick=0; nTick<nCheckCount && nTick<nCount; nTick++)
     364             :         {
     365       12070 :             if( !isVisible( rTicks[nTick] ) )
     366         876 :                 nInvisibleAtLowerBorder++;
     367             :         }
     368             :         //check upper border
     369       19270 :         for( nTick=nCount-1; nTick>nCount-1-nCheckCount && nTick>=0; nTick--)
     370             :         {
     371       12070 :             if( !isVisible( rTicks[nTick] ) )
     372         918 :                 nInvisibleAtUpperBorder++;
     373             :         }
     374             :         //resize sequence
     375        7200 :         if( !nInvisibleAtLowerBorder && !nInvisibleAtUpperBorder)
     376        6282 :             continue;
     377         918 :         if( !nInvisibleAtLowerBorder )
     378          42 :             rTicks.realloc(nCount-nInvisibleAtUpperBorder);
     379             :         else
     380             :         {
     381         876 :             sal_Int32 nNewCount = nCount-nInvisibleAtUpperBorder-nInvisibleAtLowerBorder;
     382         876 :             if(nNewCount<0)
     383           0 :                 nNewCount=0;
     384             : 
     385         876 :             uno::Sequence< double > aOldTicks(rTicks);
     386         876 :             rTicks.realloc(nNewCount);
     387        4232 :             for(nTick = 0; nTick<nNewCount; nTick++)
     388        4232 :                 rTicks[nTick] = aOldTicks[nInvisibleAtLowerBorder+nTick];
     389             :         }
     390             :     }
     391             : 
     392             :     //fill return value
     393        3600 :     rAllTickInfos.resize(aAllTicks.getLength());
     394       10800 :     for( nDepth=0 ;nDepth<aAllTicks.getLength(); nDepth++ )
     395             :     {
     396        7200 :         sal_Int32 nCount = aAllTicks[nDepth].getLength();
     397             : 
     398        7200 :         TickInfoArrayType& rTickInfoVector = rAllTickInfos[nDepth];
     399        7200 :         rTickInfoVector.clear();
     400        7200 :         rTickInfoVector.reserve( nCount );
     401       51237 :         for(sal_Int32 nN = 0; nN<nCount; nN++)
     402             :         {
     403       44037 :             TickInfo aTickInfo(m_xInverseScaling);
     404       44037 :             aTickInfo.fScaledTickValue = aAllTicks[nDepth][nN];
     405       44037 :             rTickInfoVector.push_back(aTickInfo);
     406       44037 :         }
     407        3600 :     }
     408             : }
     409             : 
     410         876 : void EquidistantTickFactory::getAllTicksShifted( TickInfoArraysType& rAllTickInfos ) const
     411             : {
     412         876 :     ExplicitIncrementData aShiftedIncrement( m_rIncrement );
     413         876 :     aShiftedIncrement.BaseValue = m_rIncrement.BaseValue-m_rIncrement.Distance/2.0;
     414         876 :     EquidistantTickFactory( m_rScale, aShiftedIncrement ).getAllTicks(rAllTickInfos);
     415         876 : }
     416             : 
     417        3600 : EquidistantTickIter::EquidistantTickIter( const uno::Sequence< uno::Sequence< double > >& rTicks
     418             :                    , const ExplicitIncrementData& rIncrement
     419             :                    , sal_Int32 nMinDepth, sal_Int32 nMaxDepth )
     420             :                 : m_pSimpleTicks(&rTicks)
     421             :                 , m_pInfoTicks(0)
     422             :                 , m_rIncrement(rIncrement)
     423             :                 , m_nMaxDepth(0)
     424             :                 , m_nTickCount(0), m_pnPositions(NULL)
     425             :                 , m_pnPreParentCount(NULL), m_pbIntervalFinished(NULL)
     426        3600 :                 , m_nCurrentDepth(-1), m_nCurrentPos(-1), m_fCurrentValue( 0.0 )
     427             : {
     428        3600 :     initIter( nMinDepth, nMaxDepth );
     429        3600 : }
     430             : 
     431        1371 : EquidistantTickIter::EquidistantTickIter( TickInfoArraysType& rTicks
     432             :                    , const ExplicitIncrementData& rIncrement
     433             :                    , sal_Int32 nMinDepth, sal_Int32 nMaxDepth )
     434             :                 : m_pSimpleTicks(NULL)
     435             :                 , m_pInfoTicks(&rTicks)
     436             :                 , m_rIncrement(rIncrement)
     437             :                 , m_nMaxDepth(0)
     438             :                 , m_nTickCount(0), m_pnPositions(NULL)
     439             :                 , m_pnPreParentCount(NULL), m_pbIntervalFinished(NULL)
     440        1371 :                 , m_nCurrentDepth(-1), m_nCurrentPos(-1), m_fCurrentValue( 0.0 )
     441             : {
     442        1371 :     initIter( nMinDepth, nMaxDepth );
     443        1371 : }
     444             : 
     445        4971 : void EquidistantTickIter::initIter( sal_Int32 /*nMinDepth*/, sal_Int32 nMaxDepth )
     446             : {
     447        4971 :     m_nMaxDepth = nMaxDepth;
     448        4971 :     if(nMaxDepth<0 || m_nMaxDepth>getMaxDepth())
     449        1371 :         m_nMaxDepth=getMaxDepth();
     450             : 
     451        4971 :     sal_Int32 nDepth = 0;
     452       11313 :     for( nDepth = 0; nDepth<=m_nMaxDepth ;nDepth++ )
     453        6342 :         m_nTickCount += getTickCount(nDepth);
     454             : 
     455        4971 :     if(!m_nTickCount)
     456        4971 :         return;
     457             : 
     458        4971 :     m_pnPositions      = new sal_Int32[m_nMaxDepth+1];
     459             : 
     460        4971 :     m_pnPreParentCount = new sal_Int32[m_nMaxDepth+1];
     461        4971 :     m_pbIntervalFinished = new bool[m_nMaxDepth+1];
     462        4971 :     m_pnPreParentCount[0] = 0;
     463        4971 :     m_pbIntervalFinished[0] = false;
     464        4971 :     double fParentValue = getTickValue(0,0);
     465        6342 :     for( nDepth = 1; nDepth<=m_nMaxDepth ;nDepth++ )
     466             :     {
     467        1371 :         m_pbIntervalFinished[nDepth] = false;
     468             : 
     469        1371 :         sal_Int32 nPreParentCount = 0;
     470        1371 :         sal_Int32 nCount = getTickCount(nDepth);
     471        1786 :         for(sal_Int32 nN = 0; nN<nCount; nN++)
     472             :         {
     473        1784 :             if(getTickValue(nDepth,nN) < fParentValue)
     474         415 :                 nPreParentCount++;
     475             :             else
     476        1369 :                 break;
     477             :         }
     478        1371 :         m_pnPreParentCount[nDepth] = nPreParentCount;
     479        1371 :         if(nCount)
     480             :         {
     481        1369 :             double fNextParentValue = getTickValue(nDepth,0);
     482        1369 :             if( fNextParentValue < fParentValue )
     483         415 :                 fParentValue = fNextParentValue;
     484             :         }
     485             :     }
     486             : }
     487             : 
     488        9942 : EquidistantTickIter::~EquidistantTickIter()
     489             : {
     490        4971 :     delete[] m_pnPositions;
     491        4971 :     delete[] m_pnPreParentCount;
     492        4971 :     delete[] m_pbIntervalFinished;
     493        4971 : }
     494             : 
     495        4971 : sal_Int32 EquidistantTickIter::getStartDepth() const
     496             : {
     497             :     //find the depth of the first visible tickmark:
     498             :     //it is the depth of the smallest value
     499        4971 :     sal_Int32 nReturnDepth=0;
     500        4971 :     double fMinValue = DBL_MAX;
     501       11313 :     for(sal_Int32 nDepth = 0; nDepth<=m_nMaxDepth ;nDepth++ )
     502             :     {
     503        6342 :         sal_Int32 nCount = getTickCount(nDepth);
     504        6342 :         if( !nCount )
     505           2 :             continue;
     506        6340 :         double fThisValue = getTickValue(nDepth,0);
     507        6340 :         if(fThisValue<fMinValue)
     508             :         {
     509        5386 :             nReturnDepth = nDepth;
     510        5386 :             fMinValue = fThisValue;
     511             :         }
     512             :     }
     513        4971 :     return nReturnDepth;
     514             : }
     515             : 
     516        3600 : double* EquidistantTickIter::firstValue()
     517             : {
     518        3600 :     if( gotoFirst() )
     519             :     {
     520        3600 :         m_fCurrentValue = getTickValue(m_nCurrentDepth, m_pnPositions[m_nCurrentDepth]);
     521        3600 :         return &m_fCurrentValue;
     522             :     }
     523           0 :     return NULL;
     524             : }
     525             : 
     526        1371 : TickInfo* EquidistantTickIter::firstInfo()
     527             : {
     528        1371 :     if( m_pInfoTicks && gotoFirst() )
     529        1371 :         return &(*m_pInfoTicks)[m_nCurrentDepth][m_pnPositions[m_nCurrentDepth]];
     530           0 :     return NULL;
     531             : }
     532             : 
     533        7566 : sal_Int32 EquidistantTickIter::getIntervalCount( sal_Int32 nDepth )
     534             : {
     535        7566 :     if(nDepth>static_cast<sal_Int32>(m_rIncrement.SubIncrements.size()) || nDepth<0)
     536           0 :         return 0;
     537             : 
     538        7566 :     if(!nDepth)
     539           0 :         return m_nTickCount;
     540             : 
     541        7566 :     return m_rIncrement.SubIncrements[nDepth-1].IntervalCount;
     542             : }
     543             : 
     544       27682 : bool EquidistantTickIter::isAtLastPartTick()
     545             : {
     546       27682 :     if(!m_nCurrentDepth)
     547       20116 :         return false;
     548        7566 :     sal_Int32 nIntervalCount = getIntervalCount( m_nCurrentDepth );
     549        7566 :     if(!nIntervalCount || nIntervalCount == 1)
     550           0 :         return true;
     551        7566 :     if( m_pbIntervalFinished[m_nCurrentDepth] )
     552           0 :         return false;
     553        7566 :     sal_Int32 nPos = m_pnPositions[m_nCurrentDepth]+1;
     554        7566 :     if(m_pnPreParentCount[m_nCurrentDepth])
     555        1649 :         nPos += nIntervalCount-1 - m_pnPreParentCount[m_nCurrentDepth];
     556        7566 :     bool bRet = nPos && nPos % (nIntervalCount-1) == 0;
     557        7566 :     if(!nPos && !m_pnPreParentCount[m_nCurrentDepth]
     558           0 :              && m_pnPositions[m_nCurrentDepth-1]==-1 )
     559           0 :          bRet = true;
     560        7566 :     return bRet;
     561             : }
     562             : 
     563        4971 : bool EquidistantTickIter::gotoFirst()
     564             : {
     565        4971 :     if( m_nMaxDepth<0 )
     566           0 :         return false;
     567        4971 :     if( !m_nTickCount )
     568           0 :         return false;
     569             : 
     570       11313 :     for(sal_Int32 nDepth = 0; nDepth<=m_nMaxDepth ;nDepth++ )
     571        6342 :         m_pnPositions[nDepth] = -1;
     572             : 
     573        4971 :     m_nCurrentPos   = 0;
     574        4971 :     m_nCurrentDepth = getStartDepth();
     575        4971 :     m_pnPositions[m_nCurrentDepth] = 0;
     576        4971 :     return true;
     577             : }
     578             : 
     579       39974 : bool EquidistantTickIter::gotoNext()
     580             : {
     581       39974 :     if( m_nCurrentPos < 0 )
     582           0 :         return false;
     583       39974 :     m_nCurrentPos++;
     584             : 
     585       39974 :     if( m_nCurrentPos >= m_nTickCount )
     586        4969 :         return false;
     587             : 
     588       35005 :     if( m_nCurrentDepth==m_nMaxDepth && isAtLastPartTick() )
     589             :     {
     590        7321 :         do
     591             :         {
     592        7321 :             m_pbIntervalFinished[m_nCurrentDepth] = true;
     593        7321 :             m_nCurrentDepth--;
     594             :         }
     595        7321 :         while( m_nCurrentDepth && isAtLastPartTick() );
     596             :     }
     597       27684 :     else if( m_nCurrentDepth<m_nMaxDepth )
     598             :     {
     599        7323 :         do
     600             :         {
     601        7323 :             m_nCurrentDepth++;
     602             :         }
     603        7323 :         while( m_nCurrentDepth<m_nMaxDepth );
     604             :     }
     605       35005 :     m_pbIntervalFinished[m_nCurrentDepth] = false;
     606       35005 :     m_pnPositions[m_nCurrentDepth] = m_pnPositions[m_nCurrentDepth]+1;
     607       35005 :     return true;
     608             : }
     609             : 
     610       23716 : double* EquidistantTickIter::nextValue()
     611             : {
     612       23716 :     if( gotoNext() )
     613             :     {
     614       20116 :         m_fCurrentValue = getTickValue(m_nCurrentDepth, m_pnPositions[m_nCurrentDepth]);
     615       20116 :         return &m_fCurrentValue;
     616             :     }
     617        3600 :     return NULL;
     618             : }
     619             : 
     620       16258 : TickInfo* EquidistantTickIter::nextInfo()
     621             : {
     622       31147 :     if( m_pInfoTicks && gotoNext() &&
     623             :         static_cast< sal_Int32 >(
     624       14889 :             (*m_pInfoTicks)[m_nCurrentDepth].size()) > m_pnPositions[m_nCurrentDepth] )
     625             :     {
     626       14887 :         return &(*m_pInfoTicks)[m_nCurrentDepth][m_pnPositions[m_nCurrentDepth]];
     627             :     }
     628        1371 :     return NULL;
     629             : }
     630             : 
     631         108 : } //namespace chart
     632             : 
     633             : /* vim:set shiftwidth=4 softtabstop=4 expandtab: */

Generated by: LCOV version 1.10