Line data Source code
1 : /* -*- Mode: C++; tab-width: 4; indent-tabs-mode: nil; c-basic-offset: 4 -*- */
2 : /*
3 : * This file is part of the LibreOffice project.
4 : *
5 : * This Source Code Form is subject to the terms of the Mozilla Public
6 : * License, v. 2.0. If a copy of the MPL was not distributed with this
7 : * file, You can obtain one at http://mozilla.org/MPL/2.0/.
8 : *
9 : * This file incorporates work covered by the following license notice:
10 : *
11 : * Licensed to the Apache Software Foundation (ASF) under one or more
12 : * contributor license agreements. See the NOTICE file distributed
13 : * with this work for additional information regarding copyright
14 : * ownership. The ASF licenses this file to you under the Apache
15 : * License, Version 2.0 (the "License"); you may not use this file
16 : * except in compliance with the License. You may obtain a copy of
17 : * the License at http://www.apache.org/licenses/LICENSE-2.0 .
18 : */
19 :
20 : #include <unistd.h>
21 : #include <cstdio>
22 : #include <cstring>
23 :
24 : #include <bmp.hxx>
25 :
26 : #include <X11_selection.hxx>
27 : #include <unx/x11/xlimits.hxx>
28 :
29 : #include <sal/macros.h>
30 : #include <tools/stream.hxx>
31 : #include <vcl/dibtools.hxx>
32 : #include <vcl/svapp.hxx>
33 : #include "vcl/bitmap.hxx"
34 :
35 : using namespace x11;
36 :
37 : /*
38 : * helper functions
39 : */
40 :
41 0 : inline void writeLE( sal_uInt16 nNumber, sal_uInt8* pBuffer )
42 : {
43 0 : pBuffer[ 0 ] = (nNumber & 0xff);
44 0 : pBuffer[ 1 ] = ((nNumber>>8)&0xff);
45 0 : }
46 :
47 0 : inline void writeLE( sal_uInt32 nNumber, sal_uInt8* pBuffer )
48 : {
49 0 : pBuffer[ 0 ] = (nNumber & 0xff);
50 0 : pBuffer[ 1 ] = ((nNumber>>8)&0xff);
51 0 : pBuffer[ 2 ] = ((nNumber>>16)&0xff);
52 0 : pBuffer[ 3 ] = ((nNumber>>24)&0xff);
53 0 : }
54 :
55 0 : inline sal_uInt16 readLE16( const sal_uInt8* pBuffer )
56 : {
57 0 : return (((sal_uInt16)pBuffer[1]) << 8 ) | pBuffer[0];
58 : }
59 :
60 0 : inline sal_uInt16 readLE32( const sal_uInt8* pBuffer )
61 : {
62 : return
63 : (((sal_uInt32)pBuffer[3]) << 24 ) |
64 : (((sal_uInt32)pBuffer[2]) << 16 ) |
65 0 : (((sal_uInt32)pBuffer[1]) << 8 ) |
66 0 : pBuffer[0];
67 : }
68 :
69 : /*
70 : * scanline helpers
71 : */
72 :
73 0 : inline void X11_writeScanlinePixel( unsigned long nColor, sal_uInt8* pScanline, int depth, int x )
74 : {
75 0 : switch( depth )
76 : {
77 : case 1:
78 0 : pScanline[ x/8 ] &= ~(1 << (x&7));
79 0 : pScanline[ x/8 ] |= ((nColor & 1) << (x&7));
80 0 : break;
81 : case 4:
82 0 : pScanline[ x/2 ] &= ((x&1) ? 0x0f : 0xf0);
83 0 : pScanline[ x/2 ] |= ((x&1) ? (nColor & 0x0f) : ((nColor & 0x0f) << 4));
84 0 : break;
85 : default:
86 : case 8:
87 0 : pScanline[ x ] = (nColor & 0xff);
88 0 : break;
89 : }
90 0 : }
91 :
92 0 : static sal_uInt8* X11_getPaletteBmpFromImage(
93 : Display* pDisplay,
94 : XImage* pImage,
95 : Colormap aColormap,
96 : sal_Int32& rOutSize
97 : )
98 : {
99 0 : sal_uInt32 nColors = 0;
100 :
101 0 : rOutSize = 0;
102 :
103 0 : sal_uInt8* pBuffer = 0;
104 : sal_uInt32 nHeaderSize, nScanlineSize;
105 : sal_uInt16 nBitCount;
106 : // determine header and scanline size
107 0 : switch( pImage->depth )
108 : {
109 : case 1:
110 0 : nHeaderSize = 64;
111 0 : nScanlineSize = (pImage->width+31)/32;
112 0 : nBitCount = 1;
113 0 : break;
114 : case 4:
115 0 : nHeaderSize = 72;
116 0 : nScanlineSize = (pImage->width+1)/2;
117 0 : nBitCount = 4;
118 0 : break;
119 : default:
120 : case 8:
121 0 : nHeaderSize = 1084;
122 0 : nScanlineSize = pImage->width;
123 0 : nBitCount = 8;
124 0 : break;
125 : }
126 : // adjust scan lines to begin on %4 boundaries
127 0 : if( nScanlineSize & 3 )
128 : {
129 0 : nScanlineSize &= 0xfffffffc;
130 0 : nScanlineSize += 4;
131 : }
132 :
133 : // allocate buffer to hold header and scanlines, initialize to zero
134 0 : rOutSize = nHeaderSize + nScanlineSize*pImage->height;
135 0 : pBuffer = (sal_uInt8*)rtl_allocateZeroMemory( rOutSize );
136 0 : for( int y = 0; y < pImage->height; y++ )
137 : {
138 0 : sal_uInt8* pScanline = pBuffer + nHeaderSize + (pImage->height-1-y)*nScanlineSize;
139 0 : for( int x = 0; x < pImage->width; x++ )
140 : {
141 0 : unsigned long nPixel = XGetPixel( pImage, x, y );
142 0 : if( nPixel >= nColors )
143 0 : nColors = nPixel+1;
144 0 : X11_writeScanlinePixel( nPixel, pScanline, pImage->depth, x );
145 : }
146 : }
147 :
148 : // fill in header fields
149 0 : pBuffer[ 0 ] = 'B';
150 0 : pBuffer[ 1 ] = 'M';
151 :
152 0 : writeLE( nHeaderSize, pBuffer+10 );
153 0 : writeLE( (sal_uInt32)40, pBuffer+14 );
154 0 : writeLE( (sal_uInt32)pImage->width, pBuffer+18 );
155 0 : writeLE( (sal_uInt32)pImage->height, pBuffer+22 );
156 0 : writeLE( (sal_uInt16)1, pBuffer+26 );
157 0 : writeLE( nBitCount, pBuffer+28 );
158 0 : writeLE( (sal_uInt32)(DisplayWidth(pDisplay,DefaultScreen(pDisplay))*1000/DisplayWidthMM(pDisplay,DefaultScreen(pDisplay))), pBuffer+38);
159 0 : writeLE( (sal_uInt32)(DisplayHeight(pDisplay,DefaultScreen(pDisplay))*1000/DisplayHeightMM(pDisplay,DefaultScreen(pDisplay))), pBuffer+42);
160 0 : writeLE( nColors, pBuffer+46 );
161 0 : writeLE( nColors, pBuffer+50 );
162 :
163 : XColor aColors[256];
164 0 : if( nColors > (1U << nBitCount) ) // paranoia
165 0 : nColors = (1U << nBitCount);
166 0 : for( unsigned long nPixel = 0; nPixel < nColors; nPixel++ )
167 : {
168 0 : aColors[nPixel].flags = DoRed | DoGreen | DoBlue;
169 0 : aColors[nPixel].pixel = nPixel;
170 : }
171 0 : XQueryColors( pDisplay, aColormap, aColors, nColors );
172 0 : for( sal_uInt32 i = 0; i < nColors; i++ )
173 : {
174 0 : pBuffer[ 54 + i*4 ] = (sal_uInt8)(aColors[i].blue >> 8);
175 0 : pBuffer[ 55 + i*4 ] = (sal_uInt8)(aColors[i].green >> 8);
176 0 : pBuffer[ 56 + i*4 ] = (sal_uInt8)(aColors[i].red >> 8);
177 : }
178 :
179 : // done
180 :
181 0 : return pBuffer;
182 : }
183 :
184 0 : inline unsigned long doRightShift( unsigned long nValue, int nShift )
185 : {
186 0 : return (nShift > 0) ? (nValue >> nShift) : (nValue << (-nShift));
187 : }
188 :
189 0 : inline unsigned long doLeftShift( unsigned long nValue, int nShift )
190 : {
191 0 : return (nShift > 0) ? (nValue << nShift) : (nValue >> (-nShift));
192 : }
193 :
194 0 : static void getShift( unsigned long nMask, int& rShift, int& rSigBits, int& rShift2 )
195 : {
196 0 : unsigned long nUseMask = nMask;
197 0 : rShift = 0;
198 0 : while( nMask & 0xffffff00 )
199 : {
200 0 : rShift++;
201 0 : nMask >>= 1;
202 : }
203 0 : if( rShift == 0 )
204 0 : while( ! (nMask & 0x00000080) )
205 : {
206 0 : rShift--;
207 0 : nMask <<= 1;
208 : }
209 :
210 0 : int nRotate = sizeof(unsigned long)*8 - rShift;
211 0 : rSigBits = 0;
212 0 : nMask = doRightShift( nUseMask, rShift) ;
213 0 : while( nRotate-- )
214 : {
215 0 : if( nMask & 1 )
216 0 : rSigBits++;
217 0 : nMask >>= 1;
218 : }
219 :
220 0 : rShift2 = 0;
221 0 : if( rSigBits < 8 )
222 0 : rShift2 = 8-rSigBits;
223 0 : }
224 :
225 0 : static sal_uInt8* X11_getTCBmpFromImage(
226 : Display* pDisplay,
227 : XImage* pImage,
228 : sal_Int32& rOutSize,
229 : int nScreenNo
230 : )
231 : {
232 : // get masks from visual info (guesswork)
233 : XVisualInfo aVInfo;
234 0 : if( ! XMatchVisualInfo( pDisplay, nScreenNo, pImage->depth, TrueColor, &aVInfo ) )
235 0 : return NULL;
236 :
237 0 : rOutSize = 0;
238 :
239 0 : sal_uInt8* pBuffer = 0;
240 0 : sal_uInt32 nHeaderSize = 60;
241 0 : sal_uInt32 nScanlineSize = pImage->width*3;
242 :
243 : // adjust scan lines to begin on %4 boundaries
244 0 : if( nScanlineSize & 3 )
245 : {
246 0 : nScanlineSize &= 0xfffffffc;
247 0 : nScanlineSize += 4;
248 : }
249 0 : int nRedShift, nRedSig, nRedShift2 = 0;
250 0 : getShift( aVInfo.red_mask, nRedShift, nRedSig, nRedShift2 );
251 0 : int nGreenShift, nGreenSig, nGreenShift2 = 0;
252 0 : getShift( aVInfo.green_mask, nGreenShift, nGreenSig, nGreenShift2 );
253 0 : int nBlueShift, nBlueSig, nBlueShift2 = 0;
254 0 : getShift( aVInfo.blue_mask, nBlueShift, nBlueSig, nBlueShift2 );
255 :
256 : // allocate buffer to hold header and scanlines, initialize to zero
257 0 : rOutSize = nHeaderSize + nScanlineSize*pImage->height;
258 0 : pBuffer = (sal_uInt8*)rtl_allocateZeroMemory( rOutSize );
259 0 : for( int y = 0; y < pImage->height; y++ )
260 : {
261 0 : sal_uInt8* pScanline = pBuffer + nHeaderSize + (pImage->height-1-y)*nScanlineSize;
262 0 : for( int x = 0; x < pImage->width; x++ )
263 : {
264 0 : unsigned long nPixel = XGetPixel( pImage, x, y );
265 :
266 0 : sal_uInt8 nValue = (sal_uInt8)doRightShift( nPixel&aVInfo.blue_mask, nBlueShift);
267 0 : if( nBlueShift2 )
268 0 : nValue |= (nValue >> nBlueShift2 );
269 0 : *pScanline++ = nValue;
270 :
271 0 : nValue = (sal_uInt8)doRightShift( nPixel&aVInfo.green_mask, nGreenShift);
272 0 : if( nGreenShift2 )
273 0 : nValue |= (nValue >> nGreenShift2 );
274 0 : *pScanline++ = nValue;
275 :
276 0 : nValue = (sal_uInt8)doRightShift( nPixel&aVInfo.red_mask, nRedShift);
277 0 : if( nRedShift2 )
278 0 : nValue |= (nValue >> nRedShift2 );
279 0 : *pScanline++ = nValue;
280 : }
281 : }
282 :
283 : // fill in header fields
284 0 : pBuffer[ 0 ] = 'B';
285 0 : pBuffer[ 1 ] = 'M';
286 :
287 0 : writeLE( nHeaderSize, pBuffer+10 );
288 0 : writeLE( (sal_uInt32)40, pBuffer+14 );
289 0 : writeLE( (sal_uInt32)pImage->width, pBuffer+18 );
290 0 : writeLE( (sal_uInt32)pImage->height, pBuffer+22 );
291 0 : writeLE( (sal_uInt16)1, pBuffer+26 );
292 0 : writeLE( (sal_uInt16)24, pBuffer+28 );
293 0 : writeLE( (sal_uInt32)(DisplayWidth(pDisplay,DefaultScreen(pDisplay))*1000/DisplayWidthMM(pDisplay,DefaultScreen(pDisplay))), pBuffer+38);
294 0 : writeLE( (sal_uInt32)(DisplayHeight(pDisplay,DefaultScreen(pDisplay))*1000/DisplayHeightMM(pDisplay,DefaultScreen(pDisplay))), pBuffer+42);
295 :
296 : // done
297 :
298 0 : return pBuffer;
299 : }
300 :
301 0 : sal_uInt8* x11::X11_getBmpFromPixmap(
302 : Display* pDisplay,
303 : Drawable aDrawable,
304 : Colormap aColormap,
305 : sal_Int32& rOutSize
306 : )
307 : {
308 : // get geometry of drawable
309 : ::Window aRoot;
310 : int x,y;
311 : unsigned int w, h, bw, d;
312 0 : XGetGeometry( pDisplay, aDrawable, &aRoot, &x, &y, &w, &h, &bw, &d );
313 :
314 : // find which screen we are on
315 0 : int nScreenNo = ScreenCount( pDisplay );
316 0 : while( nScreenNo-- )
317 : {
318 0 : if( RootWindow( pDisplay, nScreenNo ) == aRoot )
319 0 : break;
320 : }
321 0 : if( nScreenNo < 0 )
322 0 : return NULL;
323 :
324 0 : if( aColormap == None )
325 0 : aColormap = DefaultColormap( pDisplay, nScreenNo );
326 :
327 : // get the image
328 0 : XImage* pImage = XGetImage( pDisplay, aDrawable, 0, 0, w, h, AllPlanes, ZPixmap );
329 0 : if( ! pImage )
330 0 : return NULL;
331 :
332 0 : sal_uInt8* pBmp = d <= 8 ?
333 : X11_getPaletteBmpFromImage( pDisplay, pImage, aColormap, rOutSize ) :
334 0 : X11_getTCBmpFromImage( pDisplay, pImage, rOutSize, nScreenNo );
335 0 : XDestroyImage( pImage );
336 :
337 0 : return pBmp;
338 : }
339 :
340 0 : void x11::X11_freeBmp( sal_uInt8* pBmp )
341 : {
342 0 : rtl_freeMemory( pBmp );
343 0 : }
344 :
345 : /*
346 : * PixmapHolder
347 : */
348 :
349 0 : PixmapHolder::PixmapHolder( Display* pDisplay )
350 : : m_pDisplay(pDisplay)
351 : , m_aColormap(None)
352 : , m_aPixmap(None)
353 : , m_aBitmap(None)
354 : , m_nRedShift(0)
355 : , m_nRedShift2(0)
356 : , m_nGreenShift(0)
357 : , m_nGreenShift2(0)
358 : , m_nBlueShift(0)
359 : , m_nBlueShift2(0)
360 : , m_nBlueShift2Mask(0)
361 : , m_nRedShift2Mask(0)
362 0 : , m_nGreenShift2Mask(0)
363 : {
364 : /* try to get a 24 bit true color visual, if that fails,
365 : * revert to default visual
366 : */
367 0 : if( ! XMatchVisualInfo( m_pDisplay, DefaultScreen( m_pDisplay ), 24, TrueColor, &m_aInfo ) )
368 : {
369 : #if OSL_DEBUG_LEVEL > 1
370 : fprintf( stderr, "PixmapHolder reverting to default visual\n" );
371 : #endif
372 0 : Visual* pVisual = DefaultVisual( m_pDisplay, DefaultScreen( m_pDisplay ) );
373 0 : m_aInfo.screen = DefaultScreen( m_pDisplay );
374 0 : m_aInfo.visual = pVisual;
375 0 : m_aInfo.visualid = pVisual->visualid;
376 0 : m_aInfo.c_class = pVisual->c_class;
377 0 : m_aInfo.red_mask = pVisual->red_mask;
378 0 : m_aInfo.green_mask = pVisual->green_mask;
379 0 : m_aInfo.blue_mask = pVisual->blue_mask;
380 0 : m_aInfo.depth = DefaultDepth( m_pDisplay, m_aInfo.screen );
381 : }
382 0 : m_aColormap = DefaultColormap( m_pDisplay, m_aInfo.screen );
383 : #if OSL_DEBUG_LEVEL > 1
384 : static const char* pClasses[] =
385 : { "StaticGray", "GrayScale", "StaticColor", "PseudoColor", "TrueColor", "DirectColor" };
386 : fprintf( stderr, "PixmapHolder visual: id = 0x%lx, class = %s (%d), depth=%d; color map = 0x%lx\n",
387 : m_aInfo.visualid,
388 : (m_aInfo.c_class >= 0 && unsigned(m_aInfo.c_class) < SAL_N_ELEMENTS(pClasses)) ? pClasses[m_aInfo.c_class] : "<unknown>",
389 : m_aInfo.c_class,
390 : m_aInfo.depth,
391 : m_aColormap );
392 : #endif
393 0 : if( m_aInfo.c_class == TrueColor )
394 : {
395 : int nRedSig, nGreenSig, nBlueSig;
396 0 : getShift( m_aInfo.red_mask, m_nRedShift, nRedSig, m_nRedShift2 );
397 0 : getShift( m_aInfo.green_mask, m_nGreenShift, nGreenSig, m_nGreenShift2 );
398 0 : getShift( m_aInfo.blue_mask, m_nBlueShift, nBlueSig, m_nBlueShift2 );
399 :
400 0 : m_nBlueShift2Mask = m_nBlueShift2 ? ~((unsigned long)((1<<m_nBlueShift2)-1)) : ~0L;
401 0 : m_nGreenShift2Mask = m_nGreenShift2 ? ~((unsigned long)((1<<m_nGreenShift2)-1)) : ~0L;
402 0 : m_nRedShift2Mask = m_nRedShift2 ? ~((unsigned long)((1<<m_nRedShift2)-1)) : ~0L;
403 : }
404 0 : }
405 :
406 0 : PixmapHolder::~PixmapHolder()
407 : {
408 0 : if( m_aPixmap != None )
409 0 : XFreePixmap( m_pDisplay, m_aPixmap );
410 0 : if( m_aBitmap != None )
411 0 : XFreePixmap( m_pDisplay, m_aBitmap );
412 0 : }
413 :
414 0 : unsigned long PixmapHolder::getTCPixel( sal_uInt8 r, sal_uInt8 g, sal_uInt8 b ) const
415 : {
416 0 : unsigned long nPixel = 0;
417 0 : unsigned long nValue = (unsigned long)b;
418 0 : nValue &= m_nBlueShift2Mask;
419 0 : nPixel |= doLeftShift( nValue, m_nBlueShift );
420 :
421 0 : nValue = (unsigned long)g;
422 0 : nValue &= m_nGreenShift2Mask;
423 0 : nPixel |= doLeftShift( nValue, m_nGreenShift );
424 :
425 0 : nValue = (unsigned long)r;
426 0 : nValue &= m_nRedShift2Mask;
427 0 : nPixel |= doLeftShift( nValue, m_nRedShift );
428 :
429 0 : return nPixel;
430 : }
431 :
432 0 : void PixmapHolder::setBitmapDataPalette( const sal_uInt8* pData, XImage* pImage )
433 : {
434 : // setup palette
435 : XColor aPalette[256];
436 :
437 0 : sal_uInt32 nColors = readLE32( pData+32 );
438 0 : sal_uInt32 nWidth = readLE32( pData+4 );
439 0 : sal_uInt32 nHeight = readLE32( pData+8 );
440 0 : sal_uInt16 nDepth = readLE16( pData+14 );
441 :
442 0 : for( sal_uInt16 i = 0 ; i < nColors; i++ )
443 : {
444 0 : if( m_aInfo.c_class != TrueColor )
445 : {
446 0 : aPalette[i].red = ((unsigned short)pData[42 + i*4]) << 8 | ((unsigned short)pData[42 + i*4]);
447 0 : aPalette[i].green = ((unsigned short)pData[41 + i*4]) << 8 | ((unsigned short)pData[41 + i*4]);
448 0 : aPalette[i].blue = ((unsigned short)pData[40 + i*4]) << 8 | ((unsigned short)pData[40 + i*4]);
449 0 : XAllocColor( m_pDisplay, m_aColormap, aPalette+i );
450 : }
451 : else
452 0 : aPalette[i].pixel = getTCPixel( pData[42+i*4], pData[41+i*4], pData[40+i*4] );
453 : }
454 0 : const sal_uInt8* pBMData = pData + readLE32( pData ) + 4*nColors;
455 :
456 0 : sal_uInt32 nScanlineSize = 0;
457 0 : switch( nDepth )
458 : {
459 : case 1:
460 0 : nScanlineSize = (nWidth+31)/32;
461 0 : break;
462 : case 4:
463 0 : nScanlineSize = (nWidth+1)/2;
464 0 : break;
465 : case 8:
466 0 : nScanlineSize = nWidth;
467 0 : break;
468 : }
469 : // adjust scan lines to begin on %4 boundaries
470 0 : if( nScanlineSize & 3 )
471 : {
472 0 : nScanlineSize &= 0xfffffffc;
473 0 : nScanlineSize += 4;
474 : }
475 :
476 : // allocate buffer to hold header and scanlines, initialize to zero
477 0 : for( unsigned int y = 0; y < nHeight; y++ )
478 : {
479 0 : const sal_uInt8* pScanline = pBMData + (nHeight-1-y)*nScanlineSize;
480 0 : for( unsigned int x = 0; x < nWidth; x++ )
481 : {
482 0 : int nCol = 0;
483 0 : switch( nDepth )
484 : {
485 0 : case 1: nCol = (pScanline[ x/8 ] & (0x80 >> (x&7))) != 0 ? 0 : 1; break;
486 : case 4:
487 0 : if( x & 1 )
488 0 : nCol = (int)(pScanline[ x/2 ] >> 4);
489 : else
490 0 : nCol = (int)(pScanline[ x/2 ] & 0x0f);
491 0 : break;
492 0 : case 8: nCol = (int)pScanline[x];
493 : }
494 0 : XPutPixel( pImage, x, y, aPalette[nCol].pixel );
495 : }
496 : }
497 0 : }
498 :
499 0 : void PixmapHolder::setBitmapDataTCDither( const sal_uInt8* pData, XImage* pImage )
500 : {
501 : XColor aPalette[216];
502 :
503 0 : int nNonAllocs = 0;
504 :
505 0 : for( int r = 0; r < 6; r++ )
506 : {
507 0 : for( int g = 0; g < 6; g++ )
508 : {
509 0 : for( int b = 0; b < 6; b++ )
510 : {
511 0 : int i = r*36+g*6+b;
512 0 : aPalette[i].red = r == 5 ? 0xffff : r*10922;
513 0 : aPalette[i].green = g == 5 ? 0xffff : g*10922;
514 0 : aPalette[i].blue = b == 5 ? 0xffff : b*10922;
515 0 : aPalette[i].pixel = 0;
516 0 : if( ! XAllocColor( m_pDisplay, m_aColormap, aPalette+i ) )
517 0 : nNonAllocs++;
518 : }
519 : }
520 : }
521 :
522 0 : if( nNonAllocs )
523 : {
524 : XColor aRealPalette[256];
525 0 : int nColors = 1 << m_aInfo.depth;
526 : int i;
527 0 : for( i = 0; i < nColors; i++ )
528 0 : aRealPalette[i].pixel = (unsigned long)i;
529 0 : XQueryColors( m_pDisplay, m_aColormap, aRealPalette, nColors );
530 0 : for( i = 0; i < nColors; i++ )
531 : {
532 : sal_uInt8 nIndex =
533 : 36*(sal_uInt8)(aRealPalette[i].red/10923) +
534 : 6*(sal_uInt8)(aRealPalette[i].green/10923) +
535 0 : (sal_uInt8)(aRealPalette[i].blue/10923);
536 0 : if( aPalette[nIndex].pixel == 0 )
537 0 : aPalette[nIndex] = aRealPalette[i];
538 : }
539 : }
540 :
541 0 : sal_uInt32 nWidth = readLE32( pData+4 );
542 0 : sal_uInt32 nHeight = readLE32( pData+8 );
543 :
544 0 : const sal_uInt8* pBMData = pData + readLE32( pData );
545 0 : sal_uInt32 nScanlineSize = nWidth*3;
546 : // adjust scan lines to begin on %4 boundaries
547 0 : if( nScanlineSize & 3 )
548 : {
549 0 : nScanlineSize &= 0xfffffffc;
550 0 : nScanlineSize += 4;
551 : }
552 :
553 0 : for( int y = 0; y < (int)nHeight; y++ )
554 : {
555 0 : const sal_uInt8* pScanline = pBMData + (nHeight-1-(sal_uInt32)y)*nScanlineSize;
556 0 : for( int x = 0; x < (int)nWidth; x++ )
557 : {
558 0 : sal_uInt8 b = pScanline[3*x];
559 0 : sal_uInt8 g = pScanline[3*x+1];
560 0 : sal_uInt8 r = pScanline[3*x+2];
561 0 : sal_uInt8 i = 36*(r/43) + 6*(g/43) + (b/43);
562 :
563 0 : XPutPixel( pImage, x, y, aPalette[ i ].pixel );
564 : }
565 : }
566 0 : }
567 :
568 0 : void PixmapHolder::setBitmapDataTC( const sal_uInt8* pData, XImage* pImage )
569 : {
570 0 : sal_uInt32 nWidth = readLE32( pData+4 );
571 0 : sal_uInt32 nHeight = readLE32( pData+8 );
572 :
573 0 : if (!nWidth || !nHeight)
574 0 : return;
575 :
576 0 : const sal_uInt8* pBMData = pData + readLE32( pData );
577 0 : sal_uInt32 nScanlineSize = nWidth*3;
578 : // adjust scan lines to begin on %4 boundaries
579 0 : if( nScanlineSize & 3 )
580 : {
581 0 : nScanlineSize &= 0xfffffffc;
582 0 : nScanlineSize += 4;
583 : }
584 :
585 0 : for( int y = 0; y < (int)nHeight; y++ )
586 : {
587 0 : const sal_uInt8* pScanline = pBMData + (nHeight-1-(sal_uInt32)y)*nScanlineSize;
588 0 : for( int x = 0; x < (int)nWidth; x++ )
589 : {
590 0 : unsigned long nPixel = getTCPixel( pScanline[3*x+2], pScanline[3*x+1], pScanline[3*x] );
591 0 : XPutPixel( pImage, x, y, nPixel );
592 : }
593 : }
594 : }
595 :
596 0 : bool PixmapHolder::needsConversion( const sal_uInt8* pData )
597 : {
598 0 : if( pData[0] != 'B' || pData[1] != 'M' )
599 0 : return true;
600 :
601 0 : pData = pData+14;
602 0 : sal_uInt32 nDepth = readLE32( pData+14 );
603 0 : if( nDepth == 24 )
604 : {
605 0 : if( m_aInfo.c_class != TrueColor )
606 0 : return true;
607 : }
608 0 : else if( nDepth != (sal_uInt32)m_aInfo.depth )
609 : {
610 0 : if( m_aInfo.c_class != TrueColor )
611 0 : return true;
612 : }
613 :
614 0 : return false;
615 : }
616 :
617 0 : Pixmap PixmapHolder::setBitmapData( const sal_uInt8* pData )
618 : {
619 0 : if( pData[0] != 'B' || pData[1] != 'M' )
620 0 : return None;
621 :
622 0 : pData = pData+14;
623 :
624 : // reject compressed data
625 0 : if( readLE32( pData + 16 ) != 0 )
626 0 : return None;
627 :
628 0 : sal_uInt32 nWidth = readLE32( pData+4 );
629 0 : sal_uInt32 nHeight = readLE32( pData+8 );
630 :
631 0 : if( m_aPixmap != None )
632 0 : XFreePixmap( m_pDisplay, m_aPixmap ), m_aPixmap = None;
633 0 : if( m_aBitmap != None )
634 0 : XFreePixmap( m_pDisplay, m_aBitmap ), m_aBitmap = None;
635 :
636 : m_aPixmap = limitXCreatePixmap( m_pDisplay,
637 0 : RootWindow( m_pDisplay, m_aInfo.screen ),
638 0 : nWidth, nHeight, m_aInfo.depth );
639 :
640 0 : if( m_aPixmap != None )
641 : {
642 : XImage aImage;
643 0 : aImage.width = (int)nWidth;
644 0 : aImage.height = (int)nHeight;
645 0 : aImage.xoffset = 0;
646 0 : aImage.format = ZPixmap;
647 0 : aImage.data = NULL;
648 0 : aImage.byte_order = ImageByteOrder( m_pDisplay );
649 0 : aImage.bitmap_unit = BitmapUnit( m_pDisplay );
650 0 : aImage.bitmap_bit_order = BitmapBitOrder( m_pDisplay );
651 0 : aImage.bitmap_pad = BitmapPad( m_pDisplay );
652 0 : aImage.depth = m_aInfo.depth;
653 0 : aImage.red_mask = m_aInfo.red_mask;
654 0 : aImage.green_mask = m_aInfo.green_mask;
655 0 : aImage.blue_mask = m_aInfo.blue_mask;
656 0 : aImage.bytes_per_line = 0; // filled in by XInitImage
657 0 : if( m_aInfo.depth <= 8 )
658 0 : aImage.bits_per_pixel = m_aInfo.depth;
659 : else
660 0 : aImage.bits_per_pixel = 8*((m_aInfo.depth+7)/8);
661 0 : aImage.obdata = NULL;
662 :
663 0 : XInitImage( &aImage );
664 0 : aImage.data = (char*)rtl_allocateMemory( nHeight*aImage.bytes_per_line );
665 :
666 0 : if( readLE32( pData+14 ) == 24 )
667 : {
668 0 : if( m_aInfo.c_class == TrueColor )
669 0 : setBitmapDataTC( pData, &aImage );
670 : else
671 0 : setBitmapDataTCDither( pData, &aImage );
672 : }
673 : else
674 0 : setBitmapDataPalette( pData, &aImage );
675 :
676 : // put the image
677 : XPutImage( m_pDisplay,
678 : m_aPixmap,
679 0 : DefaultGC( m_pDisplay, m_aInfo.screen ),
680 : &aImage,
681 : 0, 0,
682 : 0, 0,
683 0 : nWidth, nHeight );
684 :
685 : // clean up
686 0 : rtl_freeMemory( aImage.data );
687 :
688 : // prepare bitmap (mask)
689 : m_aBitmap = limitXCreatePixmap( m_pDisplay,
690 0 : RootWindow( m_pDisplay, m_aInfo.screen ),
691 0 : nWidth, nHeight, 1 );
692 : XGCValues aVal;
693 0 : aVal.function = GXcopy;
694 0 : aVal.foreground = 0xffffffff;
695 0 : GC aGC = XCreateGC( m_pDisplay, m_aBitmap, GCFunction | GCForeground, &aVal );
696 0 : XFillRectangle( m_pDisplay, m_aBitmap, aGC, 0, 0, nWidth, nHeight );
697 0 : XFreeGC( m_pDisplay, aGC );
698 : }
699 :
700 0 : return m_aPixmap;
701 : }
702 :
703 0 : css::uno::Sequence<sal_Int8> x11::convertBitmapDepth(
704 : css::uno::Sequence<sal_Int8> const & data, int depth)
705 : {
706 0 : if (depth < 4) {
707 0 : depth = 1;
708 0 : } else if (depth < 8) {
709 0 : depth = 4;
710 0 : } else if (depth > 8 && depth < 24) {
711 0 : depth = 24;
712 : }
713 0 : SolarMutexGuard g;
714 : SvMemoryStream in(
715 0 : const_cast<sal_Int8 *>(data.getConstArray()), data.getLength(),
716 0 : STREAM_READ);
717 0 : Bitmap bm;
718 0 : ReadDIB(bm, in, true);
719 0 : if (bm.GetBitCount() == 24 && depth <= 8) {
720 0 : bm.Dither(BMP_DITHER_FLOYD);
721 : }
722 0 : if (bm.GetBitCount() != depth) {
723 0 : switch (depth) {
724 : case 1:
725 0 : bm.Convert(BMP_CONVERSION_1BIT_THRESHOLD);
726 0 : break;
727 : case 4:
728 0 : bm.ReduceColors(BMP_CONVERSION_4BIT_COLORS);
729 0 : break;
730 : case 8:
731 0 : bm.ReduceColors(BMP_CONVERSION_8BIT_COLORS);
732 0 : break;
733 : case 24:
734 0 : bm.Convert(BMP_CONVERSION_24BIT);
735 0 : break;
736 : }
737 : }
738 0 : SvMemoryStream out;
739 0 : WriteDIB(bm, out, false, true);
740 : return css::uno::Sequence<sal_Int8>(
741 0 : static_cast<sal_Int8 const *>(out.GetData()), out.GetEndOfData());
742 0 : }
743 :
744 : /* vim:set shiftwidth=4 softtabstop=4 expandtab: */
|