1
   2
   3
   4
   5
   6
   7
   8
   9
  10
  11
  12
  13
  14
  15
  16
  17
  18
  19
  20
  21
  22
  23
  24
  25
  26
  27
  28
  29
  30
  31
  32
  33
  34
  35
  36
  37
  38
  39
  40
  41
  42
  43
  44
  45
  46
  47
  48
  49
  50
  51
  52
  53
  54
  55
  56
  57
  58
  59
  60
  61
  62
  63
  64
  65
  66
  67
  68
  69
  70
  71
  72
  73
  74
  75
  76
  77
  78
  79
  80
  81
  82
  83
  84
  85
  86
  87
  88
  89
  90
  91
  92
  93
  94
  95
  96
  97
  98
  99
 100
 101
 102
 103
 104
 105
 106
 107
 108
 109
 110
 111
 112
 113
 114
 115
 116
 117
 118
 119
 120
 121
 122
 123
 124
 125
 126
 127
 128
 129
 130
 131
 132
 133
 134
 135
 136
 137
 138
 139
 140
 141
 142
 143
 144
 145
 146
 147
 148
 149
 150
 151
 152
 153
 154
 155
 156
 157
 158
 159
 160
 161
 162
 163
 164
 165
 166
 167
 168
 169
 170
 171
 172
 173
 174
 175
 176
 177
 178
 179
 180
 181
 182
 183
 184
 185
 186
 187
 188
 189
 190
 191
 192
 193
 194
 195
 196
 197
 198
 199
 200
 201
 202
 203
 204
 205
 206
 207
 208
 209
 210
 211
 212
 213
 214
 215
 216
 217
 218
 219
 220
 221
 222
 223
 224
 225
 226
 227
 228
 229
 230
 231
 232
 233
 234
 235
 236
 237
 238
 239
 240
 241
 242
 243
 244
 245
 246
 247
 248
 249
 250
 251
 252
 253
 254
 255
 256
 257
 258
 259
 260
 261
 262
 263
 264
 265
 266
 267
 268
 269
 270
 271
 272
 273
 274
 275
 276
 277
 278
 279
 280
 281
 282
 283
 284
 285
 286
 287
 288
 289
 290
 291
 292
 293
 294
 295
 296
 297
 298
 299
 300
 301
 302
 303
 304
 305
 306
 307
 308
 309
 310
 311
 312
 313
 314
 315
 316
 317
 318
 319
 320
 321
 322
 323
 324
 325
 326
 327
 328
 329
 330
 331
 332
 333
 334
 335
 336
 337
 338
 339
 340
 341
 342
 343
 344
 345
 346
 347
 348
 349
 350
 351
 352
 353
 354
 355
 356
 357
 358
 359
 360
 361
 362
 363
 364
 365
 366
 367
 368
 369
 370
 371
 372
 373
 374
 375
 376
 377
 378
 379
 380
 381
 382
 383
 384
 385
 386
 387
 388
 389
 390
 391
 392
 393
 394
 395
 396
 397
 398
 399
 400
 401
 402
 403
 404
 405
 406
 407
 408
 409
 410
 411
 412
 413
 414
 415
 416
 417
 418
 419
 420
 421
 422
 423
 424
 425
 426
 427
 428
 429
 430
 431
 432
 433
 434
 435
 436
 437
 438
 439
 440
 441
 442
 443
 444
 445
 446
 447
 448
 449
 450
 451
 452
 453
 454
 455
 456
 457
 458
 459
 460
 461
 462
 463
 464
 465
 466
 467
 468
 469
 470
 471
 472
 473
 474
 475
 476
 477
 478
 479
 480
 481
 482
 483
 484
 485
 486
 487
 488
 489
 490
 491
 492
 493
 494
 495
 496
 497
 498
 499
 500
 501
 502
 503
 504
 505
 506
 507
 508
 509
 510
 511
 512
 513
 514
 515
 516
 517
 518
 519
 520
 521
 522
 523
 524
 525
 526
 527
 528
 529
 530
 531
 532
 533
 534
 535
 536
 537
 538
 539
 540
 541
 542
 543
 544
 545
 546
 547
 548
 549
 550
 551
 552
 553
 554
 555
 556
 557
 558
 559
 560
 561
 562
 563
 564
 565
 566
 567
 568
 569
 570
 571
 572
 573
 574
 575
 576
 577
 578
 579
 580
 581
 582
 583
 584
 585
 586
 587
 588
 589
 590
 591
 592
 593
 594
 595
 596
 597
 598
 599
 600
 601
 602
 603
 604
 605
 606
 607
 608
 609
 610
 611
 612
 613
 614
 615
 616
 617
 618
 619
 620
 621
 622
 623
 624
 625
 626
 627
 628
 629
 630
 631
 632
 633
 634
 635
 636
 637
 638
 639
 640
 641
 642
 643
 644
 645
 646
 647
 648
 649
 650
 651
 652
 653
 654
 655
 656
 657
 658
 659
 660
 661
 662
 663
 664
 665
 666
 667
 668
 669
 670
 671
 672
 673
 674
 675
 676
 677
 678
 679
 680
 681
 682
 683
 684
 685
 686
 687
 688
 689
 690
 691
 692
 693
 694
 695
 696
 697
 698
 699
 700
 701
 702
 703
 704
 705
 706
 707
 708
 709
 710
 711
 712
 713
 714
 715
 716
 717
 718
 719
 720
 721
 722
 723
 724
 725
 726
 727
 728
 729
 730
 731
 732
 733
 734
 735
 736
 737
 738
 739
 740
 741
 742
 743
 744
 745
 746
 747
 748
 749
 750
 751
 752
 753
 754
 755
 756
 757
 758
 759
 760
 761
 762
 763
 764
 765
 766
 767
 768
 769
 770
 771
 772
 773
 774
 775
 776
 777
 778
 779
 780
 781
 782
 783
 784
 785
 786
 787
 788
 789
 790
 791
 792
 793
 794
 795
 796
 797
 798
 799
 800
 801
 802
 803
 804
 805
 806
 807
 808
 809
 810
 811
 812
 813
 814
 815
 816
 817
 818
 819
 820
 821
 822
 823
 824
 825
 826
 827
 828
 829
 830
 831
 832
 833
 834
 835
 836
 837
 838
 839
 840
 841
 842
 843
 844
 845
 846
 847
 848
 849
 850
 851
 852
 853
 854
 855
 856
 857
 858
 859
 860
 861
 862
 863
 864
 865
 866
 867
 868
 869
 870
 871
 872
 873
 874
 875
 876
 877
 878
 879
 880
 881
 882
 883
 884
 885
 886
 887
 888
 889
 890
 891
 892
 893
 894
 895
 896
 897
 898
 899
 900
 901
 902
 903
 904
 905
 906
 907
 908
 909
 910
 911
 912
 913
 914
 915
 916
 917
 918
 919
 920
 921
 922
 923
 924
 925
 926
 927
 928
 929
 930
 931
 932
 933
 934
 935
 936
 937
 938
 939
 940
 941
 942
 943
 944
 945
 946
 947
 948
 949
 950
 951
 952
 953
 954
 955
 956
 957
 958
 959
 960
 961
 962
 963
 964
 965
 966
 967
 968
 969
 970
 971
 972
 973
 974
 975
 976
 977
 978
 979
 980
 981
 982
 983
 984
 985
 986
 987
 988
 989
 990
 991
 992
 993
 994
 995
 996
 997
 998
 999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
/* -*- Mode: C++; tab-width: 4; indent-tabs-mode: nil; c-basic-offset: 4 -*- */
/*
 * This file is part of the LibreOffice project.
 *
 * This Source Code Form is subject to the terms of the Mozilla Public
 * License, v. 2.0. If a copy of the MPL was not distributed with this
 * file, You can obtain one at http://mozilla.org/MPL/2.0/.
 *
 * This file incorporates work covered by the following license notice:
 *
 *   Licensed to the Apache Software Foundation (ASF) under one or more
 *   contributor license agreements. See the NOTICE file distributed
 *   with this work for additional information regarding copyright
 *   ownership. The ASF licenses this file to you under the Apache
 *   License, Version 2.0 (the "License"); you may not use this file
 *   except in compliance with the License. You may obtain a copy of
 *   the License at http://www.apache.org/licenses/LICENSE-2.0 .
 */

#include <rtl/math.h>

#include <o3tl/safeint.hxx>
#include <osl/diagnose.h>
#include <rtl/alloc.h>
#include <rtl/character.hxx>
#include <rtl/math.hxx>
#include <rtl/strbuf.h>
#include <rtl/string.h>
#include <rtl/ustrbuf.h>
#include <rtl/ustring.h>
#include <sal/mathconf.h>
#include <sal/types.h>

#include <algorithm>
#include <cassert>
#include <float.h>
#include <limits>
#include <limits.h>
#include <math.h>
#include <memory>
#include <stdlib.h>

#include <dtoa.h>

static int const n10Count = 16;
static double const n10s[2][n10Count] = {
    { 1e1, 1e2, 1e3, 1e4, 1e5, 1e6, 1e7, 1e8,
      1e9, 1e10, 1e11, 1e12, 1e13, 1e14, 1e15, 1e16 },
    { 1e-1, 1e-2, 1e-3, 1e-4, 1e-5, 1e-6, 1e-7, 1e-8,
      1e-9, 1e-10, 1e-11, 1e-12, 1e-13, 1e-14, 1e-15, 1e-16 }
};

// return pow(10.0,nExp) optimized for exponents in the interval [-16,16]
static double getN10Exp(int nExp)
{
    if (nExp < 0)<--- Assuming that condition 'nExp<0' is not redundant
    {
        // && -nExp > 0 necessary for std::numeric_limits<int>::min()
        // because -nExp = nExp
        if (-nExp <= n10Count && -nExp > 0)<--- Condition '-nExp>0' is always true
            return n10s[1][-nExp-1];
        return pow(10.0, static_cast<double>(nExp));
    }
    if (nExp > 0)
    {
        if (nExp <= n10Count)
            return n10s[0][nExp-1];

        return pow(10.0, static_cast<double>(nExp));
    }
    return 1.0;
}

namespace {

double const nCorrVal[] = {
    0, 9e-1, 9e-2, 9e-3, 9e-4, 9e-5, 9e-6, 9e-7, 9e-8,
    9e-9, 9e-10, 9e-11, 9e-12, 9e-13, 9e-14, 9e-15
};

struct StringTraits
{
    typedef sal_Char Char;

    typedef rtl_String String;

    static void createString(rtl_String ** pString,
                                    char const * pChars, sal_Int32 nLen)
    {
        rtl_string_newFromStr_WithLength(pString, pChars, nLen);
    }

    static void createBuffer(rtl_String ** pBuffer,
                                    const sal_Int32 * pCapacity)
    {
        rtl_string_new_WithLength(pBuffer, *pCapacity);
    }

    static void appendChars(rtl_String ** pBuffer, sal_Int32 * pCapacity,
                                   sal_Int32 * pOffset, char const * pChars,
                                   sal_Int32 nLen)
    {
        assert(pChars);
        rtl_stringbuffer_insert(pBuffer, pCapacity, *pOffset, pChars, nLen);
        *pOffset += nLen;
    }

    static void appendAscii(rtl_String ** pBuffer, sal_Int32 * pCapacity,
                                   sal_Int32 * pOffset, char const * pStr,
                                   sal_Int32 nLen)
    {
        assert(pStr);
        rtl_stringbuffer_insert(pBuffer, pCapacity, *pOffset, pStr, nLen);
        *pOffset += nLen;
    }
};

struct UStringTraits
{
    typedef sal_Unicode Char;

    typedef rtl_uString String;

    static void createString(rtl_uString ** pString,
                                    sal_Unicode const * pChars, sal_Int32 nLen)
    {
        rtl_uString_newFromStr_WithLength(pString, pChars, nLen);
    }

    static void createBuffer(rtl_uString ** pBuffer,
                                    const sal_Int32 * pCapacity)
    {
        rtl_uString_new_WithLength(pBuffer, *pCapacity);
    }

    static void appendChars(rtl_uString ** pBuffer,
                                   sal_Int32 * pCapacity, sal_Int32 * pOffset,
                                   sal_Unicode const * pChars, sal_Int32 nLen)
    {
        assert(pChars);
        rtl_uStringbuffer_insert(pBuffer, pCapacity, *pOffset, pChars, nLen);
        *pOffset += nLen;
    }

    static void appendAscii(rtl_uString ** pBuffer,
                                   sal_Int32 * pCapacity, sal_Int32 * pOffset,
                                   char const * pStr, sal_Int32 nLen)
    {
        rtl_uStringbuffer_insert_ascii(pBuffer, pCapacity, *pOffset, pStr,
                                       nLen);
        *pOffset += nLen;
    }
};

/** If value (passed as absolute value) is an integer representable as double,
    which we handle explicitly at some places.
 */
bool isRepresentableInteger(double fAbsValue)
{
    assert(fAbsValue >= 0.0);
    const sal_Int64 kMaxInt = (static_cast< sal_Int64 >(1) << 53) - 1;
    if (fAbsValue <= static_cast< double >(kMaxInt))
    {
        sal_Int64 nInt = static_cast< sal_Int64 >(fAbsValue);
        // Check the integer range again because double comparison may yield
        // true within the precision range.
        // XXX loplugin:fpcomparison complains about floating-point comparison
        // for static_cast<double>(nInt) == fAbsValue, though we actually want
        // this here.
        if (nInt > kMaxInt)
            return false;
        double fInt = static_cast< double >(nInt);
        return !(fInt < fAbsValue) && !(fInt > fAbsValue);
    }
    return false;
}

// Returns 1-based index of least significant bit in a number, or zero if number is zero
int findFirstSetBit(unsigned n)
{
#if defined _WIN32
    unsigned long pos;
    unsigned char bNonZero = _BitScanForward(&pos, n);
    return (bNonZero == 0) ? 0 : pos + 1;
#else
    return __builtin_ffs(n);
#endif
}

/** Returns number of binary bits for fractional part of the number
    Expects a proper non-negative double value, not +-INF, not NAN
 */
int getBitsInFracPart(double fAbsValue)
{
    assert(std::isfinite(fAbsValue) && fAbsValue >= 0.0);
    if (fAbsValue == 0.0)
        return 0;
    auto pValParts = reinterpret_cast< const sal_math_Double * >(&fAbsValue);
    int nExponent = pValParts->inf_parts.exponent - 1023;
    if (nExponent >= 52)
        return 0; // All bits in fraction are in integer part of the number
    int nLeastSignificant = findFirstSetBit(pValParts->inf_parts.fraction_lo);
    if (nLeastSignificant == 0)
    {
        nLeastSignificant = findFirstSetBit(pValParts->inf_parts.fraction_hi);
        if (nLeastSignificant == 0)
            nLeastSignificant = 53; // the implied leading 1 is the least significant
        else
            nLeastSignificant += 32;
    }
    int nFracSignificant = 53 - nLeastSignificant;
    int nBitsInFracPart = nFracSignificant - nExponent;

    return std::max(nBitsInFracPart, 0);
}

template< typename T >
void doubleToString(typename T::String ** pResult,
                           sal_Int32 * pResultCapacity, sal_Int32 nResultOffset,
                           double fValue, rtl_math_StringFormat eFormat,
                           sal_Int32 nDecPlaces, typename T::Char cDecSeparator,
                           sal_Int32 const * pGroups,
                           typename T::Char cGroupSeparator,
                           bool bEraseTrailingDecZeros)
{
    static double const nRoundVal[] = {
        5.0e+0, 0.5e+0, 0.5e-1, 0.5e-2, 0.5e-3, 0.5e-4, 0.5e-5, 0.5e-6,
        0.5e-7, 0.5e-8, 0.5e-9, 0.5e-10,0.5e-11,0.5e-12,0.5e-13,0.5e-14
    };

    // sign adjustment, instead of testing for fValue<0.0 this will also fetch
    // -0.0
    bool bSign = std::signbit(fValue);

    if (bSign)
        fValue = -fValue;

    if (std::isnan(fValue))
    {
        // #i112652# XMLSchema-2
        sal_Int32 nCapacity = RTL_CONSTASCII_LENGTH("NaN");
        if (!pResultCapacity)
        {
            pResultCapacity = &nCapacity;
            T::createBuffer(pResult, pResultCapacity);
            nResultOffset = 0;
        }

        T::appendAscii(pResult, pResultCapacity, &nResultOffset,
                       RTL_CONSTASCII_STRINGPARAM("NaN"));

        return;
    }

    bool bHuge = fValue == HUGE_VAL; // g++ 3.0.1 requires it this way...
    if (bHuge || std::isinf(fValue))
    {
        // #i112652# XMLSchema-2
        sal_Int32 nCapacity = RTL_CONSTASCII_LENGTH("-INF");
        if (!pResultCapacity)
        {
            pResultCapacity = &nCapacity;
            T::createBuffer(pResult, pResultCapacity);
            nResultOffset = 0;
        }

        if ( bSign )
            T::appendAscii(pResult, pResultCapacity, &nResultOffset,
                           RTL_CONSTASCII_STRINGPARAM("-"));

        T::appendAscii(pResult, pResultCapacity, &nResultOffset,
                       RTL_CONSTASCII_STRINGPARAM("INF"));

        return;
    }

    // Use integer representation for integer values that fit into the
    // mantissa (1.((2^53)-1)) with a precision of 1 for highest accuracy.
    const sal_Int64 kMaxInt = (static_cast< sal_Int64 >(1) << 53) - 1;
    if ((eFormat == rtl_math_StringFormat_Automatic ||
         eFormat == rtl_math_StringFormat_F) && fValue <= static_cast< double >(kMaxInt))
    {
        sal_Int64 nInt = static_cast< sal_Int64 >(fValue);
        // Check the integer range again because double comparison may yield
        // true within the precision range.
        if (nInt <= kMaxInt && static_cast< double >(nInt) == fValue)
        {
            if (nDecPlaces == rtl_math_DecimalPlaces_Max)
                nDecPlaces = 0;
            else
                nDecPlaces = ::std::max< sal_Int32 >(::std::min<sal_Int32>(nDecPlaces, 15), -15);

            if (bEraseTrailingDecZeros && nDecPlaces > 0)
                nDecPlaces = 0;

            // Round before decimal position.
            if (nDecPlaces < 0)
            {
                sal_Int64 nRounding = static_cast< sal_Int64 >(getN10Exp(-nDecPlaces - 1));
                sal_Int64 nTemp = nInt / nRounding;
                int nDigit = nTemp % 10;
                nTemp /= 10;

                if (nDigit >= 5)
                    ++nTemp;

                nTemp *= 10;
                nTemp *= nRounding;
                nInt = nTemp;
                nDecPlaces = 0;
            }

            // Max 1 sign, 16 integer digits, 15 group separators, 1 decimal
            // separator, 15 decimals digits.
            typename T::Char aBuf[64];
            typename T::Char * pBuf = aBuf;
            typename T::Char * p = pBuf;

            // Backward fill.
            size_t nGrouping = 0;
            sal_Int32 nGroupDigits = 0;
            do
            {
                typename T::Char nDigit = nInt % 10;
                nInt /= 10;
                *p++ = nDigit + '0';
                if (pGroups && pGroups[nGrouping] == ++nGroupDigits && nInt > 0 && cGroupSeparator)
                {
                    *p++ = cGroupSeparator;
                    if (pGroups[nGrouping+1])
                        ++nGrouping;
                    nGroupDigits = 0;
                }
            }
            while (nInt > 0);
            if (bSign)
                *p++ = '-';

            // Reverse buffer content.
            sal_Int32 n = (p - pBuf) / 2;
            for (sal_Int32 i=0; i < n; ++i)
            {
                ::std::swap( pBuf[i], p[-i-1]);
            }

            // Append decimals.
            if (nDecPlaces > 0)
            {
                *p++ = cDecSeparator;
                while (nDecPlaces--)
                    *p++ = '0';
            }

            if (!pResultCapacity)
                T::createString(pResult, pBuf, p - pBuf);
            else
                T::appendChars(pResult, pResultCapacity, &nResultOffset, pBuf, p - pBuf);

            return;
        }
    }

    // find the exponent
    int nExp = 0;
    if ( fValue > 0.0 )
    {
        // Cap nExp at a small value beyond which "fValue /= N10Exp" would lose precision (or N10Exp
        // might even be zero); that will produce output with the decimal point in a non-normalized
        // position, but the current quality of output for such small values is probably abysmal,
        // anyway:
        nExp = std::max(
            static_cast< int >(floor(log10(fValue))), std::numeric_limits<double>::min_exponent10);
        double const N10Exp = getN10Exp(nExp);
        assert(N10Exp != 0);
        fValue /= N10Exp;
    }

    switch (eFormat)
    {
        case rtl_math_StringFormat_Automatic:
        {   // E or F depending on exponent magnitude
            int nPrec;
            if (nExp <= -15 || nExp >= 15)  // was <-16, >16 in ancient versions, which leads to inaccuracies
            {
                nPrec = 14;
                eFormat = rtl_math_StringFormat_E;
            }
            else
            {
                if (nExp < 14)
                {
                    nPrec = 15 - nExp - 1;
                    eFormat = rtl_math_StringFormat_F;
                }
                else
                {
                    nPrec = 15;
                    eFormat = rtl_math_StringFormat_F;
                }
            }

            if (nDecPlaces == rtl_math_DecimalPlaces_Max)
                nDecPlaces = nPrec;
        }
        break;

        case rtl_math_StringFormat_G :
        case rtl_math_StringFormat_G1 :
        case rtl_math_StringFormat_G2 :
        {   // G-Point, similar to sprintf %G
            if (nDecPlaces == rtl_math_DecimalPlaces_DefaultSignificance)
                nDecPlaces = 6;

            if (nExp < -4 || nExp >= nDecPlaces)
            {
                nDecPlaces = std::max< sal_Int32 >(1, nDecPlaces - 1);

                if (eFormat == rtl_math_StringFormat_G)
                    eFormat = rtl_math_StringFormat_E;
                else if (eFormat == rtl_math_StringFormat_G2)
                    eFormat = rtl_math_StringFormat_E2;
                else if (eFormat == rtl_math_StringFormat_G1)
                    eFormat = rtl_math_StringFormat_E1;
            }
            else
            {
                nDecPlaces = std::max< sal_Int32 >(0, nDecPlaces - nExp - 1);
                eFormat = rtl_math_StringFormat_F;
            }
        }
        break;
        default:
        break;
    }

    sal_Int32 nDigits = nDecPlaces + 1;

    if (eFormat == rtl_math_StringFormat_F)
        nDigits += nExp;

    // Round the number
    if(nDigits >= 0)
    {
        fValue += nRoundVal[std::min<sal_Int32>(nDigits, 15)];
        if (fValue >= 10)
        {
            fValue = 1.0;
            nExp++;

            if (eFormat == rtl_math_StringFormat_F)
                nDigits++;
        }
    }

    static sal_Int32 const nBufMax = 256;
    typename T::Char aBuf[nBufMax];
    typename T::Char * pBuf;
    sal_Int32 nBuf = static_cast< sal_Int32 >
        (nDigits <= 0 ? std::max< sal_Int32 >(nDecPlaces, abs(nExp))
          : nDigits + nDecPlaces ) + 10 + (pGroups ? abs(nDigits) * 2 : 0);

    if (nBuf > nBufMax)
    {
        pBuf = static_cast< typename T::Char * >(
            malloc(nBuf * sizeof (typename T::Char)));
        OSL_ENSURE(pBuf, "Out of memory");
    }
    else
    {
        pBuf = aBuf;
    }

    typename T::Char * p = pBuf;
    if ( bSign )
        *p++ = static_cast< typename T::Char >('-');

    bool bHasDec = false;

    int nDecPos;
    // Check for F format and number < 1
    if(eFormat == rtl_math_StringFormat_F)
    {
        if(nExp < 0)
        {
            *p++ = static_cast< typename T::Char >('0');
            if (nDecPlaces > 0)
            {
                *p++ = cDecSeparator;
                bHasDec = true;
            }

            sal_Int32 i = (nDigits <= 0 ? nDecPlaces : -nExp - 1);

            while((i--) > 0)
            {
                *p++ = static_cast< typename T::Char >('0');
            }

            nDecPos = 0;
        }
        else
        {
            nDecPos = nExp + 1;
        }
    }
    else
    {
        nDecPos = 1;
    }

    int nGrouping = 0, nGroupSelector = 0, nGroupExceed = 0;
    if (nDecPos > 1 && pGroups && pGroups[0] && cGroupSeparator)
    {
        while (nGrouping + pGroups[nGroupSelector] < nDecPos)
        {
            nGrouping += pGroups[nGroupSelector];
            if (pGroups[nGroupSelector+1])
            {
                if (nGrouping + pGroups[nGroupSelector+1] >= nDecPos)
                    break;  // while

                ++nGroupSelector;
            }
            else if (!nGroupExceed)
            {
                nGroupExceed = nGrouping;
            }
        }
    }

    // print the number
    if (nDigits > 0)
    {
        for (int i = 0; ; i++)
        {
            if (i < 15)     // was 16 in ancient versions, which leads to inaccuracies
            {
                int nDigit;
                if (nDigits-1 == 0 && i > 0 && i < 14)
                    nDigit = static_cast< int >(floor( fValue + nCorrVal[15-i]));
                else
                    nDigit = static_cast< int >(fValue + 1E-15);

                if (nDigit >= 10)
                {   // after-treatment of up-rounding to the next decade
                    sal_Int32 sLen = static_cast< long >(p-pBuf)-1;
                    if (sLen == -1 || (sLen == 0 && bSign))
                    {
                        // Assert that no one changed the logic we rely on.
                        assert(!bSign || *pBuf == static_cast< typename T::Char >('-'));
                        p = pBuf;
                        if (bSign)
                            ++p;
                        if (eFormat == rtl_math_StringFormat_F)
                        {
                            *p++ = static_cast< typename T::Char >('1');
                            *p++ = static_cast< typename T::Char >('0');
                        }
                        else
                        {
                            *p++ = static_cast< typename T::Char >('1');
                            *p++ = cDecSeparator;
                            *p++ = static_cast< typename T::Char >('0');
                            nExp++;
                            bHasDec = true;
                        }
                    }
                    else
                    {
                        for (sal_Int32 j = sLen; j >= 0; j--)
                        {
                            typename T::Char cS = pBuf[j];
                            if (j == 0 && bSign)
                            {
                                // Do not touch leading minus sign put earlier.
                                assert(cS == static_cast< typename T::Char >('-'));
                                break;  // for, this is the last character backwards.
                            }
                            if (cS != cDecSeparator)
                            {
                                if (cS != static_cast< typename T::Char >('9'))
                                {
                                    pBuf[j] = ++cS;
                                    j = -1;                 // break loop
                                }
                                else
                                {
                                    pBuf[j] = static_cast< typename T::Char >('0');
                                    if (j == 0 || (j == 1 && bSign))
                                    {
                                        if (eFormat == rtl_math_StringFormat_F)
                                        {   // insert '1'
                                            typename T::Char * px = p++;
                                            while (pBuf < px)
                                            {
                                                *px = *(px-1);
                                                px--;
                                            }

                                            pBuf[0] = static_cast< typename T::Char >('1');
                                        }
                                        else
                                        {
                                            pBuf[j] = static_cast< typename T::Char >('1');
                                            nExp++;
                                        }
                                    }
                                }
                            }
                        }

                        *p++ = static_cast< typename T::Char >('0');
                    }
                    fValue = 0.0;
                }
                else
                {
                    *p++ = static_cast< typename T::Char >(
                        nDigit + static_cast< typename T::Char >('0') );
                    fValue = (fValue - nDigit) * 10.0;
                }
            }
            else
            {
                *p++ = static_cast< typename T::Char >('0');
            }

            if (!--nDigits)
                break;  // for

            if (nDecPos)
            {
                if(!--nDecPos)
                {
                    *p++ = cDecSeparator;
                    bHasDec = true;
                }
                else if (nDecPos == nGrouping)
                {
                    *p++ = cGroupSeparator;
                    nGrouping -= pGroups[nGroupSelector];

                    if (nGroupSelector && nGrouping < nGroupExceed)
                        --nGroupSelector;
                }
            }
        }
    }

    if (!bHasDec && eFormat == rtl_math_StringFormat_F)
    {   // nDecPlaces < 0 did round the value
        while (--nDecPos > 0)
        {   // fill before decimal point
            if (nDecPos == nGrouping)
            {
                *p++ = cGroupSeparator;
                nGrouping -= pGroups[nGroupSelector];

                if (nGroupSelector && nGrouping < nGroupExceed)
                    --nGroupSelector;
            }

            *p++ = static_cast< typename T::Char >('0');
        }
    }

    if (bEraseTrailingDecZeros && bHasDec && p > pBuf)
    {
        while (*(p-1) == static_cast< typename T::Char >('0'))
        {
            p--;
        }

        if (*(p-1) == cDecSeparator)
            p--;
    }

    // Print the exponent ('E', followed by '+' or '-', followed by exactly
    // three digits for rtl_math_StringFormat_E).  The code in
    // rtl_[u]str_valueOf{Float|Double} relies on this format.
    if (eFormat == rtl_math_StringFormat_E || eFormat == rtl_math_StringFormat_E2 || eFormat == rtl_math_StringFormat_E1)
    {
        if (p == pBuf)
            *p++ = static_cast< typename T::Char >('1');
                // maybe no nDigits if nDecPlaces < 0

        *p++ = static_cast< typename T::Char >('E');
        if(nExp < 0)
        {
            nExp = -nExp;
            *p++ = static_cast< typename T::Char >('-');
        }
        else
        {
            *p++ = static_cast< typename T::Char >('+');
        }

        if (eFormat == rtl_math_StringFormat_E || nExp >= 100)
            *p++ = static_cast< typename T::Char >(
                nExp / 100 + static_cast< typename T::Char >('0') );

        nExp %= 100;

        if (eFormat == rtl_math_StringFormat_E || eFormat == rtl_math_StringFormat_E2 || nExp >= 10)
            *p++ = static_cast< typename T::Char >(
                nExp / 10 + static_cast< typename T::Char >('0') );

        *p++ = static_cast< typename T::Char >(
            nExp % 10 + static_cast< typename T::Char >('0') );
    }

    if (!pResultCapacity)
        T::createString(pResult, pBuf, p - pBuf);
    else
        T::appendChars(pResult, pResultCapacity, &nResultOffset, pBuf, p - pBuf);

    if (pBuf != &aBuf[0])
        free(pBuf);
}

}

void SAL_CALL rtl_math_doubleToString(rtl_String ** pResult,
                                      sal_Int32 * pResultCapacity,
                                      sal_Int32 nResultOffset, double fValue,
                                      rtl_math_StringFormat eFormat,
                                      sal_Int32 nDecPlaces,
                                      char cDecSeparator,
                                      sal_Int32 const * pGroups,
                                      char cGroupSeparator,
                                      sal_Bool bEraseTrailingDecZeros)
    SAL_THROW_EXTERN_C()
{
    doubleToString< StringTraits >(
        pResult, pResultCapacity, nResultOffset, fValue, eFormat, nDecPlaces,
        cDecSeparator, pGroups, cGroupSeparator, bEraseTrailingDecZeros);
}

void SAL_CALL rtl_math_doubleToUString(rtl_uString ** pResult,
                                       sal_Int32 * pResultCapacity,
                                       sal_Int32 nResultOffset, double fValue,
                                       rtl_math_StringFormat eFormat,
                                       sal_Int32 nDecPlaces,
                                       sal_Unicode cDecSeparator,
                                       sal_Int32 const * pGroups,
                                       sal_Unicode cGroupSeparator,
                                       sal_Bool bEraseTrailingDecZeros)
    SAL_THROW_EXTERN_C()
{
    doubleToString< UStringTraits >(
        pResult, pResultCapacity, nResultOffset, fValue, eFormat, nDecPlaces,
        cDecSeparator, pGroups, cGroupSeparator, bEraseTrailingDecZeros);
}

namespace {

template< typename CharT >
double stringToDouble(CharT const * pBegin, CharT const * pEnd,
                             CharT cDecSeparator, CharT cGroupSeparator,
                             rtl_math_ConversionStatus * pStatus,
                             CharT const ** pParsedEnd)
{
    double fVal = 0.0;
    rtl_math_ConversionStatus eStatus = rtl_math_ConversionStatus_Ok;

    CharT const * p0 = pBegin;
    while (p0 != pEnd && (*p0 == CharT(' ') || *p0 == CharT('\t')))
    {
        ++p0;
    }

    bool bSign;
    if (p0 != pEnd && *p0 == CharT('-'))
    {
        bSign = true;
        ++p0;
    }
    else
    {
        bSign = false;
        if (p0 != pEnd && *p0 == CharT('+'))
            ++p0;
    }

    CharT const * p = p0;
    bool bDone = false;

    // #i112652# XMLSchema-2
    if ((pEnd - p) >= 3)
    {
        if ((CharT('N') == p[0]) && (CharT('a') == p[1])
            && (CharT('N') == p[2]))
        {
            p += 3;
            rtl::math::setNan( &fVal );
            bDone = true;
        }
        else if ((CharT('I') == p[0]) && (CharT('N') == p[1])
                 && (CharT('F') == p[2]))
        {
            p += 3;
            fVal = HUGE_VAL;
            eStatus = rtl_math_ConversionStatus_OutOfRange;
            bDone = true;
        }
    }

    if (!bDone) // do not recognize e.g. NaN1.23
    {
        std::unique_ptr<char[]> bufInHeap;
        std::unique_ptr<const CharT * []> bufInHeapMap;
        constexpr int bufOnStackSize = 256;
        char bufOnStack[bufOnStackSize];
        const CharT* bufOnStackMap[bufOnStackSize];
        char* buf = bufOnStack;
        const CharT** bufmap = bufOnStackMap;
        int bufpos = 0;
        const size_t bufsize = pEnd - p + (bSign ? 2 : 1);
        if (bufsize > bufOnStackSize)
        {
            bufInHeap = std::make_unique<char[]>(bufsize);
            bufInHeapMap = std::make_unique<const CharT*[]>(bufsize);
            buf = bufInHeap.get();
            bufmap = bufInHeapMap.get();
        }

        if (bSign)
        {
            buf[0] = '-';
            bufmap[0] = p; // yes, this may be the same pointer as for the next mapping
            bufpos = 1;
        }
        // Put first zero to buffer for strings like "-0"
        if (p != pEnd && *p == CharT('0'))
        {
            buf[bufpos] = '0';
            bufmap[bufpos] = p;
            ++bufpos;
            ++p;
        }
        // Leading zeros and group separators between digits may be safely
        // ignored. p0 < p implies that there was a leading 0 already,
        // consecutive group separators may not happen as *(p+1) is checked for
        // digit.
        while (p != pEnd && (*p == CharT('0') || (*p == cGroupSeparator
                        && p0 < p && p+1 < pEnd && rtl::isAsciiDigit(*(p+1)))))
        {
            ++p;
        }

        // integer part of mantissa
        for (; p != pEnd; ++p)
        {
            CharT c = *p;
            if (rtl::isAsciiDigit(c))
            {
                buf[bufpos] = static_cast<char>(c);
                bufmap[bufpos] = p;
                ++bufpos;
            }
            else if (c != cGroupSeparator)
            {
                break;
            }
            else if (p == p0 || (p+1 == pEnd) || !rtl::isAsciiDigit(*(p+1)))
            {
                // A leading or trailing (not followed by a digit) group
                // separator character is not a group separator.
                break;
            }
        }

        // fraction part of mantissa
        if (p != pEnd && *p == cDecSeparator)
        {
            buf[bufpos] = '.';
            bufmap[bufpos] = p;
            ++bufpos;
            ++p;

            for (; p != pEnd; ++p)
            {
                CharT c = *p;
                if (!rtl::isAsciiDigit(c))
                {
                    break;
                }
                buf[bufpos] = static_cast<char>(c);
                bufmap[bufpos] = p;
                ++bufpos;
            }
        }

        // Exponent
        if (p != p0 && p != pEnd && (*p == CharT('E') || *p == CharT('e')))
        {
            buf[bufpos] = 'E';
            bufmap[bufpos] = p;
            ++bufpos;
            ++p;
            if (p != pEnd && *p == CharT('-'))
            {
                buf[bufpos] = '-';
                bufmap[bufpos] = p;
                ++bufpos;
                ++p;
            }
            else if (p != pEnd && *p == CharT('+'))
                ++p;

            for (; p != pEnd; ++p)
            {
                CharT c = *p;
                if (!rtl::isAsciiDigit(c))
                    break;

                buf[bufpos] = static_cast<char>(c);
                bufmap[bufpos] = p;
                ++bufpos;
            }
        }
        else if (p - p0 == 2 && p != pEnd && p[0] == CharT('#')
                 && p[-1] == cDecSeparator && p[-2] == CharT('1'))
        {
            if (pEnd - p >= 4 && p[1] == CharT('I') && p[2] == CharT('N')
                && p[3] == CharT('F'))
            {
                // "1.#INF", "+1.#INF", "-1.#INF"
                p += 4;
                fVal = HUGE_VAL;
                eStatus = rtl_math_ConversionStatus_OutOfRange;
                // Eat any further digits:
                while (p != pEnd && rtl::isAsciiDigit(*p))
                    ++p;
                bDone = true;
            }
            else if (pEnd - p >= 4 && p[1] == CharT('N') && p[2] == CharT('A')
                && p[3] == CharT('N'))
            {
                // "1.#NAN", "+1.#NAN", "-1.#NAN"
                p += 4;
                rtl::math::setNan( &fVal );
                if (bSign)
                {
                    union {
                        double sd;
                        sal_math_Double md;
                    } m;

                    m.sd = fVal;
                    m.md.w32_parts.msw |= 0x80000000; // create negative NaN<--- Variable 'm.md.w32_parts.msw' is assigned a value that is never used.
                    fVal = m.sd;
                    bSign = false; // don't negate again
                }

                // Eat any further digits:
                while (p != pEnd && rtl::isAsciiDigit(*p))
                {
                    ++p;
                }
                bDone = true;
            }
        }

        if (!bDone)
        {
            buf[bufpos] = '\0';
            bufmap[bufpos] = p;
            char* pCharParseEnd;
            errno = 0;
            fVal = strtod_nolocale(buf, &pCharParseEnd);
            if (errno == ERANGE)
                eStatus = rtl_math_ConversionStatus_OutOfRange;
            p = bufmap[pCharParseEnd - buf];
            bSign = false;
        }
    }

    // overflow also if more than DBL_MAX_10_EXP digits without decimal
    // separator, or 0. and more than DBL_MIN_10_EXP digits, ...
    bool bHuge = fVal == HUGE_VAL; // g++ 3.0.1 requires it this way...
    if (bHuge)
        eStatus = rtl_math_ConversionStatus_OutOfRange;

    if (bSign)
        fVal = -fVal;

    if (pStatus)
        *pStatus = eStatus;

    if (pParsedEnd)
        *pParsedEnd = p == p0 ? pBegin : p;

    return fVal;
}

}

double SAL_CALL rtl_math_stringToDouble(char const * pBegin,
                                        char const * pEnd,
                                        char cDecSeparator,
                                        char cGroupSeparator,
                                        rtl_math_ConversionStatus * pStatus,
                                        char const ** pParsedEnd)
    SAL_THROW_EXTERN_C()
{
    return stringToDouble(
        reinterpret_cast<unsigned char const *>(pBegin),
        reinterpret_cast<unsigned char const *>(pEnd),
        static_cast<unsigned char>(cDecSeparator),
        static_cast<unsigned char>(cGroupSeparator), pStatus,
        reinterpret_cast<unsigned char const **>(pParsedEnd));
}

double SAL_CALL rtl_math_uStringToDouble(sal_Unicode const * pBegin,
                                         sal_Unicode const * pEnd,
                                         sal_Unicode cDecSeparator,
                                         sal_Unicode cGroupSeparator,
                                         rtl_math_ConversionStatus * pStatus,
                                         sal_Unicode const ** pParsedEnd)
    SAL_THROW_EXTERN_C()
{
    return stringToDouble(pBegin, pEnd, cDecSeparator, cGroupSeparator, pStatus,
                          pParsedEnd);
}

double SAL_CALL rtl_math_round(double fValue, int nDecPlaces,
                               enum rtl_math_RoundingMode eMode)
    SAL_THROW_EXTERN_C()
{
    OSL_ASSERT(nDecPlaces >= -20 && nDecPlaces <= 20);

    if (fValue == 0.0)
        return fValue;

    if ( nDecPlaces == 0 && eMode == rtl_math_RoundingMode_Corrected )
        return std::round( fValue );

    // sign adjustment
    bool bSign = std::signbit( fValue );
    if (bSign)
        fValue = -fValue;

    double fFac = 0;
    if (nDecPlaces != 0)
    {
        // max 20 decimals, we don't have unlimited precision
        // #38810# and no overflow on fValue*=fFac
        if (nDecPlaces < -20 || 20 < nDecPlaces || fValue > (DBL_MAX / 1e20))
            return bSign ? -fValue : fValue;

        fFac = getN10Exp(nDecPlaces);
        fValue *= fFac;
    }

    switch ( eMode )
    {
        case rtl_math_RoundingMode_Corrected :
        {
            int nExp;       // exponent for correction
            if ( fValue > 0.0 )
                nExp = static_cast<int>( floor( log10( fValue ) ) );
            else
                nExp = 0;

            int nIndex;

            if (nExp < 0)
                nIndex = 15;
            else if (nExp >= 14)
                nIndex = 0;
            else
                nIndex = 15 - nExp;

            fValue = floor(fValue + 0.5 + nCorrVal[nIndex]);
        }
        break;
        case rtl_math_RoundingMode_Down:
            fValue = rtl::math::approxFloor(fValue);
        break;
        case rtl_math_RoundingMode_Up:
            fValue = rtl::math::approxCeil(fValue);
        break;
        case rtl_math_RoundingMode_Floor:
            fValue = bSign ? rtl::math::approxCeil(fValue)
                : rtl::math::approxFloor( fValue );
        break;
        case rtl_math_RoundingMode_Ceiling:
            fValue = bSign ? rtl::math::approxFloor(fValue)
                : rtl::math::approxCeil(fValue);
        break;
        case rtl_math_RoundingMode_HalfDown :
        {
            double f = floor(fValue);
            fValue = ((fValue - f) <= 0.5) ? f : ceil(fValue);
        }
        break;
        case rtl_math_RoundingMode_HalfUp:
        {
            double f = floor(fValue);
            fValue = ((fValue - f) < 0.5) ? f : ceil(fValue);
        }
        break;
        case rtl_math_RoundingMode_HalfEven:
#if defined FLT_ROUNDS
/*
    Use fast version. FLT_ROUNDS may be defined to a function by some compilers!

    DBL_EPSILON is the smallest fractional number which can be represented,
    its reciprocal is therefore the smallest number that cannot have a
    fractional part. Once you add this reciprocal to `x', its fractional part
    is stripped off. Simply subtracting the reciprocal back out returns `x'
    without its fractional component.
    Simple, clever, and elegant - thanks to Ross Cottrell, the original author,
    who placed it into public domain.

    volatile: prevent compiler from being too smart
*/
            if (FLT_ROUNDS == 1)<--- Skipping configuration 'FLT_ROUNDS' since the value of 'FLT_ROUNDS' is unknown. Use -D if you want to check it. You can use -U to skip it explicitly.
            {
                volatile double x = fValue + 1.0 / DBL_EPSILON;
                fValue = x - 1.0 / DBL_EPSILON;
            }
            else
#endif // FLT_ROUNDS
            {
                double f = floor(fValue);
                if ((fValue - f) != 0.5)
                {
                    fValue = floor( fValue + 0.5 );
                }
                else
                {
                    double g = f / 2.0;
                    fValue = (g == floor( g )) ? f : (f + 1.0);
                }
            }
        break;
        default:
            OSL_ASSERT(false);
        break;
    }

    if (nDecPlaces != 0)
        fValue /= fFac;

    return bSign ? -fValue : fValue;
}

double SAL_CALL rtl_math_pow10Exp(double fValue, int nExp) SAL_THROW_EXTERN_C()
{
    return fValue * getN10Exp(nExp);
}

double SAL_CALL rtl_math_approxValue( double fValue ) SAL_THROW_EXTERN_C()<--- The function 'rtl_math_approxValue' is never used.
{
    const double fBigInt = 2199023255552.0; // 2^41 -> only 11 bits left for fractional part, fine as decimal
    if (fValue == 0.0 || fValue == HUGE_VAL || !std::isfinite( fValue) || fValue > fBigInt)
    {
        // We don't handle these conditions.  Bail out.
        return fValue;
    }

    double fOrigValue = fValue;

    bool bSign = std::signbit(fValue);
    if (bSign)
        fValue = -fValue;

    // If the value is either integer representable as double,
    // or only has small number of bits in fraction part, then we need not do any approximation
    if (isRepresentableInteger(fValue) || getBitsInFracPart(fValue) <= 11)
        return fOrigValue;

    int nExp = static_cast< int >(floor(log10(fValue)));
    nExp = 14 - nExp;
    double fExpValue = getN10Exp(nExp);

    fValue *= fExpValue;
    // If the original value was near DBL_MIN we got an overflow. Restore and
    // bail out.
    if (!std::isfinite(fValue))
        return fOrigValue;

    fValue = rtl_math_round(fValue, 0, rtl_math_RoundingMode_Corrected);
    fValue /= fExpValue;

    // If the original value was near DBL_MAX we got an overflow. Restore and
    // bail out.
    if (!std::isfinite(fValue))
        return fOrigValue;

    return bSign ? -fValue : fValue;
}

bool SAL_CALL rtl_math_approxEqual(double a, double b) SAL_THROW_EXTERN_C()<--- The function 'rtl_math_approxEqual' is never used.
{
    static const double e48 = 1.0 / (16777216.0 * 16777216.0);
    static const double e44 = e48 * 16.0;

    if (a == b)
        return true;

    if (a == 0.0 || b == 0.0)
        return false;

    const double d = fabs(a - b);
    if (!std::isfinite(d))
        return false;   // Nan or Inf involved

    a = fabs(a);
    if (d > (a * e44))
        return false;
    b = fabs(b);
    if (d > (b * e44))
        return false;

    if (isRepresentableInteger(d) && isRepresentableInteger(a) && isRepresentableInteger(b))
        return false;   // special case for representable integers.

    return (d < a * e48 && d < b * e48);
}

double SAL_CALL rtl_math_expm1(double fValue) SAL_THROW_EXTERN_C()<--- The function 'rtl_math_expm1' is never used.
{
    return expm1(fValue);
}

double SAL_CALL rtl_math_log1p(double fValue) SAL_THROW_EXTERN_C()
{
#ifdef __APPLE__
    if (fValue == -0.0)
        return fValue; // macOS 10.8 libc returns 0.0 for -0.0
#endif

    return log1p(fValue);
}

double SAL_CALL rtl_math_atanh(double fValue) SAL_THROW_EXTERN_C()<--- The function 'rtl_math_atanh' is never used.
#if defined __clang__
    __attribute__((no_sanitize("float-divide-by-zero"))) // atahn(1) -> inf
#endif
{
   return 0.5 * rtl_math_log1p(2.0 * fValue / (1.0-fValue));
}

/** Parent error function (erf) */
double SAL_CALL rtl_math_erf(double x) SAL_THROW_EXTERN_C()<--- The function 'rtl_math_erf' is never used.
{
    return erf(x);
}

/** Parent complementary error function (erfc) */
double SAL_CALL rtl_math_erfc(double x) SAL_THROW_EXTERN_C()<--- The function 'rtl_math_erfc' is never used.
{
    return erfc(x);
}

/** improved accuracy of asinh for |x| large and for x near zero
    @see #i97605#
 */
double SAL_CALL rtl_math_asinh(double fX) SAL_THROW_EXTERN_C()<--- The function 'rtl_math_asinh' is never used.
{
    if ( fX == 0.0 )
        return 0.0;

    double fSign = 1.0;
    if ( fX < 0.0 )
    {
        fX = - fX;
        fSign = -1.0;
    }

    if ( fX < 0.125 )
        return fSign * rtl_math_log1p( fX + fX*fX / (1.0 + sqrt( 1.0 + fX*fX)));

    if ( fX < 1.25e7 )
        return fSign * log( fX + sqrt( 1.0 + fX*fX));

    return fSign * log( 2.0*fX);
}

/** improved accuracy of acosh for x large and for x near 1
    @see #i97605#
 */
double SAL_CALL rtl_math_acosh(double fX) SAL_THROW_EXTERN_C()<--- The function 'rtl_math_acosh' is never used.
{
    volatile double fZ = fX - 1.0;
    if (fX < 1.0)
    {
        double fResult;
        ::rtl::math::setNan( &fResult );
        return fResult;
    }
    if ( fX == 1.0 )
        return 0.0;

    if ( fX < 1.1 )
        return rtl_math_log1p( fZ + sqrt( fZ*fZ + 2.0*fZ));

    if ( fX < 1.25e7 )
        return log( fX + sqrt( fX*fX - 1.0));

    return log( 2.0*fX);
}

/* vim:set shiftwidth=4 softtabstop=4 expandtab: */