1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031 | /* -*- Mode: C++; tab-width: 4; indent-tabs-mode: nil; c-basic-offset: 4 -*- */
/*
* This file is part of the LibreOffice project.
*
* This Source Code Form is subject to the terms of the Mozilla Public
* License, v. 2.0. If a copy of the MPL was not distributed with this
* file, You can obtain one at http://mozilla.org/MPL/2.0/.
*
* This file incorporates work covered by the following license notice:
*
* Licensed to the Apache Software Foundation (ASF) under one or more
* contributor license agreements. See the NOTICE file distributed
* with this work for additional information regarding copyright
* ownership. The ASF licenses this file to you under the Apache
* License, Version 2.0 (the "License"); you may not use this file
* except in compliance with the License. You may obtain a copy of
* the License at http://www.apache.org/licenses/LICENSE-2.0 .
*/
#include <sal/config.h>
#include <tuple>
#include <basegfx/matrix/b2dhommatrix.hxx>
#include <basegfx/numeric/ftools.hxx>
#include <basegfx/point/b2dpoint.hxx>
#include <basegfx/polygon/b2dpolygon.hxx>
#include <basegfx/polygon/b2dpolygontools.hxx>
#include <basegfx/range/b2drectangle.hxx>
#include <basegfx/utils/canvastools.hxx>
#include <basegfx/utils/keystoplerp.hxx>
#include <basegfx/utils/lerp.hxx>
#include <basegfx/utils/tools.hxx>
#include <com/sun/star/rendering/TexturingMode.hpp>
#include <rtl/math.hxx>
#include <tools/diagnose_ex.h>
#include <tools/poly.hxx>
#include <vcl/bitmapex.hxx>
#include <vcl/canvastools.hxx>
#include <vcl/virdev.hxx>
#include <canvas/canvastools.hxx>
#include <parametricpolypolygon.hxx>
#include "canvashelper.hxx"
#include "impltools.hxx"
using namespace ::com::sun::star;
namespace vclcanvas
{
namespace
{
bool textureFill( OutputDevice& rOutDev,
GraphicObject& rGraphic,
const ::Point& rPosPixel,
const ::Size& rNextTileX,
const ::Size& rNextTileY,
sal_Int32 nTilesX,
sal_Int32 nTilesY,
const ::Size& rTileSize,
const GraphicAttr& rAttr)
{
bool bRet( false );
Point aCurrPos;
int nX, nY;
for( nY=0; nY < nTilesY; ++nY )
{
aCurrPos.setX( rPosPixel.X() + nY*rNextTileY.Width() );
aCurrPos.setY( rPosPixel.Y() + nY*rNextTileY.Height() );
for( nX=0; nX < nTilesX; ++nX )
{
// update return value. This method should return true, if
// at least one of the looped Draws succeeded.
bRet |= rGraphic.Draw( &rOutDev,
aCurrPos,
rTileSize,
&rAttr );
aCurrPos.AdjustX(rNextTileX.Width() );
aCurrPos.AdjustY(rNextTileX.Height() );
}
}
return bRet;
}
/** Fill linear or axial gradient
Since most of the code for linear and axial gradients are
the same, we've a unified method here
*/
void fillLinearGradient( OutputDevice& rOutDev,
const ::basegfx::B2DHomMatrix& rTextureTransform,
const ::tools::Rectangle& rBounds,
unsigned int nStepCount,
const ::canvas::ParametricPolyPolygon::Values& rValues,
const std::vector< ::Color >& rColors )
{
// determine general position of gradient in relation to
// the bound rect
// =====================================================
::basegfx::B2DPoint aLeftTop( 0.0, 0.0 );
::basegfx::B2DPoint aLeftBottom( 0.0, 1.0 );
::basegfx::B2DPoint aRightTop( 1.0, 0.0 );
::basegfx::B2DPoint aRightBottom( 1.0, 1.0 );
aLeftTop *= rTextureTransform;
aLeftBottom *= rTextureTransform;
aRightTop *= rTextureTransform;
aRightBottom*= rTextureTransform;
// calc length of bound rect diagonal
const ::basegfx::B2DVector aBoundRectDiagonal(
vcl::unotools::b2DPointFromPoint( rBounds.TopLeft() ) -
vcl::unotools::b2DPointFromPoint( rBounds.BottomRight() ) );
const double nDiagonalLength( aBoundRectDiagonal.getLength() );
// create direction of gradient:
// _______
// | | |
// -> | | | ...
// | | |
// -------
::basegfx::B2DVector aDirection( aRightTop - aLeftTop );
aDirection.normalize();
// now, we potentially have to enlarge our gradient area
// atop and below the transformed [0,1]x[0,1] unit rect,
// for the gradient to fill the complete bound rect.
::basegfx::utils::infiniteLineFromParallelogram( aLeftTop,
aLeftBottom,
aRightTop,
aRightBottom,
vcl::unotools::b2DRectangleFromRectangle(rBounds) );
// render gradient
// ===============
// for linear gradients, it's easy to render
// non-overlapping polygons: just split the gradient into
// nStepCount small strips. Prepare the strip now.
// For performance reasons, we create a temporary VCL
// polygon here, keep it all the way and only change the
// vertex values in the loop below (as ::Polygon is a
// pimpl class, creating one every loop turn would really
// stress the mem allocator)
::tools::Polygon aTempPoly( static_cast<sal_uInt16>(5) );
OSL_ENSURE( nStepCount >= 3,
"fillLinearGradient(): stepcount smaller than 3" );
// fill initial strip (extending two times the bound rect's
// diagonal to the 'left'
// calculate left edge, by moving left edge of the
// gradient rect two times the bound rect's diagonal to
// the 'left'. Since we postpone actual rendering into the
// loop below, we set the _right_ edge here, which will be
// readily copied into the left edge in the loop below
const ::basegfx::B2DPoint& rPoint1( aLeftTop - 2.0*nDiagonalLength*aDirection );
aTempPoly[1] = ::Point( ::basegfx::fround( rPoint1.getX() ),
::basegfx::fround( rPoint1.getY() ) );
const ::basegfx::B2DPoint& rPoint2( aLeftBottom - 2.0*nDiagonalLength*aDirection );
aTempPoly[2] = ::Point( ::basegfx::fround( rPoint2.getX() ),
::basegfx::fround( rPoint2.getY() ) );
// iteratively render all other strips
// ensure that nStepCount matches color stop parity, to
// have a well-defined middle color e.g. for axial
// gradients.
if( (rColors.size() % 2) != (nStepCount % 2) )
++nStepCount;
rOutDev.SetLineColor();
basegfx::utils::KeyStopLerp aLerper(rValues.maStops);
// only iterate nStepCount-1 steps, as the last strip is
// explicitly painted below
for( unsigned int i=0; i<nStepCount-1; ++i )
{
std::ptrdiff_t nIndex;
double fAlpha;
std::tie(nIndex,fAlpha)=aLerper.lerp(double(i)/nStepCount);
rOutDev.SetFillColor(
Color( static_cast<sal_uInt8>(basegfx::utils::lerp(rColors[nIndex].GetRed(),rColors[nIndex+1].GetRed(),fAlpha)),
static_cast<sal_uInt8>(basegfx::utils::lerp(rColors[nIndex].GetGreen(),rColors[nIndex+1].GetGreen(),fAlpha)),
static_cast<sal_uInt8>(basegfx::utils::lerp(rColors[nIndex].GetBlue(),rColors[nIndex+1].GetBlue(),fAlpha)) ));
// copy right edge of polygon to left edge (and also
// copy the closing point)
aTempPoly[0] = aTempPoly[4] = aTempPoly[1];
aTempPoly[3] = aTempPoly[2];
// calculate new right edge, from interpolating
// between start and end line. Note that i is
// increased by one, to account for the fact that we
// calculate the right border here (whereas the fill
// color is governed by the left edge)
const ::basegfx::B2DPoint& rPoint3(
(nStepCount - i-1)/double(nStepCount)*aLeftTop +
(i+1)/double(nStepCount)*aRightTop );
aTempPoly[1] = ::Point( ::basegfx::fround( rPoint3.getX() ),
::basegfx::fround( rPoint3.getY() ) );
const ::basegfx::B2DPoint& rPoint4(
(nStepCount - i-1)/double(nStepCount)*aLeftBottom +
(i+1)/double(nStepCount)*aRightBottom );
aTempPoly[2] = ::Point( ::basegfx::fround( rPoint4.getX() ),
::basegfx::fround( rPoint4.getY() ) );
rOutDev.DrawPolygon( aTempPoly );
}
// fill final strip (extending two times the bound rect's
// diagonal to the 'right'
// copy right edge of polygon to left edge (and also
// copy the closing point)
aTempPoly[0] = aTempPoly[4] = aTempPoly[1];
aTempPoly[3] = aTempPoly[2];
// calculate new right edge, by moving right edge of the
// gradient rect two times the bound rect's diagonal to
// the 'right'.
const ::basegfx::B2DPoint& rPoint3( aRightTop + 2.0*nDiagonalLength*aDirection );
aTempPoly[0] = aTempPoly[4] = ::Point( ::basegfx::fround( rPoint3.getX() ),
::basegfx::fround( rPoint3.getY() ) );
const ::basegfx::B2DPoint& rPoint4( aRightBottom + 2.0*nDiagonalLength*aDirection );
aTempPoly[3] = ::Point( ::basegfx::fround( rPoint4.getX() ),
::basegfx::fround( rPoint4.getY() ) );
rOutDev.SetFillColor( rColors.back() );
rOutDev.DrawPolygon( aTempPoly );
}
void fillPolygonalGradient( OutputDevice& rOutDev,
const ::basegfx::B2DHomMatrix& rTextureTransform,
const ::tools::Rectangle& rBounds,
unsigned int nStepCount,
const ::canvas::ParametricPolyPolygon::Values& rValues,
const std::vector< ::Color >& rColors )
{
const ::basegfx::B2DPolygon& rGradientPoly( rValues.maGradientPoly );
ENSURE_OR_THROW( rGradientPoly.count() > 2,
"fillPolygonalGradient(): polygon without area given" );
// For performance reasons, we create a temporary VCL polygon
// here, keep it all the way and only change the vertex values
// in the loop below (as ::Polygon is a pimpl class, creating
// one every loop turn would really stress the mem allocator)
::basegfx::B2DPolygon aOuterPoly( rGradientPoly );
::basegfx::B2DPolygon aInnerPoly;
// subdivide polygon _before_ rendering, would otherwise have
// to be performed on every loop turn.
if( aOuterPoly.areControlPointsUsed() )
aOuterPoly = ::basegfx::utils::adaptiveSubdivideByAngle(aOuterPoly);
aInnerPoly = aOuterPoly;
// only transform outer polygon _after_ copying it into
// aInnerPoly, because inner polygon has to be scaled before
// the actual texture transformation takes place
aOuterPoly.transform( rTextureTransform );
// determine overall transformation for inner polygon (might
// have to be prefixed by anisotrophic scaling)
::basegfx::B2DHomMatrix aInnerPolygonTransformMatrix;
// apply scaling (possibly anisotrophic) to inner polygon
// scale inner polygon according to aspect ratio: for
// wider-than-tall bounds (nAspectRatio > 1.0), the inner
// polygon, representing the gradient focus, must have
// non-zero width. Specifically, a bound rect twice as wide as
// tall has a focus polygon of half its width.
const double nAspectRatio( rValues.mnAspectRatio );
if( nAspectRatio > 1.0 )
{
// width > height case
aInnerPolygonTransformMatrix.scale( 1.0 - 1.0/nAspectRatio,
0.0 );
}
else if( nAspectRatio < 1.0 )
{
// width < height case
aInnerPolygonTransformMatrix.scale( 0.0,
1.0 - nAspectRatio );
}
else
{
// isotrophic case
aInnerPolygonTransformMatrix.scale( 0.0, 0.0 );
}
// and finally, add texture transform to it.
aInnerPolygonTransformMatrix *= rTextureTransform;
// apply final matrix to polygon
aInnerPoly.transform( aInnerPolygonTransformMatrix );
const sal_uInt32 nNumPoints( aOuterPoly.count() );
::tools::Polygon aTempPoly( static_cast<sal_uInt16>(nNumPoints+1) );
// increase number of steps by one: polygonal gradients have
// the outermost polygon rendered in rColor2, and the
// innermost in rColor1. The innermost polygon will never
// have zero area, thus, we must divide the interval into
// nStepCount+1 steps. For example, to create 3 steps:
// | |
// |-------|-------|-------|
// | |
// 3 2 1 0
// This yields 4 tick marks, where 0 is never attained (since
// zero-area polygons typically don't display perceivable
// color).
++nStepCount;
rOutDev.SetLineColor();
basegfx::utils::KeyStopLerp aLerper(rValues.maStops);
// fill background
rOutDev.SetFillColor( rColors.front() );
rOutDev.DrawRect( rBounds );
// render polygon
// ==============
for( unsigned int i=1,p; i<nStepCount; ++i )<--- Found suspicious operator ','
{
const double fT( i/double(nStepCount) );
std::ptrdiff_t nIndex;
double fAlpha;
std::tie(nIndex,fAlpha)=aLerper.lerp(fT);
// lerp color
rOutDev.SetFillColor(
Color( static_cast<sal_uInt8>(basegfx::utils::lerp(rColors[nIndex].GetRed(),rColors[nIndex+1].GetRed(),fAlpha)),
static_cast<sal_uInt8>(basegfx::utils::lerp(rColors[nIndex].GetGreen(),rColors[nIndex+1].GetGreen(),fAlpha)),
static_cast<sal_uInt8>(basegfx::utils::lerp(rColors[nIndex].GetBlue(),rColors[nIndex+1].GetBlue(),fAlpha)) ));
// scale and render polygon, by interpolating between
// outer and inner polygon.
for( p=0; p<nNumPoints; ++p )
{
const ::basegfx::B2DPoint& rOuterPoint( aOuterPoly.getB2DPoint(p) );
const ::basegfx::B2DPoint& rInnerPoint( aInnerPoly.getB2DPoint(p) );
aTempPoly[static_cast<sal_uInt16>(p)] = ::Point(
basegfx::fround( fT*rInnerPoint.getX() + (1-fT)*rOuterPoint.getX() ),
basegfx::fround( fT*rInnerPoint.getY() + (1-fT)*rOuterPoint.getY() ) );
}
// close polygon explicitly
aTempPoly[static_cast<sal_uInt16>(p)] = aTempPoly[0];
// TODO(P1): compare with vcl/source/gdi/outdev4.cxx,
// OutputDevice::ImplDrawComplexGradient(), there's a note
// that on some VDev's, rendering disjunct poly-polygons
// is faster!
rOutDev.DrawPolygon( aTempPoly );
}
}
void doGradientFill( OutputDevice& rOutDev,
const ::canvas::ParametricPolyPolygon::Values& rValues,
const std::vector< ::Color >& rColors,
const ::basegfx::B2DHomMatrix& rTextureTransform,
const ::tools::Rectangle& rBounds,
unsigned int nStepCount )
{
switch( rValues.meType )
{
case ::canvas::ParametricPolyPolygon::GradientType::Linear:
fillLinearGradient( rOutDev,
rTextureTransform,
rBounds,
nStepCount,
rValues,
rColors );
break;
case ::canvas::ParametricPolyPolygon::GradientType::Elliptical:
case ::canvas::ParametricPolyPolygon::GradientType::Rectangular:
fillPolygonalGradient( rOutDev,
rTextureTransform,
rBounds,
nStepCount,
rValues,
rColors );
break;
default:
ENSURE_OR_THROW( false,
"CanvasHelper::doGradientFill(): Unexpected case" );
}
}
int numColorSteps( const ::Color& rColor1, const ::Color& rColor2 )
{
return std::max(
labs( rColor1.GetRed() - rColor2.GetRed() ),
std::max(
labs( rColor1.GetGreen() - rColor2.GetGreen() ),
labs( rColor1.GetBlue() - rColor2.GetBlue() ) ) );
}
bool gradientFill( OutputDevice& rOutDev,
OutputDevice* p2ndOutDev,
const ::canvas::ParametricPolyPolygon::Values& rValues,
const std::vector< ::Color >& rColors,
const ::tools::PolyPolygon& rPoly,
const rendering::ViewState& viewState,
const rendering::RenderState& renderState,
const rendering::Texture& texture,
int nTransparency )
{
// TODO(T2): It is maybe necessary to lock here, should
// maGradientPoly someday cease to be const. But then, beware of
// deadlocks, canvashelper calls this method with locked own
// mutex.
// calc step size
int nColorSteps = 0;
for( size_t i=0; i<rColors.size()-1; ++i )
nColorSteps += numColorSteps(rColors[i],rColors[i+1]);
::basegfx::B2DHomMatrix aTotalTransform;
const int nStepCount=
::canvas::tools::calcGradientStepCount(aTotalTransform,
viewState,
renderState,
texture,
nColorSteps);
rOutDev.SetLineColor();
// determine maximal bound rect of texture-filled
// polygon
const ::tools::Rectangle aPolygonDeviceRectOrig(
rPoly.GetBoundRect() );
if( tools::isRectangle( rPoly ) )
{
// use optimized output path
// this distinction really looks like a
// micro-optimization, but in fact greatly speeds up
// especially complex gradients. That's because when using
// clipping, we can output polygons instead of
// poly-polygons, and don't have to output the gradient
// twice for XOR
rOutDev.Push( PushFlags::CLIPREGION );
rOutDev.IntersectClipRegion( aPolygonDeviceRectOrig );
doGradientFill( rOutDev,
rValues,
rColors,
aTotalTransform,
aPolygonDeviceRectOrig,
nStepCount );
rOutDev.Pop();
if( p2ndOutDev && nTransparency < 253 )
{
// HACK. Normally, CanvasHelper does not care about
// actually what mp2ndOutDev is... well, here we do &
// assume a 1bpp target - everything beyond 97%
// transparency is fully transparent
p2ndOutDev->SetFillColor( COL_BLACK );
p2ndOutDev->DrawRect( aPolygonDeviceRectOrig );
}
}
else
{
const vcl::Region aPolyClipRegion( rPoly );
rOutDev.Push( PushFlags::CLIPREGION );
rOutDev.IntersectClipRegion( aPolyClipRegion );
doGradientFill( rOutDev,
rValues,
rColors,
aTotalTransform,
aPolygonDeviceRectOrig,
nStepCount );
rOutDev.Pop();
if( p2ndOutDev && nTransparency < 253 )
{
// HACK. Normally, CanvasHelper does not care about
// actually what mp2ndOutDev is... well, here we do &
// assume a 1bpp target - everything beyond 97%
// transparency is fully transparent
p2ndOutDev->SetFillColor( COL_BLACK );
p2ndOutDev->DrawPolyPolygon( rPoly );
}
}
#ifdef DEBUG_CANVAS_CANVASHELPER_TEXTUREFILL
// extra-verbosity
{
::basegfx::B2DRectangle aRect(0.0, 0.0, 1.0, 1.0);
::basegfx::B2DRectangle aTextureDeviceRect;
::basegfx::B2DHomMatrix aTextureTransform;
::canvas::tools::calcTransformedRectBounds( aTextureDeviceRect,
aRect,
aTextureTransform );
rOutDev.SetLineColor( COL_RED );
rOutDev.SetFillColor();
rOutDev.DrawRect( vcl::unotools::rectangleFromB2DRectangle( aTextureDeviceRect ) );
rOutDev.SetLineColor( COL_BLUE );
::tools::Polygon aPoly1(
vcl::unotools::rectangleFromB2DRectangle( aRect ));
::basegfx::B2DPolygon aPoly2( aPoly1.getB2DPolygon() );
aPoly2.transform( aTextureTransform );
::tools::Polygon aPoly3( aPoly2 );
rOutDev.DrawPolygon( aPoly3 );
}
#endif
return true;
}
}
uno::Reference< rendering::XCachedPrimitive > CanvasHelper::fillTexturedPolyPolygon( const rendering::XCanvas* pCanvas,
const uno::Reference< rendering::XPolyPolygon2D >& xPolyPolygon,
const rendering::ViewState& viewState,
const rendering::RenderState& renderState,
const uno::Sequence< rendering::Texture >& textures )
{
ENSURE_ARG_OR_THROW( xPolyPolygon.is(),
"CanvasHelper::fillPolyPolygon(): polygon is NULL");
ENSURE_ARG_OR_THROW( textures.hasElements(),
"CanvasHelper::fillTexturedPolyPolygon: empty texture sequence");
if( mpOutDevProvider )
{
tools::OutDevStateKeeper aStateKeeper( mpProtectedOutDevProvider );
const int nTransparency( setupOutDevState( viewState, renderState, IGNORE_COLOR ) );
::tools::PolyPolygon aPolyPoly( tools::mapPolyPolygon(
::basegfx::unotools::b2DPolyPolygonFromXPolyPolygon2D(xPolyPolygon),
viewState, renderState ) );
// TODO(F1): Multi-texturing
if( textures[0].Gradient.is() )
{
// try to cast XParametricPolyPolygon2D reference to
// our implementation class.
::canvas::ParametricPolyPolygon* pGradient =
dynamic_cast< ::canvas::ParametricPolyPolygon* >( textures[0].Gradient.get() );
if( pGradient && pGradient->getValues().maColors.hasElements() )
{
// copy state from Gradient polypoly locally
// (given object might change!)
const ::canvas::ParametricPolyPolygon::Values& rValues(
pGradient->getValues() );
if( rValues.maColors.getLength() < 2 )
{
rendering::RenderState aTempState=renderState;
aTempState.DeviceColor = rValues.maColors[0];
fillPolyPolygon(pCanvas, xPolyPolygon, viewState, aTempState);
}
else
{
std::vector< ::Color > aColors(rValues.maColors.getLength());
std::transform(&rValues.maColors[0],
&rValues.maColors[0]+rValues.maColors.getLength(),
aColors.begin(),
[](const uno::Sequence< double >& aColor) {
return vcl::unotools::stdColorSpaceSequenceToColor( aColor );
} );
// TODO(E1): Return value
// TODO(F1): FillRule
gradientFill( mpOutDevProvider->getOutDev(),
mp2ndOutDevProvider ? &mp2ndOutDevProvider->getOutDev() : nullptr,
rValues,
aColors,
aPolyPoly,
viewState,
renderState,
textures[0],
nTransparency );
}
}
else
{
// TODO(F1): The generic case is missing here
ENSURE_OR_THROW( false,
"CanvasHelper::fillTexturedPolyPolygon(): unknown parametric polygon encountered" );
}
}
else if( textures[0].Bitmap.is() )
{
geometry::IntegerSize2D aBmpSize( textures[0].Bitmap->getSize() );
ENSURE_ARG_OR_THROW( aBmpSize.Width != 0 &&
aBmpSize.Height != 0,
"CanvasHelper::fillTexturedPolyPolygon(): zero-sized texture bitmap" );
// determine maximal bound rect of texture-filled
// polygon
const ::tools::Rectangle aPolygonDeviceRect(
aPolyPoly.GetBoundRect() );
// first of all, determine whether we have a
// drawBitmap() in disguise
// =========================================
const bool bRectangularPolygon( tools::isRectangle( aPolyPoly ) );
::basegfx::B2DHomMatrix aTotalTransform;
::canvas::tools::mergeViewAndRenderTransform(aTotalTransform,
viewState,
renderState);
::basegfx::B2DHomMatrix aTextureTransform;
::basegfx::unotools::homMatrixFromAffineMatrix( aTextureTransform,
textures[0].AffineTransform );
aTotalTransform *= aTextureTransform;
const ::basegfx::B2DRectangle aRect(0.0, 0.0, 1.0, 1.0);
::basegfx::B2DRectangle aTextureDeviceRect;
::canvas::tools::calcTransformedRectBounds( aTextureDeviceRect,
aRect,
aTotalTransform );
const ::tools::Rectangle aIntegerTextureDeviceRect(
vcl::unotools::rectangleFromB2DRectangle( aTextureDeviceRect ) );
if( bRectangularPolygon &&
aIntegerTextureDeviceRect == aPolygonDeviceRect )
{
rendering::RenderState aLocalState( renderState );
::canvas::tools::appendToRenderState(aLocalState,
aTextureTransform);
::basegfx::B2DHomMatrix aScaleCorrection;
aScaleCorrection.scale( 1.0/aBmpSize.Width,
1.0/aBmpSize.Height );
::canvas::tools::appendToRenderState(aLocalState,
aScaleCorrection);
// need alpha modulation?
if( !::rtl::math::approxEqual( textures[0].Alpha,
1.0 ) )
{
// setup alpha modulation values
aLocalState.DeviceColor.realloc(4);
double* pColor = aLocalState.DeviceColor.getArray();
pColor[0] =
pColor[1] =
pColor[2] = 0.0;
pColor[3] = textures[0].Alpha;
return drawBitmapModulated( pCanvas,
textures[0].Bitmap,
viewState,
aLocalState );
}
else
{
return drawBitmap( pCanvas,
textures[0].Bitmap,
viewState,
aLocalState );
}
}
else
{
// No easy mapping to drawBitmap() - calculate
// texturing parameters
// ===========================================
BitmapEx aBmpEx( tools::bitmapExFromXBitmap( textures[0].Bitmap ) );
// scale down bitmap to [0,1]x[0,1] rect, as required
// from the XCanvas interface.
::basegfx::B2DHomMatrix aScaling;
::basegfx::B2DHomMatrix aPureTotalTransform; // pure view*render*texture transform
aScaling.scale( 1.0/aBmpSize.Width,
1.0/aBmpSize.Height );
aTotalTransform = aTextureTransform * aScaling;
aPureTotalTransform = aTextureTransform;
// combine with view and render transform
::basegfx::B2DHomMatrix aMatrix;
::canvas::tools::mergeViewAndRenderTransform(aMatrix, viewState, renderState);
// combine all three transformations into one
// global texture-to-device-space transformation
aTotalTransform *= aMatrix;
aPureTotalTransform *= aMatrix;
// analyze transformation, and setup an
// appropriate GraphicObject
::basegfx::B2DVector aScale;
::basegfx::B2DPoint aOutputPos;
double nRotate;
double nShearX;
aTotalTransform.decompose( aScale, aOutputPos, nRotate, nShearX );
GraphicAttr aGrfAttr;
GraphicObjectSharedPtr pGrfObj;
if( ::basegfx::fTools::equalZero( nShearX ) )
{
// no shear, GraphicObject is enough (the
// GraphicObject only supports scaling, rotation
// and translation)
// #i75339# don't apply mirror flags, having
// negative size values is enough to make
// GraphicObject flip the bitmap
// The angle has to be mapped from radian to tenths of
// degrees with the orientation reversed: [0,2Pi) ->
// (3600,0]. Note that the original angle may have
// values outside the [0,2Pi) interval.
const double nAngleInTenthOfDegrees (3600.0 - nRotate * 3600.0 / (2*M_PI));
aGrfAttr.SetRotation( static_cast< sal_uInt16 >(::basegfx::fround(nAngleInTenthOfDegrees)) );
pGrfObj = std::make_shared<GraphicObject>( aBmpEx );
}
else
{
// modify output position, to account for the fact
// that transformBitmap() always normalizes its output
// bitmap into the smallest enclosing box.
::basegfx::B2DRectangle aDestRect;
::canvas::tools::calcTransformedRectBounds( aDestRect,
::basegfx::B2DRectangle(0,
0,
aBmpSize.Width,
aBmpSize.Height),
aMatrix );
aOutputPos.setX( aDestRect.getMinX() );
aOutputPos.setY( aDestRect.getMinY() );
// complex transformation, use generic affine bitmap
// transformation
aBmpEx = tools::transformBitmap( aBmpEx,
aTotalTransform);
pGrfObj = std::make_shared<GraphicObject>( aBmpEx );
// clear scale values, generated bitmap already
// contains scaling
aScale.setX( 1.0 ); aScale.setY( 1.0 );
// update bitmap size, bitmap has changed above.
aBmpSize = vcl::unotools::integerSize2DFromSize(aBmpEx.GetSizePixel());
}
// render texture tiled into polygon
// =================================
// calc device space direction vectors. We employ
// the following approach for tiled output: the
// texture bitmap is output in texture space
// x-major order, i.e. tile neighbors in texture
// space x direction are rendered back-to-back in
// device coordinate space (after the full device
// transformation). Thus, the aNextTile* vectors
// denote the output position updates in device
// space, to get from one tile to the next.
::basegfx::B2DVector aNextTileX( 1.0, 0.0 );
::basegfx::B2DVector aNextTileY( 0.0, 1.0 );
aNextTileX *= aPureTotalTransform;
aNextTileY *= aPureTotalTransform;
::basegfx::B2DHomMatrix aInverseTextureTransform( aPureTotalTransform );
ENSURE_ARG_OR_THROW( aInverseTextureTransform.isInvertible(),
"CanvasHelper::fillTexturedPolyPolygon(): singular texture matrix" );
aInverseTextureTransform.invert();
// calc bound rect of extended texture area in
// device coordinates. Therefore, we first calc
// the area of the polygon bound rect in texture
// space. To maintain texture phase, this bound
// rect is then extended to integer coordinates
// (extended, because shrinking might leave some
// inner polygon areas unfilled).
// Finally, the bound rect is transformed back to
// device coordinate space, were we determine the
// start point from it.
::basegfx::B2DRectangle aTextureSpacePolygonRect;
::canvas::tools::calcTransformedRectBounds( aTextureSpacePolygonRect,
vcl::unotools::b2DRectangleFromRectangle(aPolygonDeviceRect),
aInverseTextureTransform );
// calc left, top of extended polygon rect in
// texture space, create one-texture instance rect
// from it (i.e. rect from start point extending
// 1.0 units to the right and 1.0 units to the
// bottom). Note that the rounding employed here
// is a bit subtle, since we need to round up/down
// as _soon_ as any fractional amount is
// encountered. This is to ensure that the full
// polygon area is filled with texture tiles.
const sal_Int32 nX1( ::canvas::tools::roundDown( aTextureSpacePolygonRect.getMinX() ) );
const sal_Int32 nY1( ::canvas::tools::roundDown( aTextureSpacePolygonRect.getMinY() ) );
const sal_Int32 nX2( ::canvas::tools::roundUp( aTextureSpacePolygonRect.getMaxX() ) );
const sal_Int32 nY2( ::canvas::tools::roundUp( aTextureSpacePolygonRect.getMaxY() ) );
const ::basegfx::B2DRectangle aSingleTextureRect(
nX1, nY1,
nX1 + 1.0,
nY1 + 1.0 );
// and convert back to device space
::basegfx::B2DRectangle aSingleDeviceTextureRect;
::canvas::tools::calcTransformedRectBounds( aSingleDeviceTextureRect,
aSingleTextureRect,
aPureTotalTransform );
const ::Point aPtRepeat( vcl::unotools::pointFromB2DPoint(
aSingleDeviceTextureRect.getMinimum() ) );
const ::Size aSz( ::basegfx::fround( aScale.getX() * aBmpSize.Width ),
::basegfx::fround( aScale.getY() * aBmpSize.Height ) );
const ::Size aIntegerNextTileX( vcl::unotools::sizeFromB2DSize(aNextTileX) );
const ::Size aIntegerNextTileY( vcl::unotools::sizeFromB2DSize(aNextTileY) );
const ::Point aPt( textures[0].RepeatModeX == rendering::TexturingMode::NONE ?
::basegfx::fround( aOutputPos.getX() ) : aPtRepeat.X(),
textures[0].RepeatModeY == rendering::TexturingMode::NONE ?
::basegfx::fround( aOutputPos.getY() ) : aPtRepeat.Y() );
const sal_Int32 nTilesX( textures[0].RepeatModeX == rendering::TexturingMode::NONE ?
1 : nX2 - nX1 );
const sal_Int32 nTilesY( textures[0].RepeatModeX == rendering::TexturingMode::NONE ?
1 : nY2 - nY1 );
OutputDevice& rOutDev( mpOutDevProvider->getOutDev() );
if( bRectangularPolygon )
{
// use optimized output path
// this distinction really looks like a
// micro-optimization, but in fact greatly speeds up
// especially complex fills. That's because when using
// clipping, we can output polygons instead of
// poly-polygons, and don't have to output the gradient
// twice for XOR
// setup alpha modulation
if( !::rtl::math::approxEqual( textures[0].Alpha,
1.0 ) )
{
// TODO(F1): Note that the GraphicManager has
// a subtle difference in how it calculates
// the resulting alpha value: it's using the
// inverse alpha values (i.e. 'transparency'),
// and calculates transOrig + transModulate,
// instead of transOrig + transModulate -
// transOrig*transModulate (which would be
// equivalent to the origAlpha*modulateAlpha
// the DX canvas performs)
aGrfAttr.SetTransparency(
static_cast< sal_uInt8 >(
::basegfx::fround( 255.0*( 1.0 - textures[0].Alpha ) ) ) );
}
rOutDev.IntersectClipRegion( aPolygonDeviceRect );
textureFill( rOutDev,
*pGrfObj,
aPt,
aIntegerNextTileX,
aIntegerNextTileY,
nTilesX,
nTilesY,
aSz,
aGrfAttr );
if( mp2ndOutDevProvider )
{
OutputDevice& r2ndOutDev( mp2ndOutDevProvider->getOutDev() );
r2ndOutDev.IntersectClipRegion( aPolygonDeviceRect );
textureFill( r2ndOutDev,
*pGrfObj,
aPt,
aIntegerNextTileX,
aIntegerNextTileY,
nTilesX,
nTilesY,
aSz,
aGrfAttr );
}
}
else
{
// output texture the hard way: XORing out the
// polygon
// ===========================================
if( !::rtl::math::approxEqual( textures[0].Alpha,
1.0 ) )
{
// uh-oh. alpha blending is required,
// cannot do direct XOR, but have to
// prepare the filled polygon within a
// VDev
ScopedVclPtrInstance< VirtualDevice > pVDev( rOutDev );
pVDev->SetOutputSizePixel( aPolygonDeviceRect.GetSize() );
// shift output to origin of VDev
const ::Point aOutPos( aPt - aPolygonDeviceRect.TopLeft() );
aPolyPoly.Translate( ::Point( -aPolygonDeviceRect.Left(),
-aPolygonDeviceRect.Top() ) );
const vcl::Region aPolyClipRegion( aPolyPoly );
pVDev->SetClipRegion( aPolyClipRegion );
textureFill( *pVDev,
*pGrfObj,
aOutPos,
aIntegerNextTileX,
aIntegerNextTileY,
nTilesX,
nTilesY,
aSz,
aGrfAttr );
// output VDev content alpha-blended to
// target position.
const ::Point aEmptyPoint;
BitmapEx aContentBmp(
pVDev->GetBitmapEx( aEmptyPoint,
pVDev->GetOutputSizePixel() ) );
sal_uInt8 nCol( static_cast< sal_uInt8 >(
::basegfx::fround( 255.0*( 1.0 - textures[0].Alpha ) ) ) );
AlphaMask aAlpha( pVDev->GetOutputSizePixel(),
&nCol );
BitmapEx aOutputBmpEx( aContentBmp.GetBitmap(), aAlpha );
rOutDev.DrawBitmapEx( aPolygonDeviceRect.TopLeft(),
aOutputBmpEx );
if( mp2ndOutDevProvider )
mp2ndOutDevProvider->getOutDev().DrawBitmapEx( aPolygonDeviceRect.TopLeft(),
aOutputBmpEx );
}
else
{
const vcl::Region aPolyClipRegion( aPolyPoly );
rOutDev.Push( PushFlags::CLIPREGION );
rOutDev.IntersectClipRegion( aPolyClipRegion );
textureFill( rOutDev,
*pGrfObj,
aPt,
aIntegerNextTileX,
aIntegerNextTileY,
nTilesX,
nTilesY,
aSz,
aGrfAttr );
rOutDev.Pop();
if( mp2ndOutDevProvider )
{
OutputDevice& r2ndOutDev( mp2ndOutDevProvider->getOutDev() );
r2ndOutDev.Push( PushFlags::CLIPREGION );
r2ndOutDev.IntersectClipRegion( aPolyClipRegion );
textureFill( r2ndOutDev,
*pGrfObj,
aPt,
aIntegerNextTileX,
aIntegerNextTileY,
nTilesX,
nTilesY,
aSz,
aGrfAttr );
r2ndOutDev.Pop();
}
}
}
}
}
}
// TODO(P1): Provide caching here.
return uno::Reference< rendering::XCachedPrimitive >(nullptr);
}
}
/* vim:set shiftwidth=4 softtabstop=4 expandtab: */
|