1
   2
   3
   4
   5
   6
   7
   8
   9
  10
  11
  12
  13
  14
  15
  16
  17
  18
  19
  20
  21
  22
  23
  24
  25
  26
  27
  28
  29
  30
  31
  32
  33
  34
  35
  36
  37
  38
  39
  40
  41
  42
  43
  44
  45
  46
  47
  48
  49
  50
  51
  52
  53
  54
  55
  56
  57
  58
  59
  60
  61
  62
  63
  64
  65
  66
  67
  68
  69
  70
  71
  72
  73
  74
  75
  76
  77
  78
  79
  80
  81
  82
  83
  84
  85
  86
  87
  88
  89
  90
  91
  92
  93
  94
  95
  96
  97
  98
  99
 100
 101
 102
 103
 104
 105
 106
 107
 108
 109
 110
 111
 112
 113
 114
 115
 116
 117
 118
 119
 120
 121
 122
 123
 124
 125
 126
 127
 128
 129
 130
 131
 132
 133
 134
 135
 136
 137
 138
 139
 140
 141
 142
 143
 144
 145
 146
 147
 148
 149
 150
 151
 152
 153
 154
 155
 156
 157
 158
 159
 160
 161
 162
 163
 164
 165
 166
 167
 168
 169
 170
 171
 172
 173
 174
 175
 176
 177
 178
 179
 180
 181
 182
 183
 184
 185
 186
 187
 188
 189
 190
 191
 192
 193
 194
 195
 196
 197
 198
 199
 200
 201
 202
 203
 204
 205
 206
 207
 208
 209
 210
 211
 212
 213
 214
 215
 216
 217
 218
 219
 220
 221
 222
 223
 224
 225
 226
 227
 228
 229
 230
 231
 232
 233
 234
 235
 236
 237
 238
 239
 240
 241
 242
 243
 244
 245
 246
 247
 248
 249
 250
 251
 252
 253
 254
 255
 256
 257
 258
 259
 260
 261
 262
 263
 264
 265
 266
 267
 268
 269
 270
 271
 272
 273
 274
 275
 276
 277
 278
 279
 280
 281
 282
 283
 284
 285
 286
 287
 288
 289
 290
 291
 292
 293
 294
 295
 296
 297
 298
 299
 300
 301
 302
 303
 304
 305
 306
 307
 308
 309
 310
 311
 312
 313
 314
 315
 316
 317
 318
 319
 320
 321
 322
 323
 324
 325
 326
 327
 328
 329
 330
 331
 332
 333
 334
 335
 336
 337
 338
 339
 340
 341
 342
 343
 344
 345
 346
 347
 348
 349
 350
 351
 352
 353
 354
 355
 356
 357
 358
 359
 360
 361
 362
 363
 364
 365
 366
 367
 368
 369
 370
 371
 372
 373
 374
 375
 376
 377
 378
 379
 380
 381
 382
 383
 384
 385
 386
 387
 388
 389
 390
 391
 392
 393
 394
 395
 396
 397
 398
 399
 400
 401
 402
 403
 404
 405
 406
 407
 408
 409
 410
 411
 412
 413
 414
 415
 416
 417
 418
 419
 420
 421
 422
 423
 424
 425
 426
 427
 428
 429
 430
 431
 432
 433
 434
 435
 436
 437
 438
 439
 440
 441
 442
 443
 444
 445
 446
 447
 448
 449
 450
 451
 452
 453
 454
 455
 456
 457
 458
 459
 460
 461
 462
 463
 464
 465
 466
 467
 468
 469
 470
 471
 472
 473
 474
 475
 476
 477
 478
 479
 480
 481
 482
 483
 484
 485
 486
 487
 488
 489
 490
 491
 492
 493
 494
 495
 496
 497
 498
 499
 500
 501
 502
 503
 504
 505
 506
 507
 508
 509
 510
 511
 512
 513
 514
 515
 516
 517
 518
 519
 520
 521
 522
 523
 524
 525
 526
 527
 528
 529
 530
 531
 532
 533
 534
 535
 536
 537
 538
 539
 540
 541
 542
 543
 544
 545
 546
 547
 548
 549
 550
 551
 552
 553
 554
 555
 556
 557
 558
 559
 560
 561
 562
 563
 564
 565
 566
 567
 568
 569
 570
 571
 572
 573
 574
 575
 576
 577
 578
 579
 580
 581
 582
 583
 584
 585
 586
 587
 588
 589
 590
 591
 592
 593
 594
 595
 596
 597
 598
 599
 600
 601
 602
 603
 604
 605
 606
 607
 608
 609
 610
 611
 612
 613
 614
 615
 616
 617
 618
 619
 620
 621
 622
 623
 624
 625
 626
 627
 628
 629
 630
 631
 632
 633
 634
 635
 636
 637
 638
 639
 640
 641
 642
 643
 644
 645
 646
 647
 648
 649
 650
 651
 652
 653
 654
 655
 656
 657
 658
 659
 660
 661
 662
 663
 664
 665
 666
 667
 668
 669
 670
 671
 672
 673
 674
 675
 676
 677
 678
 679
 680
 681
 682
 683
 684
 685
 686
 687
 688
 689
 690
 691
 692
 693
 694
 695
 696
 697
 698
 699
 700
 701
 702
 703
 704
 705
 706
 707
 708
 709
 710
 711
 712
 713
 714
 715
 716
 717
 718
 719
 720
 721
 722
 723
 724
 725
 726
 727
 728
 729
 730
 731
 732
 733
 734
 735
 736
 737
 738
 739
 740
 741
 742
 743
 744
 745
 746
 747
 748
 749
 750
 751
 752
 753
 754
 755
 756
 757
 758
 759
 760
 761
 762
 763
 764
 765
 766
 767
 768
 769
 770
 771
 772
 773
 774
 775
 776
 777
 778
 779
 780
 781
 782
 783
 784
 785
 786
 787
 788
 789
 790
 791
 792
 793
 794
 795
 796
 797
 798
 799
 800
 801
 802
 803
 804
 805
 806
 807
 808
 809
 810
 811
 812
 813
 814
 815
 816
 817
 818
 819
 820
 821
 822
 823
 824
 825
 826
 827
 828
 829
 830
 831
 832
 833
 834
 835
 836
 837
 838
 839
 840
 841
 842
 843
 844
 845
 846
 847
 848
 849
 850
 851
 852
 853
 854
 855
 856
 857
 858
 859
 860
 861
 862
 863
 864
 865
 866
 867
 868
 869
 870
 871
 872
 873
 874
 875
 876
 877
 878
 879
 880
 881
 882
 883
 884
 885
 886
 887
 888
 889
 890
 891
 892
 893
 894
 895
 896
 897
 898
 899
 900
 901
 902
 903
 904
 905
 906
 907
 908
 909
 910
 911
 912
 913
 914
 915
 916
 917
 918
 919
 920
 921
 922
 923
 924
 925
 926
 927
 928
 929
 930
 931
 932
 933
 934
 935
 936
 937
 938
 939
 940
 941
 942
 943
 944
 945
 946
 947
 948
 949
 950
 951
 952
 953
 954
 955
 956
 957
 958
 959
 960
 961
 962
 963
 964
 965
 966
 967
 968
 969
 970
 971
 972
 973
 974
 975
 976
 977
 978
 979
 980
 981
 982
 983
 984
 985
 986
 987
 988
 989
 990
 991
 992
 993
 994
 995
 996
 997
 998
 999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
/* -*- Mode: C++; tab-width: 4; indent-tabs-mode: nil; c-basic-offset: 4 -*- */
/*
 * This file is part of the LibreOffice project.
 *
 * This Source Code Form is subject to the terms of the Mozilla Public
 * License, v. 2.0. If a copy of the MPL was not distributed with this
 * file, You can obtain one at http://mozilla.org/MPL/2.0/.
 *
 * This file incorporates work covered by the following license notice:
 *
 *   Licensed to the Apache Software Foundation (ASF) under one or more
 *   contributor license agreements. See the NOTICE file distributed
 *   with this work for additional information regarding copyright
 *   ownership. The ASF licenses this file to you under the Apache
 *   License, Version 2.0 (the "License"); you may not use this file
 *   except in compliance with the License. You may obtain a copy of
 *   the License at http://www.apache.org/licenses/LICENSE-2.0 .
 */

#include <sal/config.h>

#include <tuple>

#include <basegfx/matrix/b2dhommatrix.hxx>
#include <basegfx/numeric/ftools.hxx>
#include <basegfx/point/b2dpoint.hxx>
#include <basegfx/polygon/b2dpolygon.hxx>
#include <basegfx/polygon/b2dpolygontools.hxx>
#include <basegfx/range/b2drectangle.hxx>
#include <basegfx/utils/canvastools.hxx>
#include <basegfx/utils/keystoplerp.hxx>
#include <basegfx/utils/lerp.hxx>
#include <basegfx/utils/tools.hxx>
#include <com/sun/star/rendering/TexturingMode.hpp>
#include <rtl/math.hxx>
#include <tools/diagnose_ex.h>
#include <tools/poly.hxx>
#include <vcl/bitmapex.hxx>
#include <vcl/canvastools.hxx>
#include <vcl/virdev.hxx>

#include <canvas/canvastools.hxx>
#include <parametricpolypolygon.hxx>

#include "canvashelper.hxx"
#include "impltools.hxx"


using namespace ::com::sun::star;

namespace vclcanvas
{
    namespace
    {
        bool textureFill( OutputDevice&         rOutDev,
                          GraphicObject&        rGraphic,
                          const ::Point&        rPosPixel,
                          const ::Size&         rNextTileX,
                          const ::Size&         rNextTileY,
                          sal_Int32             nTilesX,
                          sal_Int32             nTilesY,
                          const ::Size&         rTileSize,
                          const GraphicAttr&    rAttr)
        {
            bool bRet( false );
            Point   aCurrPos;
            int     nX, nY;

            for( nY=0; nY < nTilesY; ++nY )
            {
                aCurrPos.setX( rPosPixel.X() + nY*rNextTileY.Width() );
                aCurrPos.setY( rPosPixel.Y() + nY*rNextTileY.Height() );

                for( nX=0; nX < nTilesX; ++nX )
                {
                    // update return value. This method should return true, if
                    // at least one of the looped Draws succeeded.
                    bRet |= rGraphic.Draw( &rOutDev,
                                           aCurrPos,
                                           rTileSize,
                                           &rAttr );

                    aCurrPos.AdjustX(rNextTileX.Width() );
                    aCurrPos.AdjustY(rNextTileX.Height() );
                }
            }

            return bRet;
        }


        /** Fill linear or axial gradient

            Since most of the code for linear and axial gradients are
            the same, we've a unified method here
         */
        void fillLinearGradient( OutputDevice&                                  rOutDev,
                                 const ::basegfx::B2DHomMatrix&                 rTextureTransform,
                                 const ::tools::Rectangle&                             rBounds,
                                 unsigned int                                   nStepCount,
                                 const ::canvas::ParametricPolyPolygon::Values& rValues,
                                 const std::vector< ::Color >&                  rColors )
        {
            // determine general position of gradient in relation to
            // the bound rect
            // =====================================================

            ::basegfx::B2DPoint aLeftTop( 0.0, 0.0 );
            ::basegfx::B2DPoint aLeftBottom( 0.0, 1.0 );
            ::basegfx::B2DPoint aRightTop( 1.0, 0.0 );
            ::basegfx::B2DPoint aRightBottom( 1.0, 1.0 );

            aLeftTop    *= rTextureTransform;
            aLeftBottom *= rTextureTransform;
            aRightTop   *= rTextureTransform;
            aRightBottom*= rTextureTransform;

            // calc length of bound rect diagonal
            const ::basegfx::B2DVector aBoundRectDiagonal(
                vcl::unotools::b2DPointFromPoint( rBounds.TopLeft() ) -
                vcl::unotools::b2DPointFromPoint( rBounds.BottomRight() ) );
            const double nDiagonalLength( aBoundRectDiagonal.getLength() );

            // create direction of gradient:
            //     _______
            //     |  |  |
            // ->  |  |  | ...
            //     |  |  |
            //     -------
            ::basegfx::B2DVector aDirection( aRightTop - aLeftTop );
            aDirection.normalize();

            // now, we potentially have to enlarge our gradient area
            // atop and below the transformed [0,1]x[0,1] unit rect,
            // for the gradient to fill the complete bound rect.
            ::basegfx::utils::infiniteLineFromParallelogram( aLeftTop,
                                                             aLeftBottom,
                                                             aRightTop,
                                                             aRightBottom,
                                                             vcl::unotools::b2DRectangleFromRectangle(rBounds) );


            // render gradient
            // ===============

            // for linear gradients, it's easy to render
            // non-overlapping polygons: just split the gradient into
            // nStepCount small strips. Prepare the strip now.

            // For performance reasons, we create a temporary VCL
            // polygon here, keep it all the way and only change the
            // vertex values in the loop below (as ::Polygon is a
            // pimpl class, creating one every loop turn would really
            // stress the mem allocator)
            ::tools::Polygon aTempPoly( static_cast<sal_uInt16>(5) );

            OSL_ENSURE( nStepCount >= 3,
                        "fillLinearGradient(): stepcount smaller than 3" );


            // fill initial strip (extending two times the bound rect's
            // diagonal to the 'left'


            // calculate left edge, by moving left edge of the
            // gradient rect two times the bound rect's diagonal to
            // the 'left'. Since we postpone actual rendering into the
            // loop below, we set the _right_ edge here, which will be
            // readily copied into the left edge in the loop below
            const ::basegfx::B2DPoint& rPoint1( aLeftTop - 2.0*nDiagonalLength*aDirection );
            aTempPoly[1] = ::Point( ::basegfx::fround( rPoint1.getX() ),
                                    ::basegfx::fround( rPoint1.getY() ) );

            const ::basegfx::B2DPoint& rPoint2( aLeftBottom - 2.0*nDiagonalLength*aDirection );
            aTempPoly[2] = ::Point( ::basegfx::fround( rPoint2.getX() ),
                                    ::basegfx::fround( rPoint2.getY() ) );


            // iteratively render all other strips


            // ensure that nStepCount matches color stop parity, to
            // have a well-defined middle color e.g. for axial
            // gradients.
            if( (rColors.size() % 2) != (nStepCount % 2) )
                ++nStepCount;

            rOutDev.SetLineColor();

            basegfx::utils::KeyStopLerp aLerper(rValues.maStops);

            // only iterate nStepCount-1 steps, as the last strip is
            // explicitly painted below
            for( unsigned int i=0; i<nStepCount-1; ++i )
            {
                std::ptrdiff_t nIndex;
                double fAlpha;
                std::tie(nIndex,fAlpha)=aLerper.lerp(double(i)/nStepCount);

                rOutDev.SetFillColor(
                    Color( static_cast<sal_uInt8>(basegfx::utils::lerp(rColors[nIndex].GetRed(),rColors[nIndex+1].GetRed(),fAlpha)),
                           static_cast<sal_uInt8>(basegfx::utils::lerp(rColors[nIndex].GetGreen(),rColors[nIndex+1].GetGreen(),fAlpha)),
                           static_cast<sal_uInt8>(basegfx::utils::lerp(rColors[nIndex].GetBlue(),rColors[nIndex+1].GetBlue(),fAlpha)) ));

                // copy right edge of polygon to left edge (and also
                // copy the closing point)
                aTempPoly[0] = aTempPoly[4] = aTempPoly[1];
                aTempPoly[3] = aTempPoly[2];

                // calculate new right edge, from interpolating
                // between start and end line. Note that i is
                // increased by one, to account for the fact that we
                // calculate the right border here (whereas the fill
                // color is governed by the left edge)
                const ::basegfx::B2DPoint& rPoint3(
                    (nStepCount - i-1)/double(nStepCount)*aLeftTop +
                    (i+1)/double(nStepCount)*aRightTop );
                aTempPoly[1] = ::Point( ::basegfx::fround( rPoint3.getX() ),
                                        ::basegfx::fround( rPoint3.getY() ) );

                const ::basegfx::B2DPoint& rPoint4(
                    (nStepCount - i-1)/double(nStepCount)*aLeftBottom +
                    (i+1)/double(nStepCount)*aRightBottom );
                aTempPoly[2] = ::Point( ::basegfx::fround( rPoint4.getX() ),
                                        ::basegfx::fround( rPoint4.getY() ) );

                rOutDev.DrawPolygon( aTempPoly );
            }

            // fill final strip (extending two times the bound rect's
            // diagonal to the 'right'


            // copy right edge of polygon to left edge (and also
            // copy the closing point)
            aTempPoly[0] = aTempPoly[4] = aTempPoly[1];
            aTempPoly[3] = aTempPoly[2];

            // calculate new right edge, by moving right edge of the
            // gradient rect two times the bound rect's diagonal to
            // the 'right'.
            const ::basegfx::B2DPoint& rPoint3( aRightTop + 2.0*nDiagonalLength*aDirection );
            aTempPoly[0] = aTempPoly[4] = ::Point( ::basegfx::fround( rPoint3.getX() ),
                                                   ::basegfx::fround( rPoint3.getY() ) );

            const ::basegfx::B2DPoint& rPoint4( aRightBottom + 2.0*nDiagonalLength*aDirection );
            aTempPoly[3] = ::Point( ::basegfx::fround( rPoint4.getX() ),
                                    ::basegfx::fround( rPoint4.getY() ) );

            rOutDev.SetFillColor( rColors.back() );

            rOutDev.DrawPolygon( aTempPoly );
        }

        void fillPolygonalGradient( OutputDevice&                                  rOutDev,
                                    const ::basegfx::B2DHomMatrix&                 rTextureTransform,
                                    const ::tools::Rectangle&                             rBounds,
                                    unsigned int                                   nStepCount,
                                    const ::canvas::ParametricPolyPolygon::Values& rValues,
                                    const std::vector< ::Color >&                  rColors )
        {
            const ::basegfx::B2DPolygon& rGradientPoly( rValues.maGradientPoly );

            ENSURE_OR_THROW( rGradientPoly.count() > 2,
                              "fillPolygonalGradient(): polygon without area given" );

            // For performance reasons, we create a temporary VCL polygon
            // here, keep it all the way and only change the vertex values
            // in the loop below (as ::Polygon is a pimpl class, creating
            // one every loop turn would really stress the mem allocator)
            ::basegfx::B2DPolygon   aOuterPoly( rGradientPoly );
            ::basegfx::B2DPolygon   aInnerPoly;

            // subdivide polygon _before_ rendering, would otherwise have
            // to be performed on every loop turn.
            if( aOuterPoly.areControlPointsUsed() )
                aOuterPoly = ::basegfx::utils::adaptiveSubdivideByAngle(aOuterPoly);

            aInnerPoly = aOuterPoly;

            // only transform outer polygon _after_ copying it into
            // aInnerPoly, because inner polygon has to be scaled before
            // the actual texture transformation takes place
            aOuterPoly.transform( rTextureTransform );

            // determine overall transformation for inner polygon (might
            // have to be prefixed by anisotrophic scaling)
            ::basegfx::B2DHomMatrix aInnerPolygonTransformMatrix;


            // apply scaling (possibly anisotrophic) to inner polygon


            // scale inner polygon according to aspect ratio: for
            // wider-than-tall bounds (nAspectRatio > 1.0), the inner
            // polygon, representing the gradient focus, must have
            // non-zero width. Specifically, a bound rect twice as wide as
            // tall has a focus polygon of half its width.
            const double nAspectRatio( rValues.mnAspectRatio );
            if( nAspectRatio > 1.0 )
            {
                // width > height case
                aInnerPolygonTransformMatrix.scale( 1.0 - 1.0/nAspectRatio,
                                                    0.0 );
            }
            else if( nAspectRatio < 1.0 )
            {
                // width < height case
                aInnerPolygonTransformMatrix.scale( 0.0,
                                                    1.0 - nAspectRatio );
            }
            else
            {
                // isotrophic case
                aInnerPolygonTransformMatrix.scale( 0.0, 0.0 );
            }

            // and finally, add texture transform to it.
            aInnerPolygonTransformMatrix *= rTextureTransform;

            // apply final matrix to polygon
            aInnerPoly.transform( aInnerPolygonTransformMatrix );


            const sal_uInt32 nNumPoints( aOuterPoly.count() );
            ::tools::Polygon aTempPoly( static_cast<sal_uInt16>(nNumPoints+1) );

            // increase number of steps by one: polygonal gradients have
            // the outermost polygon rendered in rColor2, and the
            // innermost in rColor1. The innermost polygon will never
            // have zero area, thus, we must divide the interval into
            // nStepCount+1 steps. For example, to create 3 steps:

            // |                       |
            // |-------|-------|-------|
            // |                       |
            // 3       2       1       0

            // This yields 4 tick marks, where 0 is never attained (since
            // zero-area polygons typically don't display perceivable
            // color).
            ++nStepCount;

            rOutDev.SetLineColor();

            basegfx::utils::KeyStopLerp aLerper(rValues.maStops);

            // fill background
            rOutDev.SetFillColor( rColors.front() );
            rOutDev.DrawRect( rBounds );

            // render polygon
            // ==============

            for( unsigned int i=1,p; i<nStepCount; ++i )<--- Found suspicious operator ','
            {
                const double fT( i/double(nStepCount) );

                std::ptrdiff_t nIndex;
                double fAlpha;
                std::tie(nIndex,fAlpha)=aLerper.lerp(fT);

                // lerp color
                rOutDev.SetFillColor(
                    Color( static_cast<sal_uInt8>(basegfx::utils::lerp(rColors[nIndex].GetRed(),rColors[nIndex+1].GetRed(),fAlpha)),
                           static_cast<sal_uInt8>(basegfx::utils::lerp(rColors[nIndex].GetGreen(),rColors[nIndex+1].GetGreen(),fAlpha)),
                           static_cast<sal_uInt8>(basegfx::utils::lerp(rColors[nIndex].GetBlue(),rColors[nIndex+1].GetBlue(),fAlpha)) ));

                // scale and render polygon, by interpolating between
                // outer and inner polygon.

                for( p=0; p<nNumPoints; ++p )
                {
                    const ::basegfx::B2DPoint& rOuterPoint( aOuterPoly.getB2DPoint(p) );
                    const ::basegfx::B2DPoint& rInnerPoint( aInnerPoly.getB2DPoint(p) );

                    aTempPoly[static_cast<sal_uInt16>(p)] = ::Point(
                        basegfx::fround( fT*rInnerPoint.getX() + (1-fT)*rOuterPoint.getX() ),
                        basegfx::fround( fT*rInnerPoint.getY() + (1-fT)*rOuterPoint.getY() ) );
                }

                // close polygon explicitly
                aTempPoly[static_cast<sal_uInt16>(p)] = aTempPoly[0];

                // TODO(P1): compare with vcl/source/gdi/outdev4.cxx,
                // OutputDevice::ImplDrawComplexGradient(), there's a note
                // that on some VDev's, rendering disjunct poly-polygons
                // is faster!
                rOutDev.DrawPolygon( aTempPoly );
            }
        }

        void doGradientFill( OutputDevice&                                  rOutDev,
                             const ::canvas::ParametricPolyPolygon::Values& rValues,
                             const std::vector< ::Color >&                  rColors,
                             const ::basegfx::B2DHomMatrix&                 rTextureTransform,
                             const ::tools::Rectangle&                      rBounds,
                             unsigned int                                   nStepCount )
        {
            switch( rValues.meType )
            {
                case ::canvas::ParametricPolyPolygon::GradientType::Linear:
                    fillLinearGradient( rOutDev,
                                        rTextureTransform,
                                        rBounds,
                                        nStepCount,
                                        rValues,
                                        rColors );
                    break;

                case ::canvas::ParametricPolyPolygon::GradientType::Elliptical:
                case ::canvas::ParametricPolyPolygon::GradientType::Rectangular:
                    fillPolygonalGradient( rOutDev,
                                           rTextureTransform,
                                           rBounds,
                                           nStepCount,
                                           rValues,
                                           rColors );
                    break;

                default:
                    ENSURE_OR_THROW( false,
                                      "CanvasHelper::doGradientFill(): Unexpected case" );
            }
        }

        int numColorSteps( const ::Color& rColor1, const ::Color& rColor2 )
        {
            return std::max(
                labs( rColor1.GetRed() - rColor2.GetRed() ),
                std::max(
                    labs( rColor1.GetGreen() - rColor2.GetGreen() ),
                    labs( rColor1.GetBlue()  - rColor2.GetBlue() ) ) );
        }

        bool gradientFill( OutputDevice&                                   rOutDev,
                           OutputDevice*                                   p2ndOutDev,
                           const ::canvas::ParametricPolyPolygon::Values&  rValues,
                           const std::vector< ::Color >&                   rColors,
                           const ::tools::PolyPolygon&                     rPoly,
                           const rendering::ViewState&                     viewState,
                           const rendering::RenderState&                   renderState,
                           const rendering::Texture&                       texture,
                           int                                             nTransparency )
        {
            // TODO(T2): It is maybe necessary to lock here, should
            // maGradientPoly someday cease to be const. But then, beware of
            // deadlocks, canvashelper calls this method with locked own
            // mutex.

            // calc step size

            int nColorSteps = 0;
            for( size_t i=0; i<rColors.size()-1; ++i )
                nColorSteps += numColorSteps(rColors[i],rColors[i+1]);

            ::basegfx::B2DHomMatrix aTotalTransform;
            const int nStepCount=
                ::canvas::tools::calcGradientStepCount(aTotalTransform,
                                                       viewState,
                                                       renderState,
                                                       texture,
                                                       nColorSteps);

            rOutDev.SetLineColor();

            // determine maximal bound rect of texture-filled
            // polygon
            const ::tools::Rectangle aPolygonDeviceRectOrig(
                rPoly.GetBoundRect() );

            if( tools::isRectangle( rPoly ) )
            {
                // use optimized output path


                // this distinction really looks like a
                // micro-optimization, but in fact greatly speeds up
                // especially complex gradients. That's because when using
                // clipping, we can output polygons instead of
                // poly-polygons, and don't have to output the gradient
                // twice for XOR

                rOutDev.Push( PushFlags::CLIPREGION );
                rOutDev.IntersectClipRegion( aPolygonDeviceRectOrig );
                doGradientFill( rOutDev,
                                rValues,
                                rColors,
                                aTotalTransform,
                                aPolygonDeviceRectOrig,
                                nStepCount );
                rOutDev.Pop();

                if( p2ndOutDev && nTransparency < 253 )
                {
                    // HACK. Normally, CanvasHelper does not care about
                    // actually what mp2ndOutDev is...  well, here we do &
                    // assume a 1bpp target - everything beyond 97%
                    // transparency is fully transparent
                    p2ndOutDev->SetFillColor( COL_BLACK );
                    p2ndOutDev->DrawRect( aPolygonDeviceRectOrig );
                }
            }
            else
            {
                const vcl::Region aPolyClipRegion( rPoly );

                rOutDev.Push( PushFlags::CLIPREGION );
                rOutDev.IntersectClipRegion( aPolyClipRegion );

                doGradientFill( rOutDev,
                                rValues,
                                rColors,
                                aTotalTransform,
                                aPolygonDeviceRectOrig,
                                nStepCount );
                rOutDev.Pop();

                if( p2ndOutDev && nTransparency < 253 )
                {
                    // HACK. Normally, CanvasHelper does not care about
                    // actually what mp2ndOutDev is...  well, here we do &
                    // assume a 1bpp target - everything beyond 97%
                    // transparency is fully transparent
                    p2ndOutDev->SetFillColor( COL_BLACK );
                    p2ndOutDev->DrawPolyPolygon( rPoly );
                }
            }

#ifdef DEBUG_CANVAS_CANVASHELPER_TEXTUREFILL
            // extra-verbosity
            {
                ::basegfx::B2DRectangle aRect(0.0, 0.0, 1.0, 1.0);
                ::basegfx::B2DRectangle aTextureDeviceRect;
                ::basegfx::B2DHomMatrix aTextureTransform;
                ::canvas::tools::calcTransformedRectBounds( aTextureDeviceRect,
                                                            aRect,
                                                            aTextureTransform );
                rOutDev.SetLineColor( COL_RED );
                rOutDev.SetFillColor();
                rOutDev.DrawRect( vcl::unotools::rectangleFromB2DRectangle( aTextureDeviceRect ) );

                rOutDev.SetLineColor( COL_BLUE );
                ::tools::Polygon aPoly1(
                    vcl::unotools::rectangleFromB2DRectangle( aRect ));
                ::basegfx::B2DPolygon aPoly2( aPoly1.getB2DPolygon() );
                aPoly2.transform( aTextureTransform );
                ::tools::Polygon aPoly3( aPoly2 );
                rOutDev.DrawPolygon( aPoly3 );
            }
#endif

            return true;
        }
    }

    uno::Reference< rendering::XCachedPrimitive > CanvasHelper::fillTexturedPolyPolygon( const rendering::XCanvas*                          pCanvas,
                                                                                         const uno::Reference< rendering::XPolyPolygon2D >& xPolyPolygon,
                                                                                         const rendering::ViewState&                        viewState,
                                                                                         const rendering::RenderState&                      renderState,
                                                                                         const uno::Sequence< rendering::Texture >&         textures )
    {
        ENSURE_ARG_OR_THROW( xPolyPolygon.is(),
                         "CanvasHelper::fillPolyPolygon(): polygon is NULL");
        ENSURE_ARG_OR_THROW( textures.hasElements(),
                         "CanvasHelper::fillTexturedPolyPolygon: empty texture sequence");

        if( mpOutDevProvider )
        {
            tools::OutDevStateKeeper aStateKeeper( mpProtectedOutDevProvider );

            const int nTransparency( setupOutDevState( viewState, renderState, IGNORE_COLOR ) );
            ::tools::PolyPolygon aPolyPoly( tools::mapPolyPolygon(
                                       ::basegfx::unotools::b2DPolyPolygonFromXPolyPolygon2D(xPolyPolygon),
                                       viewState, renderState ) );

            // TODO(F1): Multi-texturing
            if( textures[0].Gradient.is() )
            {
                // try to cast XParametricPolyPolygon2D reference to
                // our implementation class.
                ::canvas::ParametricPolyPolygon* pGradient =
                      dynamic_cast< ::canvas::ParametricPolyPolygon* >( textures[0].Gradient.get() );

                if( pGradient && pGradient->getValues().maColors.hasElements() )
                {
                    // copy state from Gradient polypoly locally
                    // (given object might change!)
                    const ::canvas::ParametricPolyPolygon::Values& rValues(
                        pGradient->getValues() );

                    if( rValues.maColors.getLength() < 2 )
                    {
                        rendering::RenderState aTempState=renderState;
                        aTempState.DeviceColor = rValues.maColors[0];
                        fillPolyPolygon(pCanvas, xPolyPolygon, viewState, aTempState);
                    }
                    else
                    {
                        std::vector< ::Color > aColors(rValues.maColors.getLength());
                        std::transform(&rValues.maColors[0],
                                       &rValues.maColors[0]+rValues.maColors.getLength(),
                                       aColors.begin(),
                                       [](const uno::Sequence< double >& aColor) {
                                           return vcl::unotools::stdColorSpaceSequenceToColor( aColor );
                                       } );

                        // TODO(E1): Return value
                        // TODO(F1): FillRule
                        gradientFill( mpOutDevProvider->getOutDev(),
                                      mp2ndOutDevProvider ? &mp2ndOutDevProvider->getOutDev() : nullptr,
                                      rValues,
                                      aColors,
                                      aPolyPoly,
                                      viewState,
                                      renderState,
                                      textures[0],
                                      nTransparency );
                    }
                }
                else
                {
                    // TODO(F1): The generic case is missing here
                    ENSURE_OR_THROW( false,
                                      "CanvasHelper::fillTexturedPolyPolygon(): unknown parametric polygon encountered" );
                }
            }
            else if( textures[0].Bitmap.is() )
            {
                geometry::IntegerSize2D aBmpSize( textures[0].Bitmap->getSize() );

                ENSURE_ARG_OR_THROW( aBmpSize.Width != 0 &&
                                 aBmpSize.Height != 0,
                                 "CanvasHelper::fillTexturedPolyPolygon(): zero-sized texture bitmap" );

                // determine maximal bound rect of texture-filled
                // polygon
                const ::tools::Rectangle aPolygonDeviceRect(
                    aPolyPoly.GetBoundRect() );


                // first of all, determine whether we have a
                // drawBitmap() in disguise
                // =========================================

                const bool bRectangularPolygon( tools::isRectangle( aPolyPoly ) );

                ::basegfx::B2DHomMatrix aTotalTransform;
                ::canvas::tools::mergeViewAndRenderTransform(aTotalTransform,
                                                             viewState,
                                                             renderState);
                ::basegfx::B2DHomMatrix aTextureTransform;
                ::basegfx::unotools::homMatrixFromAffineMatrix( aTextureTransform,
                                                                textures[0].AffineTransform );

                aTotalTransform *= aTextureTransform;

                const ::basegfx::B2DRectangle aRect(0.0, 0.0, 1.0, 1.0);
                ::basegfx::B2DRectangle aTextureDeviceRect;
                ::canvas::tools::calcTransformedRectBounds( aTextureDeviceRect,
                                                            aRect,
                                                            aTotalTransform );

                const ::tools::Rectangle aIntegerTextureDeviceRect(
                    vcl::unotools::rectangleFromB2DRectangle( aTextureDeviceRect ) );

                if( bRectangularPolygon &&
                    aIntegerTextureDeviceRect == aPolygonDeviceRect )
                {
                    rendering::RenderState aLocalState( renderState );
                    ::canvas::tools::appendToRenderState(aLocalState,
                                                         aTextureTransform);
                    ::basegfx::B2DHomMatrix aScaleCorrection;
                    aScaleCorrection.scale( 1.0/aBmpSize.Width,
                                            1.0/aBmpSize.Height );
                    ::canvas::tools::appendToRenderState(aLocalState,
                                                         aScaleCorrection);

                    // need alpha modulation?
                    if( !::rtl::math::approxEqual( textures[0].Alpha,
                                                   1.0 ) )
                    {
                        // setup alpha modulation values
                        aLocalState.DeviceColor.realloc(4);
                        double* pColor = aLocalState.DeviceColor.getArray();
                        pColor[0] =
                        pColor[1] =
                        pColor[2] = 0.0;
                        pColor[3] = textures[0].Alpha;

                        return drawBitmapModulated( pCanvas,
                                                    textures[0].Bitmap,
                                                    viewState,
                                                    aLocalState );
                    }
                    else
                    {
                        return drawBitmap( pCanvas,
                                           textures[0].Bitmap,
                                           viewState,
                                           aLocalState );
                    }
                }
                else
                {
                    // No easy mapping to drawBitmap() - calculate
                    // texturing parameters
                    // ===========================================

                    BitmapEx aBmpEx( tools::bitmapExFromXBitmap( textures[0].Bitmap ) );

                    // scale down bitmap to [0,1]x[0,1] rect, as required
                    // from the XCanvas interface.
                    ::basegfx::B2DHomMatrix aScaling;
                    ::basegfx::B2DHomMatrix aPureTotalTransform; // pure view*render*texture transform
                    aScaling.scale( 1.0/aBmpSize.Width,
                                    1.0/aBmpSize.Height );

                    aTotalTransform = aTextureTransform * aScaling;
                    aPureTotalTransform = aTextureTransform;

                    // combine with view and render transform
                    ::basegfx::B2DHomMatrix aMatrix;
                    ::canvas::tools::mergeViewAndRenderTransform(aMatrix, viewState, renderState);

                    // combine all three transformations into one
                    // global texture-to-device-space transformation
                    aTotalTransform *= aMatrix;
                    aPureTotalTransform *= aMatrix;

                    // analyze transformation, and setup an
                    // appropriate GraphicObject
                    ::basegfx::B2DVector aScale;
                    ::basegfx::B2DPoint  aOutputPos;
                    double               nRotate;
                    double               nShearX;
                    aTotalTransform.decompose( aScale, aOutputPos, nRotate, nShearX );

                    GraphicAttr             aGrfAttr;
                    GraphicObjectSharedPtr  pGrfObj;

                    if( ::basegfx::fTools::equalZero( nShearX ) )
                    {
                        // no shear, GraphicObject is enough (the
                        // GraphicObject only supports scaling, rotation
                        // and translation)

                        // #i75339# don't apply mirror flags, having
                        // negative size values is enough to make
                        // GraphicObject flip the bitmap

                        // The angle has to be mapped from radian to tenths of
                        // degrees with the orientation reversed: [0,2Pi) ->
                        // (3600,0].  Note that the original angle may have
                        // values outside the [0,2Pi) interval.
                        const double nAngleInTenthOfDegrees (3600.0 - nRotate * 3600.0 / (2*M_PI));
                        aGrfAttr.SetRotation( static_cast< sal_uInt16 >(::basegfx::fround(nAngleInTenthOfDegrees)) );

                        pGrfObj = std::make_shared<GraphicObject>( aBmpEx );
                    }
                    else
                    {
                        // modify output position, to account for the fact
                        // that transformBitmap() always normalizes its output
                        // bitmap into the smallest enclosing box.
                        ::basegfx::B2DRectangle aDestRect;
                        ::canvas::tools::calcTransformedRectBounds( aDestRect,
                                                                    ::basegfx::B2DRectangle(0,
                                                                                            0,
                                                                                            aBmpSize.Width,
                                                                                            aBmpSize.Height),
                                                                    aMatrix );

                        aOutputPos.setX( aDestRect.getMinX() );
                        aOutputPos.setY( aDestRect.getMinY() );

                        // complex transformation, use generic affine bitmap
                        // transformation
                        aBmpEx = tools::transformBitmap( aBmpEx,
                                                         aTotalTransform);

                        pGrfObj = std::make_shared<GraphicObject>( aBmpEx );

                        // clear scale values, generated bitmap already
                        // contains scaling
                        aScale.setX( 1.0 ); aScale.setY( 1.0 );

                        // update bitmap size, bitmap has changed above.
                        aBmpSize = vcl::unotools::integerSize2DFromSize(aBmpEx.GetSizePixel());
                    }


                    // render texture tiled into polygon
                    // =================================

                    // calc device space direction vectors. We employ
                    // the following approach for tiled output: the
                    // texture bitmap is output in texture space
                    // x-major order, i.e. tile neighbors in texture
                    // space x direction are rendered back-to-back in
                    // device coordinate space (after the full device
                    // transformation). Thus, the aNextTile* vectors
                    // denote the output position updates in device
                    // space, to get from one tile to the next.
                    ::basegfx::B2DVector aNextTileX( 1.0, 0.0 );
                    ::basegfx::B2DVector aNextTileY( 0.0, 1.0 );
                    aNextTileX *= aPureTotalTransform;
                    aNextTileY *= aPureTotalTransform;

                    ::basegfx::B2DHomMatrix aInverseTextureTransform( aPureTotalTransform );

                    ENSURE_ARG_OR_THROW( aInverseTextureTransform.isInvertible(),
                                     "CanvasHelper::fillTexturedPolyPolygon(): singular texture matrix" );

                    aInverseTextureTransform.invert();

                    // calc bound rect of extended texture area in
                    // device coordinates. Therefore, we first calc
                    // the area of the polygon bound rect in texture
                    // space. To maintain texture phase, this bound
                    // rect is then extended to integer coordinates
                    // (extended, because shrinking might leave some
                    // inner polygon areas unfilled).
                    // Finally, the bound rect is transformed back to
                    // device coordinate space, were we determine the
                    // start point from it.
                    ::basegfx::B2DRectangle aTextureSpacePolygonRect;
                    ::canvas::tools::calcTransformedRectBounds( aTextureSpacePolygonRect,
                                                                vcl::unotools::b2DRectangleFromRectangle(aPolygonDeviceRect),
                                                                aInverseTextureTransform );

                    // calc left, top of extended polygon rect in
                    // texture space, create one-texture instance rect
                    // from it (i.e. rect from start point extending
                    // 1.0 units to the right and 1.0 units to the
                    // bottom). Note that the rounding employed here
                    // is a bit subtle, since we need to round up/down
                    // as _soon_ as any fractional amount is
                    // encountered. This is to ensure that the full
                    // polygon area is filled with texture tiles.
                    const sal_Int32 nX1( ::canvas::tools::roundDown( aTextureSpacePolygonRect.getMinX() ) );
                    const sal_Int32 nY1( ::canvas::tools::roundDown( aTextureSpacePolygonRect.getMinY() ) );
                    const sal_Int32 nX2( ::canvas::tools::roundUp( aTextureSpacePolygonRect.getMaxX() ) );
                    const sal_Int32 nY2( ::canvas::tools::roundUp( aTextureSpacePolygonRect.getMaxY() ) );
                    const ::basegfx::B2DRectangle aSingleTextureRect(
                        nX1, nY1,
                        nX1 + 1.0,
                        nY1 + 1.0 );

                    // and convert back to device space
                    ::basegfx::B2DRectangle aSingleDeviceTextureRect;
                    ::canvas::tools::calcTransformedRectBounds( aSingleDeviceTextureRect,
                                                                aSingleTextureRect,
                                                                aPureTotalTransform );

                    const ::Point aPtRepeat( vcl::unotools::pointFromB2DPoint(
                                                 aSingleDeviceTextureRect.getMinimum() ) );
                    const ::Size  aSz( ::basegfx::fround( aScale.getX() * aBmpSize.Width ),
                                       ::basegfx::fround( aScale.getY() * aBmpSize.Height ) );
                    const ::Size  aIntegerNextTileX( vcl::unotools::sizeFromB2DSize(aNextTileX) );
                    const ::Size  aIntegerNextTileY( vcl::unotools::sizeFromB2DSize(aNextTileY) );

                    const ::Point aPt( textures[0].RepeatModeX == rendering::TexturingMode::NONE ?
                                       ::basegfx::fround( aOutputPos.getX() ) : aPtRepeat.X(),
                                       textures[0].RepeatModeY == rendering::TexturingMode::NONE ?
                                       ::basegfx::fround( aOutputPos.getY() ) : aPtRepeat.Y() );
                    const sal_Int32 nTilesX( textures[0].RepeatModeX == rendering::TexturingMode::NONE ?
                                             1 : nX2 - nX1 );
                    const sal_Int32 nTilesY( textures[0].RepeatModeX == rendering::TexturingMode::NONE ?
                                             1 : nY2 - nY1 );

                    OutputDevice& rOutDev( mpOutDevProvider->getOutDev() );

                    if( bRectangularPolygon )
                    {
                        // use optimized output path


                        // this distinction really looks like a
                        // micro-optimization, but in fact greatly speeds up
                        // especially complex fills. That's because when using
                        // clipping, we can output polygons instead of
                        // poly-polygons, and don't have to output the gradient
                        // twice for XOR

                        // setup alpha modulation
                        if( !::rtl::math::approxEqual( textures[0].Alpha,
                                                       1.0 ) )
                        {
                            // TODO(F1): Note that the GraphicManager has
                            // a subtle difference in how it calculates
                            // the resulting alpha value: it's using the
                            // inverse alpha values (i.e. 'transparency'),
                            // and calculates transOrig + transModulate,
                            // instead of transOrig + transModulate -
                            // transOrig*transModulate (which would be
                            // equivalent to the origAlpha*modulateAlpha
                            // the DX canvas performs)
                            aGrfAttr.SetTransparency(
                                static_cast< sal_uInt8 >(
                                    ::basegfx::fround( 255.0*( 1.0 - textures[0].Alpha ) ) ) );
                        }

                        rOutDev.IntersectClipRegion( aPolygonDeviceRect );
                        textureFill( rOutDev,
                                     *pGrfObj,
                                     aPt,
                                     aIntegerNextTileX,
                                     aIntegerNextTileY,
                                     nTilesX,
                                     nTilesY,
                                     aSz,
                                     aGrfAttr );

                        if( mp2ndOutDevProvider )
                        {
                            OutputDevice& r2ndOutDev( mp2ndOutDevProvider->getOutDev() );
                            r2ndOutDev.IntersectClipRegion( aPolygonDeviceRect );
                            textureFill( r2ndOutDev,
                                         *pGrfObj,
                                         aPt,
                                         aIntegerNextTileX,
                                         aIntegerNextTileY,
                                         nTilesX,
                                         nTilesY,
                                         aSz,
                                         aGrfAttr );
                        }
                    }
                    else
                    {
                        // output texture the hard way: XORing out the
                        // polygon
                        // ===========================================

                        if( !::rtl::math::approxEqual( textures[0].Alpha,
                                                       1.0 ) )
                        {
                            // uh-oh. alpha blending is required,
                            // cannot do direct XOR, but have to
                            // prepare the filled polygon within a
                            // VDev
                            ScopedVclPtrInstance< VirtualDevice > pVDev( rOutDev );
                            pVDev->SetOutputSizePixel( aPolygonDeviceRect.GetSize() );

                            // shift output to origin of VDev
                            const ::Point aOutPos( aPt - aPolygonDeviceRect.TopLeft() );
                            aPolyPoly.Translate( ::Point( -aPolygonDeviceRect.Left(),
                                                          -aPolygonDeviceRect.Top() ) );

                            const vcl::Region aPolyClipRegion( aPolyPoly );

                            pVDev->SetClipRegion( aPolyClipRegion );
                            textureFill( *pVDev,
                                         *pGrfObj,
                                         aOutPos,
                                         aIntegerNextTileX,
                                         aIntegerNextTileY,
                                         nTilesX,
                                         nTilesY,
                                         aSz,
                                         aGrfAttr );

                            // output VDev content alpha-blended to
                            // target position.
                            const ::Point aEmptyPoint;
                            BitmapEx aContentBmp(
                                pVDev->GetBitmapEx( aEmptyPoint,
                                                 pVDev->GetOutputSizePixel() ) );

                            sal_uInt8 nCol( static_cast< sal_uInt8 >(
                                           ::basegfx::fround( 255.0*( 1.0 - textures[0].Alpha ) ) ) );
                            AlphaMask aAlpha( pVDev->GetOutputSizePixel(),
                                              &nCol );

                            BitmapEx aOutputBmpEx( aContentBmp.GetBitmap(), aAlpha );
                            rOutDev.DrawBitmapEx( aPolygonDeviceRect.TopLeft(),
                                                  aOutputBmpEx );

                            if( mp2ndOutDevProvider )
                                mp2ndOutDevProvider->getOutDev().DrawBitmapEx( aPolygonDeviceRect.TopLeft(),
                                                                       aOutputBmpEx );
                        }
                        else
                        {
                            const vcl::Region aPolyClipRegion( aPolyPoly );

                            rOutDev.Push( PushFlags::CLIPREGION );
                            rOutDev.IntersectClipRegion( aPolyClipRegion );

                            textureFill( rOutDev,
                                         *pGrfObj,
                                         aPt,
                                         aIntegerNextTileX,
                                         aIntegerNextTileY,
                                         nTilesX,
                                         nTilesY,
                                         aSz,
                                         aGrfAttr );
                            rOutDev.Pop();

                            if( mp2ndOutDevProvider )
                            {
                                OutputDevice& r2ndOutDev( mp2ndOutDevProvider->getOutDev() );
                                r2ndOutDev.Push( PushFlags::CLIPREGION );

                                r2ndOutDev.IntersectClipRegion( aPolyClipRegion );
                                textureFill( r2ndOutDev,
                                             *pGrfObj,
                                             aPt,
                                             aIntegerNextTileX,
                                             aIntegerNextTileY,
                                             nTilesX,
                                             nTilesY,
                                             aSz,
                                             aGrfAttr );
                                r2ndOutDev.Pop();
                            }
                        }
                    }
                }
            }
        }

        // TODO(P1): Provide caching here.
        return uno::Reference< rendering::XCachedPrimitive >(nullptr);
    }

}

/* vim:set shiftwidth=4 softtabstop=4 expandtab: */