1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621 | /* -*- Mode: C++; tab-width: 4; indent-tabs-mode: nil; c-basic-offset: 4 -*- */
/*
* This file is part of the LibreOffice project.
*
* This Source Code Form is subject to the terms of the Mozilla Public
* License, v. 2.0. If a copy of the MPL was not distributed with this
* file, You can obtain one at http://mozilla.org/MPL/2.0/.
*
* This file incorporates work covered by the following license notice:
*
* Licensed to the Apache Software Foundation (ASF) under one or more
* contributor license agreements. See the NOTICE file distributed
* with this work for additional information regarding copyright
* ownership. The ASF licenses this file to you under the Apache
* License, Version 2.0 (the "License"); you may not use this file
* except in compliance with the License. You may obtain a copy of
* the License at http://www.apache.org/licenses/LICENSE-2.0 .
*/
#include "Tickmarks_Equidistant.hxx"
#include <rtl/math.hxx>
#include <osl/diagnose.h>
#include <float.h>
#include <limits>
namespace chart
{
using namespace ::com::sun::star;
using namespace ::com::sun::star::chart2;
using namespace ::rtl::math;
//static
double EquidistantTickFactory::getMinimumAtIncrement( double fMin, const ExplicitIncrementData& rIncrement )
{
//the returned value will be <= fMin and on a Major Tick given by rIncrement
if(rIncrement.Distance<=0.0)
return fMin;
double fRet = rIncrement.BaseValue +
floor( approxSub( fMin, rIncrement.BaseValue )
/ rIncrement.Distance)
*rIncrement.Distance;
if( fRet > fMin )
{
if( !approxEqual(fRet, fMin) )
fRet -= rIncrement.Distance;
}
return fRet;
}
//static
double EquidistantTickFactory::getMaximumAtIncrement( double fMax, const ExplicitIncrementData& rIncrement )
{
//the returned value will be >= fMax and on a Major Tick given by rIncrement
if(rIncrement.Distance<=0.0)
return fMax;
double fRet = rIncrement.BaseValue +
floor( approxSub( fMax, rIncrement.BaseValue )
/ rIncrement.Distance)
*rIncrement.Distance;
if( fRet < fMax )
{
if( !approxEqual(fRet, fMax) )
fRet += rIncrement.Distance;
}
return fRet;
}
EquidistantTickFactory::EquidistantTickFactory(
const ExplicitScaleData& rScale, const ExplicitIncrementData& rIncrement )
: m_rScale( rScale )
, m_rIncrement( rIncrement )
{
//@todo: make sure that the scale is valid for the scaling
m_pfCurrentValues.reset( new double[getTickDepth()] );
if( m_rScale.Scaling.is() )
{
m_xInverseScaling = m_rScale.Scaling->getInverseScaling();
OSL_ENSURE( m_xInverseScaling.is(), "each Scaling needs to return an inverse Scaling" );
}
double fMin = m_fScaledVisibleMin = m_rScale.Minimum;
if( m_xInverseScaling.is() )
{
m_fScaledVisibleMin = m_rScale.Scaling->doScaling(m_fScaledVisibleMin);
if(m_rIncrement.PostEquidistant )
fMin = m_fScaledVisibleMin;
}
double fMax = m_fScaledVisibleMax = m_rScale.Maximum;
if( m_xInverseScaling.is() )
{
m_fScaledVisibleMax = m_rScale.Scaling->doScaling(m_fScaledVisibleMax);
if(m_rIncrement.PostEquidistant )
fMax = m_fScaledVisibleMax;
}
m_fOuterMajorTickBorderMin = EquidistantTickFactory::getMinimumAtIncrement( fMin, m_rIncrement );
m_fOuterMajorTickBorderMax = EquidistantTickFactory::getMaximumAtIncrement( fMax, m_rIncrement );
m_fOuterMajorTickBorderMin_Scaled = m_fOuterMajorTickBorderMin;
m_fOuterMajorTickBorderMax_Scaled = m_fOuterMajorTickBorderMax;
if(!(!m_rIncrement.PostEquidistant && m_xInverseScaling.is()) )
return;
m_fOuterMajorTickBorderMin_Scaled = m_rScale.Scaling->doScaling(m_fOuterMajorTickBorderMin);
m_fOuterMajorTickBorderMax_Scaled = m_rScale.Scaling->doScaling(m_fOuterMajorTickBorderMax);
//check validity of new range: m_fOuterMajorTickBorderMin <-> m_fOuterMajorTickBorderMax
//it is assumed here, that the original range in the given Scale is valid
if( !std::isfinite(m_fOuterMajorTickBorderMin_Scaled) )
{
m_fOuterMajorTickBorderMin += m_rIncrement.Distance;
m_fOuterMajorTickBorderMin_Scaled = m_rScale.Scaling->doScaling(m_fOuterMajorTickBorderMin);
}
if( !std::isfinite(m_fOuterMajorTickBorderMax_Scaled) )
{
m_fOuterMajorTickBorderMax -= m_rIncrement.Distance;
m_fOuterMajorTickBorderMax_Scaled = m_rScale.Scaling->doScaling(m_fOuterMajorTickBorderMax);
}
}
EquidistantTickFactory::~EquidistantTickFactory()
{
}
sal_Int32 EquidistantTickFactory::getTickDepth() const
{
return static_cast<sal_Int32>(m_rIncrement.SubIncrements.size()) + 1;
}
void EquidistantTickFactory::addSubTicks( sal_Int32 nDepth, uno::Sequence< uno::Sequence< double > >& rParentTicks ) const
{
EquidistantTickIter aIter( rParentTicks, m_rIncrement, nDepth-1 );
double* pfNextParentTick = aIter.firstValue();
if(!pfNextParentTick)
return;
double fLastParentTick = *pfNextParentTick;
pfNextParentTick = aIter.nextValue();
if(!pfNextParentTick)
return;
sal_Int32 nMaxSubTickCount = getMaxTickCount( nDepth );
if(!nMaxSubTickCount)
return;
uno::Sequence< double > aSubTicks(nMaxSubTickCount);
sal_Int32 nRealSubTickCount = 0;
sal_Int32 nIntervalCount = m_rIncrement.SubIncrements[nDepth-1].IntervalCount;
double* pValue = nullptr;
for(; pfNextParentTick; fLastParentTick=*pfNextParentTick, pfNextParentTick = aIter.nextValue())
{
for( sal_Int32 nPartTick = 1; nPartTick<nIntervalCount; nPartTick++ )
{
pValue = getMinorTick( nPartTick, nDepth
, fLastParentTick, *pfNextParentTick );
if(!pValue)
continue;
aSubTicks[nRealSubTickCount] = *pValue;
nRealSubTickCount++;
}
}
aSubTicks.realloc(nRealSubTickCount);
rParentTicks[nDepth] = aSubTicks;
if(static_cast<sal_Int32>(m_rIncrement.SubIncrements.size())>nDepth)
addSubTicks( nDepth+1, rParentTicks );
}
sal_Int32 EquidistantTickFactory::getMaxTickCount( sal_Int32 nDepth ) const
{
//return the maximum amount of ticks
//possibly open intervals at the two ends of the region are handled as if they were completely visible
//(this is necessary for calculating the sub ticks at the borders correctly)
if( nDepth >= getTickDepth() )
return 0;
if( m_fOuterMajorTickBorderMax < m_fOuterMajorTickBorderMin )
return 0;
if( m_rIncrement.Distance<=0.0)
return 0;
double fSub;
if(m_rIncrement.PostEquidistant )
fSub = approxSub( m_fScaledVisibleMax, m_fScaledVisibleMin );
else
fSub = approxSub( m_rScale.Maximum, m_rScale.Minimum );
if (!std::isfinite(fSub))
return 0;
double fIntervalCount = fSub / m_rIncrement.Distance;
if (fIntervalCount > std::numeric_limits<sal_Int32>::max())
// Interval count too high! Bail out.
return 0;
sal_Int32 nIntervalCount = static_cast<sal_Int32>(fIntervalCount);
nIntervalCount+=3;
for(sal_Int32 nN=0; nN<nDepth-1; nN++)
{
if( m_rIncrement.SubIncrements[nN].IntervalCount>1 )
nIntervalCount *= m_rIncrement.SubIncrements[nN].IntervalCount;
}
sal_Int32 nTickCount = nIntervalCount;
if(nDepth>0 && m_rIncrement.SubIncrements[nDepth-1].IntervalCount>1)
nTickCount = nIntervalCount * (m_rIncrement.SubIncrements[nDepth-1].IntervalCount-1);
return nTickCount;
}
double* EquidistantTickFactory::getMajorTick( sal_Int32 nTick ) const
{
m_pfCurrentValues[0] = m_fOuterMajorTickBorderMin + nTick*m_rIncrement.Distance;
if(m_pfCurrentValues[0]>m_fOuterMajorTickBorderMax)
{
if( !approxEqual(m_pfCurrentValues[0],m_fOuterMajorTickBorderMax) )
return nullptr;
}
if(m_pfCurrentValues[0]<m_fOuterMajorTickBorderMin)
{
if( !approxEqual(m_pfCurrentValues[0],m_fOuterMajorTickBorderMin) )
return nullptr;
}
//return always the value after scaling
if(!m_rIncrement.PostEquidistant && m_xInverseScaling.is() )
m_pfCurrentValues[0] = m_rScale.Scaling->doScaling( m_pfCurrentValues[0] );
return &m_pfCurrentValues[0];
}
double* EquidistantTickFactory::getMinorTick( sal_Int32 nTick, sal_Int32 nDepth
, double fStartParentTick, double fNextParentTick ) const
{
//check validity of arguments
{
//OSL_ENSURE( fStartParentTick < fNextParentTick, "fStartParentTick >= fNextParentTick");
if(fStartParentTick >= fNextParentTick)
return nullptr;
if(nDepth>static_cast<sal_Int32>(m_rIncrement.SubIncrements.size()) || nDepth<=0)
return nullptr;
//subticks are only calculated if they are laying between parent ticks:
if(nTick<=0)
return nullptr;
if(nTick>=m_rIncrement.SubIncrements[nDepth-1].IntervalCount)
return nullptr;
}
bool bPostEquidistant = m_rIncrement.SubIncrements[nDepth-1].PostEquidistant;
double fAdaptedStartParent = fStartParentTick;
double fAdaptedNextParent = fNextParentTick;
if( !bPostEquidistant && m_xInverseScaling.is() )
{
fAdaptedStartParent = m_xInverseScaling->doScaling(fStartParentTick);
fAdaptedNextParent = m_xInverseScaling->doScaling(fNextParentTick);
}
double fDistance = (fAdaptedNextParent - fAdaptedStartParent)/m_rIncrement.SubIncrements[nDepth-1].IntervalCount;
m_pfCurrentValues[nDepth] = fAdaptedStartParent + nTick*fDistance;
//return always the value after scaling
if(!bPostEquidistant && m_xInverseScaling.is() )
m_pfCurrentValues[nDepth] = m_rScale.Scaling->doScaling( m_pfCurrentValues[nDepth] );
if( !isWithinOuterBorder( m_pfCurrentValues[nDepth] ) )
return nullptr;
return &m_pfCurrentValues[nDepth];
}
bool EquidistantTickFactory::isWithinOuterBorder( double fScaledValue ) const
{
if(fScaledValue>m_fOuterMajorTickBorderMax_Scaled)
return false;
if(fScaledValue<m_fOuterMajorTickBorderMin_Scaled)
return false;
return true;
}
bool EquidistantTickFactory::isVisible( double fScaledValue ) const
{
if(fScaledValue>m_fScaledVisibleMax)
{
if( !approxEqual(fScaledValue,m_fScaledVisibleMax) )
return false;
}
if(fScaledValue<m_fScaledVisibleMin)
{
if( !approxEqual(fScaledValue,m_fScaledVisibleMin) )
return false;
}
return true;
}
void EquidistantTickFactory::getAllTicks( TickInfoArraysType& rAllTickInfos ) const
{
//create point sequences for each tick depth
const sal_Int32 nDepthCount = getTickDepth();
const sal_Int32 nMaxMajorTickCount = getMaxTickCount(0);
if (nDepthCount <= 0 || nMaxMajorTickCount <= 0)
return;
uno::Sequence< uno::Sequence< double > > aAllTicks(nDepthCount);
aAllTicks[0].realloc(nMaxMajorTickCount);
sal_Int32 nRealMajorTickCount = 0;
for( sal_Int32 nMajorTick=0; nMajorTick<nMaxMajorTickCount; nMajorTick++ )
{
double* pValue = getMajorTick( nMajorTick );
if(!pValue)
continue;
aAllTicks[0][nRealMajorTickCount] = *pValue;
nRealMajorTickCount++;
}
if(!nRealMajorTickCount)
return;
aAllTicks[0].realloc(nRealMajorTickCount);
addSubTicks(1, aAllTicks);
//so far we have added all ticks between the outer major tick marks
//this was necessary to create sub ticks correctly
//now we reduce all ticks to the visible ones that lie between the real borders
sal_Int32 nDepth = 0;
sal_Int32 nTick = 0;<--- Variable 'nTick' is assigned a value that is never used.
for( nDepth = 0; nDepth < nDepthCount; nDepth++)
{
sal_Int32 nInvisibleAtLowerBorder = 0;
sal_Int32 nInvisibleAtUpperBorder = 0;
//we need only to check all ticks within the first major interval at each border
sal_Int32 nCheckCount = 1;
for(sal_Int32 nN=0; nN<nDepth; nN++)
{
if( m_rIncrement.SubIncrements[nN].IntervalCount>1 )
nCheckCount *= m_rIncrement.SubIncrements[nN].IntervalCount;
}
uno::Sequence< double >& rTicks = aAllTicks[nDepth];
sal_Int32 nCount = rTicks.getLength();
//check lower border
for( nTick=0; nTick<nCheckCount && nTick<nCount; nTick++)
{
if( !isVisible( rTicks[nTick] ) )
nInvisibleAtLowerBorder++;
}
//check upper border
for( nTick=nCount-1; nTick>nCount-1-nCheckCount && nTick>=0; nTick--)
{
if( !isVisible( rTicks[nTick] ) )
nInvisibleAtUpperBorder++;
}
//resize sequence
if( !nInvisibleAtLowerBorder && !nInvisibleAtUpperBorder)
continue;
if( !nInvisibleAtLowerBorder )
rTicks.realloc(nCount-nInvisibleAtUpperBorder);
else
{
sal_Int32 nNewCount = nCount-nInvisibleAtUpperBorder-nInvisibleAtLowerBorder;
if(nNewCount<0)
nNewCount=0;
uno::Sequence< double > aOldTicks(rTicks);
rTicks.realloc(nNewCount);
for(nTick = 0; nTick<nNewCount; nTick++)
rTicks[nTick] = aOldTicks[nInvisibleAtLowerBorder+nTick];
}
}
//fill return value
rAllTickInfos.resize(aAllTicks.getLength());
for( nDepth=0 ;nDepth<aAllTicks.getLength(); nDepth++ )
{
sal_Int32 nCount = aAllTicks[nDepth].getLength();
TickInfoArrayType& rTickInfoVector = rAllTickInfos[nDepth];
rTickInfoVector.clear();
rTickInfoVector.reserve( nCount );
for(sal_Int32 nN = 0; nN<nCount; nN++)
{
TickInfo aTickInfo(m_xInverseScaling);
aTickInfo.fScaledTickValue = aAllTicks[nDepth][nN];
rTickInfoVector.push_back(aTickInfo);
}
}
}
void EquidistantTickFactory::getAllTicksShifted( TickInfoArraysType& rAllTickInfos ) const
{
ExplicitIncrementData aShiftedIncrement( m_rIncrement );
aShiftedIncrement.BaseValue = m_rIncrement.BaseValue-m_rIncrement.Distance/2.0;
EquidistantTickFactory( m_rScale, aShiftedIncrement ).getAllTicks(rAllTickInfos);
}
EquidistantTickIter::EquidistantTickIter( const uno::Sequence< uno::Sequence< double > >& rTicks
, const ExplicitIncrementData& rIncrement
, sal_Int32 nMaxDepth )
: m_pSimpleTicks(&rTicks)
, m_pInfoTicks(nullptr)
, m_rIncrement(rIncrement)
, m_nMaxDepth(0)
, m_nTickCount(0)
, m_nCurrentDepth(-1), m_nCurrentPos(-1), m_fCurrentValue( 0.0 )
{
initIter( nMaxDepth );
}
EquidistantTickIter::EquidistantTickIter( TickInfoArraysType& rTicks
, const ExplicitIncrementData& rIncrement
, sal_Int32 nMaxDepth )
: m_pSimpleTicks(nullptr)
, m_pInfoTicks(&rTicks)
, m_rIncrement(rIncrement)
, m_nMaxDepth(0)
, m_nTickCount(0)
, m_nCurrentDepth(-1), m_nCurrentPos(-1), m_fCurrentValue( 0.0 )
{
initIter( nMaxDepth );
}
void EquidistantTickIter::initIter( sal_Int32 nMaxDepth )
{
m_nMaxDepth = nMaxDepth;
if(nMaxDepth<0 || m_nMaxDepth>getMaxDepth())
m_nMaxDepth=getMaxDepth();
sal_Int32 nDepth = 0;
for( nDepth = 0; nDepth<=m_nMaxDepth ;nDepth++ )
m_nTickCount += getTickCount(nDepth);
if(!m_nTickCount)
return;
m_pnPositions.reset( new sal_Int32[m_nMaxDepth+1] );
m_pnPreParentCount.reset( new sal_Int32[m_nMaxDepth+1] );
m_pbIntervalFinished.reset( new bool[m_nMaxDepth+1] );
m_pnPreParentCount[0] = 0;
m_pbIntervalFinished[0] = false;
double fParentValue = getTickValue(0,0);
for( nDepth = 1; nDepth<=m_nMaxDepth ;nDepth++ )
{
m_pbIntervalFinished[nDepth] = false;
sal_Int32 nPreParentCount = 0;
sal_Int32 nCount = getTickCount(nDepth);
for(sal_Int32 nN = 0; nN<nCount; nN++)
{
if(getTickValue(nDepth,nN) < fParentValue)
nPreParentCount++;
else
break;
}
m_pnPreParentCount[nDepth] = nPreParentCount;
if(nCount)
{
double fNextParentValue = getTickValue(nDepth,0);
if( fNextParentValue < fParentValue )
fParentValue = fNextParentValue;
}
}
}
EquidistantTickIter::~EquidistantTickIter()
{
}
sal_Int32 EquidistantTickIter::getStartDepth() const
{
//find the depth of the first visible tickmark:
//it is the depth of the smallest value
sal_Int32 nReturnDepth=0;
double fMinValue = DBL_MAX;
for(sal_Int32 nDepth = 0; nDepth<=m_nMaxDepth ;nDepth++ )
{
sal_Int32 nCount = getTickCount(nDepth);
if( !nCount )
continue;
double fThisValue = getTickValue(nDepth,0);
if(fThisValue<fMinValue)
{
nReturnDepth = nDepth;
fMinValue = fThisValue;
}
}
return nReturnDepth;
}
double* EquidistantTickIter::firstValue()
{
if( gotoFirst() )
{
m_fCurrentValue = getTickValue(m_nCurrentDepth, m_pnPositions[m_nCurrentDepth]);
return &m_fCurrentValue;
}
return nullptr;
}
TickInfo* EquidistantTickIter::firstInfo()
{
if( m_pInfoTicks && gotoFirst() )
return &(*m_pInfoTicks)[m_nCurrentDepth][m_pnPositions[m_nCurrentDepth]];
return nullptr;
}
sal_Int32 EquidistantTickIter::getIntervalCount( sal_Int32 nDepth )
{
if(nDepth>static_cast<sal_Int32>(m_rIncrement.SubIncrements.size()) || nDepth<0)
return 0;
if(!nDepth)
return m_nTickCount;
return m_rIncrement.SubIncrements[nDepth-1].IntervalCount;
}
bool EquidistantTickIter::isAtLastPartTick()
{
if(!m_nCurrentDepth)
return false;
sal_Int32 nIntervalCount = getIntervalCount( m_nCurrentDepth );
if(!nIntervalCount || nIntervalCount == 1)
return true;
if( m_pbIntervalFinished[m_nCurrentDepth] )
return false;
sal_Int32 nPos = m_pnPositions[m_nCurrentDepth]+1;
if(m_pnPreParentCount[m_nCurrentDepth])
nPos += nIntervalCount-1 - m_pnPreParentCount[m_nCurrentDepth];
bool bRet = nPos && nPos % (nIntervalCount-1) == 0;
if(!nPos && !m_pnPreParentCount[m_nCurrentDepth]
&& m_pnPositions[m_nCurrentDepth-1]==-1 )
bRet = true;
return bRet;
}
bool EquidistantTickIter::gotoFirst()
{
if( m_nMaxDepth<0 )
return false;
if( !m_nTickCount )
return false;
for(sal_Int32 nDepth = 0; nDepth<=m_nMaxDepth ;nDepth++ )
m_pnPositions[nDepth] = -1;
m_nCurrentPos = 0;
m_nCurrentDepth = getStartDepth();
m_pnPositions[m_nCurrentDepth] = 0;
return true;
}
bool EquidistantTickIter::gotoNext()
{
if( m_nCurrentPos < 0 )
return false;
m_nCurrentPos++;
if( m_nCurrentPos >= m_nTickCount )
return false;
if( m_nCurrentDepth==m_nMaxDepth && isAtLastPartTick() )
{
do
{
m_pbIntervalFinished[m_nCurrentDepth] = true;
m_nCurrentDepth--;
}
while( m_nCurrentDepth && isAtLastPartTick() );
}
else if( m_nCurrentDepth<m_nMaxDepth )
{
do
{
m_nCurrentDepth++;
}
while( m_nCurrentDepth<m_nMaxDepth );
}
m_pbIntervalFinished[m_nCurrentDepth] = false;
m_pnPositions[m_nCurrentDepth] = m_pnPositions[m_nCurrentDepth]+1;
return true;
}
double* EquidistantTickIter::nextValue()
{
if( gotoNext() )
{
m_fCurrentValue = getTickValue(m_nCurrentDepth, m_pnPositions[m_nCurrentDepth]);
return &m_fCurrentValue;
}
return nullptr;
}
TickInfo* EquidistantTickIter::nextInfo()
{
if( m_pInfoTicks && gotoNext() &&
static_cast< sal_Int32 >(
(*m_pInfoTicks)[m_nCurrentDepth].size()) > m_pnPositions[m_nCurrentDepth] )
{
return &(*m_pInfoTicks)[m_nCurrentDepth][m_pnPositions[m_nCurrentDepth]];
}
return nullptr;
}
} //namespace chart
/* vim:set shiftwidth=4 softtabstop=4 expandtab: */
|