1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
/* -*- Mode: C++; tab-width: 4; indent-tabs-mode: nil; c-basic-offset: 4 -*- */
/*
 * This file is part of the LibreOffice project.
 *
 * This Source Code Form is subject to the terms of the Mozilla Public
 * License, v. 2.0. If a copy of the MPL was not distributed with this
 * file, You can obtain one at http://mozilla.org/MPL/2.0/.
 *
 * This file incorporates work covered by the following license notice:
 *
 *   Licensed to the Apache Software Foundation (ASF) under one or more
 *   contributor license agreements. See the NOTICE file distributed
 *   with this work for additional information regarding copyright
 *   ownership. The ASF licenses this file to you under the Apache
 *   License, Version 2.0 (the "License"); you may not use this file
 *   except in compliance with the License. You may obtain a copy of
 *   the License at http://www.apache.org/licenses/LICENSE-2.0 .
 */

#include "Splines.hxx"
#include <rtl/math.hxx>
#include <osl/diagnose.h>
#include <com/sun/star/drawing/PolyPolygonShape3D.hpp>

#include <vector>
#include <algorithm>
#include <memory>

namespace chart
{
using namespace ::com::sun::star;

namespace
{

typedef std::pair< double, double >   tPointType;
typedef std::vector< tPointType >     tPointVecType;
typedef tPointVecType::size_type        lcl_tSizeType;

class lcl_SplineCalculation
{
public:
    /** @descr creates an object that calculates cubic splines on construction

        @param rSortedPoints  the points for which splines shall be calculated, they need to be sorted in x values
        @param fY1FirstDerivation the resulting spline should have the first
               derivation equal to this value at the x-value of the first point
               of rSortedPoints.  If fY1FirstDerivation is set to infinity, a natural
               spline is calculated.
        @param fYnFirstDerivation the resulting spline should have the first
               derivation equal to this value at the x-value of the last point
               of rSortedPoints
     */
    lcl_SplineCalculation( const tPointVecType & rSortedPoints,
                           double fY1FirstDerivation,
                           double fYnFirstDerivation );

    /** @descr creates an object that calculates cubic splines on construction
               for the special case of periodic cubic spline

        @param rSortedPoints  the points for which splines shall be calculated,
               they need to be sorted in x values. First and last y value must be equal
     */
    explicit lcl_SplineCalculation( const tPointVecType & rSortedPoints);

    /** @descr this function corresponds to the function splint in [1].

        [1] Numerical Recipes in C, 2nd edition
            William H. Press, et al.,
            Section 3.3, page 116
    */
    double GetInterpolatedValue( double x );

private:
    /// a copy of the points given in the CTOR
    tPointVecType            m_aPoints;

    /// the result of the Calculate() method
    std::vector< double >         m_aSecDerivY;

    double m_fYp1;
    double m_fYpN;

    // these values are cached for performance reasons
    lcl_tSizeType m_nKLow;
    lcl_tSizeType m_nKHigh;
    double m_fLastInterpolatedValue;

    /** @descr this function corresponds to the function spline in [1].

        [1] Numerical Recipes in C, 2nd edition
            William H. Press, et al.,
            Section 3.3, page 115
    */
    void Calculate();

    /** @descr this function corresponds to the algorithm 4.76 in [2] and
        theorem 5.3.7 in [3]

        [2] Engeln-Müllges, Gisela: Numerik-Algorithmen: Verfahren, Beispiele, Anwendungen
            Springer, Berlin; Auflage: 9., überarb. und erw. A. (8. Dezember 2004)
            Section 4.10.2, page 175

        [3] Hanrath, Wilhelm: Mathematik III / Numerik, Vorlesungsskript zur
            Veranstaltung im WS 2007/2008
            Fachhochschule Aachen, 2009-09-19
            Numerik_01.pdf, downloaded 2011-04-19 via
            http://www.fh-aachen.de/index.php?id=11424&no_cache=1&file=5016&uid=44191
            Section 5.3, page 129
    */
    void CalculatePeriodic();
};

lcl_SplineCalculation::lcl_SplineCalculation(
    const tPointVecType & rSortedPoints,
    double fY1FirstDerivation,
    double fYnFirstDerivation )
        : m_aPoints( rSortedPoints ),
          m_fYp1( fY1FirstDerivation ),
          m_fYpN( fYnFirstDerivation ),
          m_nKLow( 0 ),
          m_nKHigh( rSortedPoints.size() - 1 ),
          m_fLastInterpolatedValue(0.0)
{
    ::rtl::math::setInf( &m_fLastInterpolatedValue, false );
    Calculate();
}

lcl_SplineCalculation::lcl_SplineCalculation(
    const tPointVecType & rSortedPoints)
        : m_aPoints( rSortedPoints ),
          m_fYp1( 0.0 ),  /*dummy*/
          m_fYpN( 0.0 ),  /*dummy*/
          m_nKLow( 0 ),
          m_nKHigh( rSortedPoints.size() - 1 ),
          m_fLastInterpolatedValue(0.0)
{
    ::rtl::math::setInf( &m_fLastInterpolatedValue, false );
    CalculatePeriodic();
}

void lcl_SplineCalculation::Calculate()
{
    if( m_aPoints.size() <= 1 )
        return;

    // n is the last valid index to m_aPoints
    const lcl_tSizeType n = m_aPoints.size() - 1;
    std::vector< double > u( n );
    m_aSecDerivY.resize( n + 1, 0.0 );

    if( std::isinf( m_fYp1 ) )
    {
        // natural spline
        m_aSecDerivY[ 0 ] = 0.0;
        u[ 0 ] = 0.0;
    }
    else
    {
        m_aSecDerivY[ 0 ] = -0.5;
        double xDiff = m_aPoints[ 1 ].first - m_aPoints[ 0 ].first;
        u[ 0 ] = ( 3.0 / xDiff ) *
            ((( m_aPoints[ 1 ].second - m_aPoints[ 0 ].second ) / xDiff ) - m_fYp1 );
    }

    for( lcl_tSizeType i = 1; i < n; ++i )
    {
        tPointType
            p_i = m_aPoints[ i ],
            p_im1 = m_aPoints[ i - 1 ],
            p_ip1 = m_aPoints[ i + 1 ];

        double sig = ( p_i.first - p_im1.first ) /
            ( p_ip1.first - p_im1.first );
        double p = sig * m_aSecDerivY[ i - 1 ] + 2.0;

        m_aSecDerivY[ i ] = ( sig - 1.0 ) / p;
        u[ i ] =
            ( ( p_ip1.second - p_i.second ) /
              ( p_ip1.first - p_i.first ) ) -
            ( ( p_i.second - p_im1.second ) /
              ( p_i.first - p_im1.first ) );
        u[ i ] =
            ( 6.0 * u[ i ] / ( p_ip1.first - p_im1.first )
              - sig * u[ i - 1 ] ) / p;
    }

    // initialize to values for natural splines (used for m_fYpN equal to
    // infinity)
    double qn = 0.0;
    double un = 0.0;

    if( ! std::isinf( m_fYpN ) )
    {
        qn = 0.5;
        double xDiff = m_aPoints[ n ].first - m_aPoints[ n - 1 ].first;
        un = ( 3.0 / xDiff ) *
            ( m_fYpN - ( m_aPoints[ n ].second - m_aPoints[ n - 1 ].second ) / xDiff );
    }

    m_aSecDerivY[ n ] = ( un - qn * u[ n - 1 ] ) * ( qn * m_aSecDerivY[ n - 1 ] + 1.0 );

    // note: the algorithm in [1] iterates from n-1 to 0, but as size_type
    // may be (usually is) an unsigned type, we can not write k >= 0, as this
    // is always true.
    for( lcl_tSizeType k = n; k > 0; --k )
    {
        m_aSecDerivY[ k - 1 ] = (m_aSecDerivY[ k - 1 ] * m_aSecDerivY[ k ] ) + u[ k - 1 ];
    }
}

void lcl_SplineCalculation::CalculatePeriodic()
{
    if( m_aPoints.size() <= 1 )
        return;

    // n is the last valid index to m_aPoints
    const lcl_tSizeType n = m_aPoints.size() - 1;

    // u is used for vector f in A*c=f in [3], vector a in  Ax=a in [2],
    // vector z in Rtranspose z = a and Dr=z in [2]
    std::vector< double > u( n + 1, 0.0 );

    // used for vector c in A*c=f and vector x in Ax=a in [2]
    m_aSecDerivY.resize( n + 1, 0.0 );

    // diagonal of matrix A, used index 1 to n
    std::vector< double > Adiag( n + 1, 0.0 );

    // secondary diagonal of matrix A with index 1 to n-1 and upper right element in A[n]
    std::vector< double > Aupper( n + 1, 0.0 );

    // diagonal of matrix D in A=(R transpose)*D*R in [2], used index 1 to n
    std::vector< double > Ddiag( n+1, 0.0 );

    // right column of matrix R, used index 1 to n-2
    std::vector< double > Rright( n-1, 0.0 );

    // secondary diagonal of matrix R, used index 1 to n-1
    std::vector< double > Rupper( n, 0.0 );

    if (n<4)
    {
        if (n==3)
        {   // special handling of three polynomials, that are four points
            double xDiff0 = m_aPoints[ 1 ].first - m_aPoints[ 0 ].first ;
            double xDiff1 = m_aPoints[ 2 ].first - m_aPoints[ 1 ].first ;
            double xDiff2 = m_aPoints[ 3 ].first - m_aPoints[ 2 ].first ;
            double xDiff2p1 = xDiff2 + xDiff1;
            double xDiff0p2 = xDiff0 + xDiff2;
            double xDiff1p0 = xDiff1 + xDiff0;
            double fFactor = 1.5 / (xDiff0*xDiff1 + xDiff1*xDiff2 + xDiff2*xDiff0);
            double yDiff0 = (m_aPoints[ 1 ].second - m_aPoints[ 0 ].second) / xDiff0;
            double yDiff1 = (m_aPoints[ 2 ].second - m_aPoints[ 1 ].second) / xDiff1;
            double yDiff2 = (m_aPoints[ 0 ].second - m_aPoints[ 2 ].second) / xDiff2;
            m_aSecDerivY[ 1 ] = fFactor * (yDiff1*xDiff2p1 - yDiff0*xDiff0p2);
            m_aSecDerivY[ 2 ] = fFactor * (yDiff2*xDiff0p2 - yDiff1*xDiff1p0);
            m_aSecDerivY[ 3 ] = fFactor * (yDiff0*xDiff1p0 - yDiff2*xDiff2p1);
            m_aSecDerivY[ 0 ] = m_aSecDerivY[ 3 ];
        }
        else if (n==2)
        {
        // special handling of two polynomials, that are three points
            double xDiff0 = m_aPoints[ 1 ].first - m_aPoints[ 0 ].first;
            double xDiff1 = m_aPoints[ 2 ].first - m_aPoints[ 1 ].first;
            double fHelp = 3.0 * (m_aPoints[ 0 ].second - m_aPoints[ 1 ].second) / (xDiff0*xDiff1);
            m_aSecDerivY[ 1 ] = fHelp ;
            m_aSecDerivY[ 2 ] = -fHelp ;
            m_aSecDerivY[ 0 ] = m_aSecDerivY[ 2 ] ;
        }
        else
        {
            // should be handled with natural spline, periodic not possible.
        }
    }
    else
    {
        double xDiff_i =1.0; // values are dummy;
        double xDiff_im1 =1.0;
        double yDiff_i = 1.0;
        double yDiff_im1 = 1.0;
        // fill matrix A and fill right side vector u
        for( lcl_tSizeType i=1; i<n; ++i )
        {
            xDiff_im1 = m_aPoints[ i ].first - m_aPoints[ i-1 ].first;
            xDiff_i = m_aPoints[ i+1 ].first - m_aPoints[ i ].first;
            yDiff_im1 = (m_aPoints[ i ].second - m_aPoints[ i-1 ].second) / xDiff_im1;
            yDiff_i = (m_aPoints[ i+1 ].second - m_aPoints[ i ].second) / xDiff_i;
            Adiag[ i ] = 2 * (xDiff_im1 + xDiff_i);
            Aupper[ i ] = xDiff_i;
            u [ i ] = 3 * (yDiff_i - yDiff_im1);
        }
        xDiff_im1 = m_aPoints[ n ].first - m_aPoints[ n-1 ].first;
        xDiff_i = m_aPoints[ 1 ].first - m_aPoints[ 0 ].first;
        yDiff_im1 = (m_aPoints[ n ].second - m_aPoints[ n-1 ].second) / xDiff_im1;
        yDiff_i = (m_aPoints[ 1 ].second - m_aPoints[ 0 ].second) / xDiff_i;
        Adiag[ n ] = 2 * (xDiff_im1 + xDiff_i);
        Aupper[ n ] = xDiff_i;
        u [ n ] = 3 * (yDiff_i - yDiff_im1);

        // decomposite A=(R transpose)*D*R
        Ddiag[1] = Adiag[1];
        Rupper[1] = Aupper[1] / Ddiag[1];
        Rright[1] = Aupper[n] / Ddiag[1];
        for( lcl_tSizeType i=2; i<=n-2; ++i )
        {
            Ddiag[i] = Adiag[i] - Aupper[ i-1 ] * Rupper[ i-1 ];
            Rupper[ i ] = Aupper[ i ] / Ddiag[ i ];
            Rright[ i ] = - Rright[ i-1 ] * Aupper[ i-1 ] / Ddiag[ i ];
        }
        Ddiag[ n-1 ] = Adiag[ n-1 ] - Aupper[ n-2 ] * Rupper[ n-2 ];
        Rupper[ n-1 ] = ( Aupper[ n-1 ] - Aupper[ n-2 ] * Rright[ n-2] ) / Ddiag[ n-1 ];
        double fSum = 0.0;
        for ( lcl_tSizeType i=1; i<=n-2; ++i )
        {
            fSum += Ddiag[ i ] * Rright[ i ] * Rright[ i ];
        }
        Ddiag[ n ] = Adiag[ n ] - fSum - Ddiag[ n-1 ] * Rupper[ n-1 ] * Rupper[ n-1 ]; // bug in [2]!

        // solve forward (R transpose)*z=u, overwrite u with z
        for ( lcl_tSizeType i=2; i<=n-1; ++i )
        {
            u[ i ] -= u[ i-1 ]* Rupper[ i-1 ];
        }
        fSum = 0.0;
        for ( lcl_tSizeType i=1; i<=n-2; ++i )
        {
            fSum += Rright[ i ] * u[ i ];
        }
        u[ n ] = u[ n ] - fSum - Rupper[ n - 1] * u[ n-1 ];

        // solve forward D*r=z, z is in u, overwrite u with r
        for ( lcl_tSizeType i=1; i<=n; ++i )
        {
            u[ i ] = u[i] / Ddiag[ i ];
        }

        // solve backward R*x= r, r is in u
        m_aSecDerivY[ n ] = u[ n ];
        m_aSecDerivY[ n-1 ] = u[ n-1 ] - Rupper[ n-1 ] * m_aSecDerivY[ n ];
        for ( lcl_tSizeType i=n-2; i>=1; --i)
        {
            m_aSecDerivY[ i ] = u[ i ] - Rupper[ i ] * m_aSecDerivY[ i+1 ] - Rright[ i ] * m_aSecDerivY[ n ];
        }
        // periodic
        m_aSecDerivY[ 0 ] = m_aSecDerivY[ n ];
    }

    // adapt m_aSecDerivY for usage in GetInterpolatedValue()
    for( lcl_tSizeType i = 0; i <= n ; ++i )
    {
        m_aSecDerivY[ i ] *= 2.0;
    }

}

double lcl_SplineCalculation::GetInterpolatedValue( double x )
{
    OSL_PRECOND( ( m_aPoints[ 0 ].first <= x ) &&
                ( x <= m_aPoints[ m_aPoints.size() - 1 ].first ),
                "Trying to extrapolate" );

    const lcl_tSizeType n = m_aPoints.size() - 1;
    if( x < m_fLastInterpolatedValue )
    {
        m_nKLow = 0;
        m_nKHigh = n;

        // calculate m_nKLow and m_nKHigh
        // first initialization is done in CTOR
        while( m_nKHigh - m_nKLow > 1 )
        {
            lcl_tSizeType k = ( m_nKHigh + m_nKLow ) / 2;
            if( m_aPoints[ k ].first > x )
                m_nKHigh = k;
            else
                m_nKLow = k;
        }
    }
    else
    {
        while( ( m_nKHigh <= n ) &&
               ( m_aPoints[ m_nKHigh ].first < x ) )
        {
            ++m_nKHigh;
            ++m_nKLow;
        }
        OSL_ENSURE( m_nKHigh <= n, "Out of Bounds" );
    }
    m_fLastInterpolatedValue = x;

    double h = m_aPoints[ m_nKHigh ].first - m_aPoints[ m_nKLow ].first;
    OSL_ENSURE( h != 0, "Bad input to GetInterpolatedValue()" );

    double a = ( m_aPoints[ m_nKHigh ].first - x ) / h;
    double b = ( x - m_aPoints[ m_nKLow ].first  ) / h;

    return ( a * m_aPoints[ m_nKLow ].second +
             b * m_aPoints[ m_nKHigh ].second +
             (( a*a*a - a ) * m_aSecDerivY[ m_nKLow ] +
              ( b*b*b - b ) * m_aSecDerivY[ m_nKHigh ] ) *
             ( h*h ) / 6.0 );
}

// helper methods for B-spline

// Create parameter t_0 to t_n using the centripetal method with a power of 0.5
bool createParameterT(const tPointVecType& rUniquePoints, double* t)
{   // precondition: no adjacent identical points
    // postcondition: 0 = t_0 < t_1 < ... < t_n = 1
    bool bIsSuccessful = true;
    const lcl_tSizeType n = rUniquePoints.size() - 1;
    t[0]=0.0;
    double dx = 0.0;<--- Variable 'dx' is assigned a value that is never used.
    double dy = 0.0;<--- Variable 'dy' is assigned a value that is never used.
    double fDiffMax = 1.0; //dummy values<--- Variable 'fDiffMax' is assigned a value that is never used.
    double fDenominator = 0.0; // initialized for summing up
    for (lcl_tSizeType i=1; i<=n ; ++i)
    {   // 4th root(dx^2+dy^2)
        dx = rUniquePoints[i].first - rUniquePoints[i-1].first;
        dy = rUniquePoints[i].second - rUniquePoints[i-1].second;
        // scaling to avoid underflow or overflow
        fDiffMax = std::max(fabs(dx), fabs(dy));
        if (fDiffMax == 0.0)
        {
            bIsSuccessful = false;
            break;
        }
        else
        {
            dx /= fDiffMax;
            dy /= fDiffMax;
            fDenominator += sqrt(sqrt(dx * dx + dy * dy)) * sqrt(fDiffMax);
        }
    }
    if (fDenominator == 0.0)
    {
        bIsSuccessful = false;
    }
    if (bIsSuccessful)
    {
        for (lcl_tSizeType j=1; j<=n ; ++j)
        {
            double fNumerator = 0.0;
            for (lcl_tSizeType i=1; i<=j ; ++i)
            {
                dx = rUniquePoints[i].first - rUniquePoints[i-1].first;
                dy = rUniquePoints[i].second - rUniquePoints[i-1].second;
                fDiffMax = std::max(fabs(dx), fabs(dy));
                // same as above, so should not be zero
                dx /= fDiffMax;
                dy /= fDiffMax;
                fNumerator += sqrt(sqrt(dx * dx + dy * dy)) * sqrt(fDiffMax);
            }
            t[j] = fNumerator / fDenominator;

        }
        // postcondition check
        t[n] = 1.0;
        double fPrevious = 0.0;
        for (lcl_tSizeType i=1; i <= n && bIsSuccessful ; ++i)
        {
            if (fPrevious >= t[i])
            {
                bIsSuccessful = false;
            }
            else
            {
                fPrevious = t[i];
            }
        }
    }
    return bIsSuccessful;
}

void createKnotVector(const lcl_tSizeType n, const sal_uInt32 p, const double* t, double* u)
{  // precondition: 0 = t_0 < t_1 < ... < t_n = 1
        for (lcl_tSizeType j = 0; j <= p; ++j)
        {
            u[j] = 0.0;
        }
        for (lcl_tSizeType j = 1; j <= n-p; ++j )
        {
            double fSum = 0.0;
            for (lcl_tSizeType i = j; i <= j+p-1; ++i)
            {
                fSum += t[i];
            }
            assert(p != 0);
            u[j+p] = fSum / p ;
        }
        for (lcl_tSizeType j = n+1; j <= n+1+p; ++j)
        {
            u[j] = 1.0;
        }
}

void applyNtoParameterT(const lcl_tSizeType i,const double tk,const sal_uInt32 p,const double* u, double* rowN)
{
    // get N_p(t_k) recursively, only N_(i-p) till N_(i) are relevant, all other N_# are zero

    // initialize with indicator function degree 0
    rowN[p] = 1.0; // all others are zero

    // calculate up to degree p
    for (sal_uInt32 s = 1; s <= p; ++s)
    {
        // first element
        double fLeftFactor = 0.0;
        double fRightFactor = ( u[i+1] - tk ) / ( u[i+1]- u[i-s+1] );
        // i-s "true index" - (i-p)"shift" = p-s
        rowN[p-s] = fRightFactor * rowN[p-s+1];

        // middle elements
        for (sal_uInt32 j = s-1; j>=1 ; --j)
        {
            fLeftFactor = ( tk - u[i-j] ) / ( u[i-j+s] - u[i-j] ) ;
            fRightFactor = ( u[i-j+s+1] - tk ) / ( u[i-j+s+1] - u[i-j+1] );
            // i-j "true index" - (i-p)"shift" = p-j
            rowN[p-j] = fLeftFactor * rowN[p-j] + fRightFactor *  rowN[p-j+1];
        }

        // last element
        fLeftFactor = ( tk - u[i] ) / ( u[i+s] - u[i] );
        // i "true index" - (i-p)"shift" = p
        rowN[p] = fLeftFactor * rowN[p];
    }
}

} //  anonymous namespace

// Calculates uniform parametric splines with subinterval length 1,
// according ODF1.2 part 1, chapter 'chart interpolation'.
void SplineCalculater::CalculateCubicSplines(
    const drawing::PolyPolygonShape3D& rInput
    , drawing::PolyPolygonShape3D& rResult
    , sal_uInt32 nGranularity )
{
    OSL_PRECOND( nGranularity > 0, "Granularity is invalid" );

    sal_uInt32 nOuterCount = rInput.SequenceX.getLength();

    rResult.SequenceX.realloc(nOuterCount);
    rResult.SequenceY.realloc(nOuterCount);
    rResult.SequenceZ.realloc(nOuterCount);

    if( !nOuterCount )
        return;

    for( sal_uInt32 nOuter = 0; nOuter < nOuterCount; ++nOuter )
    {
        if( rInput.SequenceX[nOuter].getLength() <= 1 )
            continue; //we need at least two points

        sal_uInt32 nMaxIndexPoints = rInput.SequenceX[nOuter].getLength()-1; // is >=1
        const double* pOldX = rInput.SequenceX[nOuter].getConstArray();
        const double* pOldY = rInput.SequenceY[nOuter].getConstArray();
        const double* pOldZ = rInput.SequenceZ[nOuter].getConstArray();

        std::vector < double > aParameter(nMaxIndexPoints+1);
        aParameter[0]=0.0;
        for( sal_uInt32 nIndex=1; nIndex<=nMaxIndexPoints; nIndex++ )
        {
            aParameter[nIndex]=aParameter[nIndex-1]+1;
        }

        // Split the calculation to X, Y and Z coordinate
        tPointVecType aInputX;
        aInputX.resize(nMaxIndexPoints+1);
        tPointVecType aInputY;
        aInputY.resize(nMaxIndexPoints+1);
        tPointVecType aInputZ;
        aInputZ.resize(nMaxIndexPoints+1);
        for (sal_uInt32 nN=0;nN<=nMaxIndexPoints; nN++ )
        {
          aInputX[ nN ].first=aParameter[nN];
          aInputX[ nN ].second=pOldX[ nN ];
          aInputY[ nN ].first=aParameter[nN];
          aInputY[ nN ].second=pOldY[ nN ];
          aInputZ[ nN ].first=aParameter[nN];
          aInputZ[ nN ].second=pOldZ[ nN ];
        }

        // generate a spline for each coordinate. It holds the complete
        // information to calculate each point of the curve
        std::unique_ptr<lcl_SplineCalculation> aSplineX;
        std::unique_ptr<lcl_SplineCalculation> aSplineY;
        // lcl_SplineCalculation* aSplineZ; the z-coordinates of all points in
        // a data series are equal. No spline calculation needed, but copy
        // coordinate to output

        if( pOldX[ 0 ] == pOldX[nMaxIndexPoints] &&
            pOldY[ 0 ] == pOldY[nMaxIndexPoints] &&
            pOldZ[ 0 ] == pOldZ[nMaxIndexPoints] &&
            nMaxIndexPoints >=2 )
        {   // periodic spline
            aSplineX.reset(new lcl_SplineCalculation( aInputX));
            aSplineY.reset(new lcl_SplineCalculation( aInputY));
            // aSplineZ = new lcl_SplineCalculation( aInputZ) ;
        }
        else // generate the kind "natural spline"
        {
            double fInfty;
            ::rtl::math::setInf( &fInfty, false );
            double fXDerivation = fInfty;
            double fYDerivation = fInfty;
            aSplineX.reset(new lcl_SplineCalculation( aInputX, fXDerivation, fXDerivation ));
            aSplineY.reset(new lcl_SplineCalculation( aInputY, fYDerivation, fYDerivation ));
        }

        // fill result polygon with calculated values
        rResult.SequenceX[nOuter].realloc( nMaxIndexPoints*nGranularity + 1);
        rResult.SequenceY[nOuter].realloc( nMaxIndexPoints*nGranularity + 1);
        rResult.SequenceZ[nOuter].realloc( nMaxIndexPoints*nGranularity + 1);

        double* pNewX = rResult.SequenceX[nOuter].getArray();
        double* pNewY = rResult.SequenceY[nOuter].getArray();
        double* pNewZ = rResult.SequenceZ[nOuter].getArray();

        sal_uInt32 nNewPointIndex = 0; // Index in result points

        for( sal_uInt32 ni = 0; ni < nMaxIndexPoints; ni++ )
        {
            // given point is surely a curve point
            pNewX[nNewPointIndex] = pOldX[ni];
            pNewY[nNewPointIndex] = pOldY[ni];
            pNewZ[nNewPointIndex] = pOldZ[ni];
            nNewPointIndex++;

            // calculate intermediate points
            double fInc = ( aParameter[ ni+1 ] - aParameter[ni] ) / static_cast< double >( nGranularity );
            for(sal_uInt32 nj = 1; nj < nGranularity; nj++)
            {
                double fParam = aParameter[ni] + ( fInc * static_cast< double >( nj ) );

                pNewX[nNewPointIndex]=aSplineX->GetInterpolatedValue( fParam );
                pNewY[nNewPointIndex]=aSplineY->GetInterpolatedValue( fParam );
                // pNewZ[nNewPointIndex]=aSplineZ->GetInterpolatedValue( fParam );
                pNewZ[nNewPointIndex] = pOldZ[ni];
                nNewPointIndex++;
            }
        }
        // add last point
        pNewX[nNewPointIndex] = pOldX[nMaxIndexPoints];
        pNewY[nNewPointIndex] = pOldY[nMaxIndexPoints];
        pNewZ[nNewPointIndex] = pOldZ[nMaxIndexPoints];
    }
}

// The implementation follows closely ODF1.2 spec, chapter chart:interpolation
// using the same names as in spec as far as possible, without prefix.
// More details can be found on
// Dr. C.-K. Shene: CS3621 Introduction to Computing with Geometry Notes
// Unit 9: Interpolation and Approximation/Curve Global Interpolation
// Department of Computer Science, Michigan Technological University
// http://www.cs.mtu.edu/~shene/COURSES/cs3621/NOTES/
// [last called 2011-05-20]
void SplineCalculater::CalculateBSplines(
            const css::drawing::PolyPolygonShape3D& rInput
            , css::drawing::PolyPolygonShape3D& rResult
            , sal_uInt32 nResolution
            , sal_uInt32 nDegree )
{
    // nResolution is ODF1.2 file format attribute chart:spline-resolution and
    // ODF1.2 spec variable k. Causion, k is used as index in the spec in addition.
    // nDegree is ODF1.2 file format attribute chart:spline-order and
    // ODF1.2 spec variable p
    OSL_ASSERT( nResolution > 1 );
    OSL_ASSERT( nDegree >= 1 );

    // limit the b-spline degree at 15 to prevent insanely large sets of points
    sal_uInt32 p = std::min<sal_uInt32>(nDegree, 15);

    sal_Int32 nOuterCount = rInput.SequenceX.getLength();

    rResult.SequenceX.realloc(nOuterCount);
    rResult.SequenceY.realloc(nOuterCount);
    rResult.SequenceZ.realloc(nOuterCount);

    if( !nOuterCount )
        return; // no input

    for( sal_Int32 nOuter = 0; nOuter < nOuterCount; ++nOuter )
    {
        if( rInput.SequenceX[nOuter].getLength() <= 1 )
            continue; // need at least 2 points, next piece of the series

        // Copy input to vector of points and remove adjacent double points. The
        // Z-coordinate is equal for all points in a series and holds the depth
        // in 3D mode, simple copying is enough.
        lcl_tSizeType nMaxIndexPoints = rInput.SequenceX[nOuter].getLength()-1; // is >=1
        const double* pOldX = rInput.SequenceX[nOuter].getConstArray();
        const double* pOldY = rInput.SequenceY[nOuter].getConstArray();
        const double* pOldZ = rInput.SequenceZ[nOuter].getConstArray();
        double fZCoordinate = pOldZ[0];
        tPointVecType aPointsIn;
        aPointsIn.resize(nMaxIndexPoints+1);
        for (lcl_tSizeType i = 0; i <= nMaxIndexPoints; ++i )
        {
          aPointsIn[ i ].first = pOldX[i];
          aPointsIn[ i ].second = pOldY[i];
        }
        aPointsIn.erase( std::unique( aPointsIn.begin(), aPointsIn.end()),
                     aPointsIn.end() );

        // n is the last valid index to the reduced aPointsIn
        // There are n+1 valid data points.
        const lcl_tSizeType n = aPointsIn.size() - 1;
        if (n < 1 || p > n)
            continue; // need at least 2 points, degree p needs at least n+1 points
                      // next piece of series

        std::unique_ptr<double[]> t(new double [n+1]);
        if (!createParameterT(aPointsIn, t.get()))
        {
            continue; // next piece of series
        }

        lcl_tSizeType m = n + p + 1;
        std::unique_ptr<double[]> u(new double [m+1]);
        createKnotVector(n, p, t.get(), u.get());

        // The matrix N contains the B-spline basis functions applied to parameters.
        // In each row only p+1 adjacent elements are non-zero. The starting
        // column in a higher row is equal or greater than in the lower row.
        // To store this matrix the non-zero elements are shifted to column 0
        // and the amount of shifting is remembered in an array.
        std::unique_ptr<double*[]> aMatN(new double*[n+1]);
        for (lcl_tSizeType row = 0; row <=n; ++row)
        {
            aMatN[row] = new double[p+1];
            for (sal_uInt32 col = 0; col <= p; ++col)
            aMatN[row][col] = 0.0;
        }
        std::unique_ptr<lcl_tSizeType[]> aShift(new lcl_tSizeType[n+1]);
        aMatN[0][0] = 1.0; //all others are zero
        aShift[0] = 0;
        aMatN[n][0] = 1.0;
        aShift[n] = n;
        for (lcl_tSizeType k = 1; k<=n-1; ++k)
        { // all basis functions are applied to t_k,
            // results are elements in row k in matrix N

            // find the one interval with u_i <= t_k < u_(i+1)
            // remember u_0 = ... = u_p = 0.0 and u_(m-p) = ... u_m = 1.0 and 0<t_k<1
            lcl_tSizeType i = p;
            while (u[i] > t[k] || t[k] >= u[i+1])
            {
                ++i;
            }

            // index in reduced matrix aMatN = (index in full matrix N) - (i-p)
            aShift[k] = i - p;

            applyNtoParameterT(i, t[k], p, u.get(), aMatN[k]);
        } // next row k

        // Get matrix C of control points from the matrix equation aMatN * C = aPointsIn
        // aPointsIn is overwritten with C.
        // Gaussian elimination is possible without pivoting, see reference
        lcl_tSizeType r = 0; // true row index
        lcl_tSizeType c = 0; // true column index
        double fDivisor = 1.0; // used for diagonal element
        double fEliminate = 1.0; // used for the element, that will become zero
        double fHelp;
        tPointType aHelp;
        lcl_tSizeType nHelp; // used in triangle change
        bool bIsSuccessful = true;
        for (c = 0 ; c <= n && bIsSuccessful; ++c)
        {
            // search for first non-zero downwards
            r = c;
            while ( r < n && aMatN[r][c-aShift[r]] == 0 )
            {
                ++r;
            }
            if (aMatN[r][c-aShift[r]] == 0.0)
            {
                // Matrix N is singular, although this is mathematically impossible
                bIsSuccessful = false;
            }
            else
            {
                // exchange total row r with total row c if necessary
                if (r != c)
                {
                    for ( sal_uInt32 i = 0; i <= p ; ++i)
                    {
                        fHelp = aMatN[r][i];
                        aMatN[r][i] = aMatN[c][i];
                        aMatN[c][i] = fHelp;
                    }
                    aHelp = aPointsIn[r];
                    aPointsIn[r] = aPointsIn[c];
                    aPointsIn[c] = aHelp;
                    nHelp = aShift[r];
                    aShift[r] = aShift[c];
                    aShift[c] = nHelp;
                }

                // divide row c, so that element(c,c) becomes 1
                fDivisor = aMatN[c][c-aShift[c]]; // not zero, see above
                for (sal_uInt32 i = 0; i <= p; ++i)
                {
                    aMatN[c][i] /= fDivisor;
                }
                aPointsIn[c].first /= fDivisor;
                aPointsIn[c].second /= fDivisor;

                // eliminate forward, examine row c+1 to n-1 (worst case)
                // stop if first non-zero element in row has an higher column as c
                // look at nShift for that, elements in nShift are equal or increasing
                for ( r = c+1; r < n && aShift[r]<=c ; ++r)
                {
                    fEliminate = aMatN[r][0];
                    if (fEliminate != 0.0) // else accidentally zero, nothing to do
                    {
                        for (sal_uInt32 i = 1; i <= p; ++i)
                        {
                            aMatN[r][i-1] = aMatN[r][i] - fEliminate * aMatN[c][i];
                        }
                        aMatN[r][p]=0;
                        aPointsIn[r].first -= fEliminate * aPointsIn[c].first;
                        aPointsIn[r].second -= fEliminate * aPointsIn[c].second;
                        ++aShift[r];
                    }
                }
            }
        }// upper triangle form is reached
        if( bIsSuccessful)
        {
            // eliminate backwards, begin with last column
            for (lcl_tSizeType cc = n; cc >= 1; --cc )
            {
                // In row cc the diagonal element(cc,cc) == 1 and all elements left from
                // diagonal are zero and do not influence other rows.
                // Full matrix N has semibandwidth < p, therefore element(r,c) is
                // zero, if abs(r-cc)>=p.  abs(r-cc)=cc-r, because r<cc.
                r = cc - 1;
                while ( r !=0 && cc-r < p )
                {
                    fEliminate = aMatN[r][ cc - aShift[r] ];
                    if ( fEliminate != 0.0) // else element is accidentally zero, no action needed
                    {
                        // row r -= fEliminate * row cc only relevant for right side
                        aMatN[r][cc - aShift[r]] = 0.0;
                        aPointsIn[r].first -= fEliminate * aPointsIn[cc].first;
                        aPointsIn[r].second -= fEliminate * aPointsIn[cc].second;
                    }
                    --r;
                }
            }
            // aPointsIn contains the control points now.

            // calculate the intermediate points according given resolution
            // using deBoor-Cox algorithm
            lcl_tSizeType nNewSize = nResolution * n + 1;
            rResult.SequenceX[nOuter].realloc(nNewSize);
            rResult.SequenceY[nOuter].realloc(nNewSize);
            rResult.SequenceZ[nOuter].realloc(nNewSize);
            double* pNewX = rResult.SequenceX[nOuter].getArray();
            double* pNewY = rResult.SequenceY[nOuter].getArray();
            double* pNewZ = rResult.SequenceZ[nOuter].getArray();
            pNewX[0] = aPointsIn[0].first;
            pNewY[0] = aPointsIn[0].second;
            pNewZ[0] = fZCoordinate; // Precondition: z-coordinates of all points of a series are equal
            pNewX[nNewSize -1 ] = aPointsIn[n].first;
            pNewY[nNewSize -1 ] = aPointsIn[n].second;
            pNewZ[nNewSize -1 ] = fZCoordinate;
            std::unique_ptr<double[]> aP(new double[m+1]);
            lcl_tSizeType nLow = 0;
            for ( lcl_tSizeType nTIndex = 0; nTIndex <= n-1; ++nTIndex)
            {
                for (sal_uInt32 nResolutionStep = 1;
                     nResolutionStep <= nResolution && ( nTIndex != n-1 || nResolutionStep != nResolution);
                     ++nResolutionStep)
                {
                    lcl_tSizeType nNewIndex = nTIndex * nResolution + nResolutionStep;
                    double ux = t[nTIndex] + nResolutionStep * ( t[nTIndex+1] - t[nTIndex]) /nResolution;

                    // get index nLow, so that u[nLow]<= ux < u[nLow +1]
                    // continue from previous nLow
                    while ( u[nLow] <= ux)
                    {
                        ++nLow;
                    }
                    --nLow;

                    // x-coordinate
                    for (lcl_tSizeType i = nLow-p; i <= nLow; ++i)
                    {
                        aP[i] = aPointsIn[i].first;
                    }
                    for (sal_uInt32 lcl_Degree = 1; lcl_Degree <= p; ++lcl_Degree)
                    {
                        for (lcl_tSizeType i = nLow; i >= nLow + lcl_Degree - p; --i)
                        {
                            double fFactor = ( ux - u[i] ) / ( u[i+p+1-lcl_Degree] - u[i]);
                            aP[i] = (1 - fFactor)* aP[i-1] + fFactor * aP[i];
                        }
                    }
                    pNewX[nNewIndex] = aP[nLow];

                    // y-coordinate
                    for (lcl_tSizeType i = nLow - p; i <= nLow; ++i)
                    {
                        aP[i] = aPointsIn[i].second;
                    }
                    for (sal_uInt32 lcl_Degree = 1; lcl_Degree <= p; ++lcl_Degree)
                    {
                        for (lcl_tSizeType i = nLow; i >= nLow +lcl_Degree - p; --i)
                        {
                            double fFactor = ( ux - u[i] ) / ( u[i+p+1-lcl_Degree] - u[i]);
                            aP[i] = (1 - fFactor)* aP[i-1] + fFactor * aP[i];
                        }
                    }
                    pNewY[nNewIndex] = aP[nLow];
                    pNewZ[nNewIndex] = fZCoordinate;
                }
            }
        }
        for (lcl_tSizeType row = 0; row <=n; ++row)
        {
            delete[] aMatN[row];
        }
    } // next piece of the series
}

} //namespace chart

/* vim:set shiftwidth=4 softtabstop=4 expandtab: */