1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056 | /* -*- Mode: C++; tab-width: 4; indent-tabs-mode: nil; c-basic-offset: 4 -*- */
/*
* This file is part of the LibreOffice project.
*
* This Source Code Form is subject to the terms of the Mozilla Public
* License, v. 2.0. If a copy of the MPL was not distributed with this
* file, You can obtain one at http://mozilla.org/MPL/2.0/.
*
* This file incorporates work covered by the following license notice:
*
* Licensed to the Apache Software Foundation (ASF) under one or more
* contributor license agreements. See the NOTICE file distributed
* with this work for additional information regarding copyright
* ownership. The ASF licenses this file to you under the Apache
* License, Version 2.0 (the "License"); you may not use this file
* except in compliance with the License. You may obtain a copy of
* the License at http://www.apache.org/licenses/LICENSE-2.0 .
*/
#include <basegfx/polygon/b2dpolygoncutandtouch.hxx>
#include <osl/diagnose.h>
#include <basegfx/numeric/ftools.hxx>
#include <basegfx/point/b2dpoint.hxx>
#include <basegfx/vector/b2dvector.hxx>
#include <basegfx/range/b2drange.hxx>
#include <basegfx/polygon/b2dpolygontools.hxx>
#include <basegfx/curve/b2dcubicbezier.hxx>
#include <vector>
#include <algorithm>
#include <memory>
#define SUBDIVIDE_FOR_CUT_TEST_COUNT (50)
namespace basegfx
{
namespace
{
class temporaryPoint
{
B2DPoint maPoint; // the new point
sal_uInt32 mnIndex; // index after which to insert
double mfCut; // parametric cut description [0.0 .. 1.0]
public:
temporaryPoint(const B2DPoint& rNewPoint, sal_uInt32 nIndex, double fCut)
: maPoint(rNewPoint),
mnIndex(nIndex),
mfCut(fCut)
{
}
bool operator<(const temporaryPoint& rComp) const
{
if(mnIndex == rComp.mnIndex)
{
return (mfCut < rComp.mfCut);
}
return (mnIndex < rComp.mnIndex);
}
const B2DPoint& getPoint() const { return maPoint; }
sal_uInt32 getIndex() const { return mnIndex; }
double getCut() const { return mfCut; }
};
typedef std::vector< temporaryPoint > temporaryPointVector;
class temporaryPolygonData
{
B2DPolygon maPolygon;
B2DRange maRange;
temporaryPointVector maPoints;
public:
const B2DPolygon& getPolygon() const { return maPolygon; }
void setPolygon(const B2DPolygon& rNew) { maPolygon = rNew; maRange = utils::getRange(maPolygon); }
const B2DRange& getRange() const { return maRange; }
temporaryPointVector& getTemporaryPointVector() { return maPoints; }
};
B2DPolygon mergeTemporaryPointsAndPolygon(const B2DPolygon& rCandidate, temporaryPointVector& rTempPoints)
{
// #i76891# mergeTemporaryPointsAndPolygon redesigned to be able to correctly handle
// single edges with/without control points
// #i101491# added counter for non-changing element count
const sal_uInt32 nTempPointCount(rTempPoints.size());
if(nTempPointCount)
{
B2DPolygon aRetval;
const sal_uInt32 nCount(rCandidate.count());
if(nCount)
{
// sort temp points to assure increasing fCut values and increasing indices
std::sort(rTempPoints.begin(), rTempPoints.end());
// prepare loop
B2DCubicBezier aEdge;
sal_uInt32 nNewInd(0);
// add start point
aRetval.append(rCandidate.getB2DPoint(0));
for(sal_uInt32 a(0); a < nCount; a++)
{
// get edge
rCandidate.getBezierSegment(a, aEdge);
if(aEdge.isBezier())
{
// control vectors involved for this edge
double fLeftStart(0.0);
// now add all points targeted to be at this index
while (nNewInd < nTempPointCount && rTempPoints[nNewInd].getIndex() == a && fLeftStart < 1.0)
{
const temporaryPoint& rTempPoint = rTempPoints[nNewInd++];
// split curve segment. Splits need to come sorted and need to be < 1.0. Also,
// since original segment is consumed from left to right, the cut values need
// to be scaled to the remaining part
B2DCubicBezier aLeftPart;
const double fRelativeSplitPoint((rTempPoint.getCut() - fLeftStart) / (1.0 - fLeftStart));
aEdge.split(fRelativeSplitPoint, &aLeftPart, &aEdge);
fLeftStart = rTempPoint.getCut();
// add left bow
aRetval.appendBezierSegment(aLeftPart.getControlPointA(), aLeftPart.getControlPointB(), rTempPoint.getPoint());
}
// add remaining bow
aRetval.appendBezierSegment(aEdge.getControlPointA(), aEdge.getControlPointB(), aEdge.getEndPoint());
}
else
{
// add all points targeted to be at this index
while(nNewInd < nTempPointCount && rTempPoints[nNewInd].getIndex() == a)
{
const temporaryPoint& rTempPoint = rTempPoints[nNewInd++];
const B2DPoint& aNewPoint(rTempPoint.getPoint());
// do not add points double
if(!aRetval.getB2DPoint(aRetval.count() - 1).equal(aNewPoint))
{
aRetval.append(aNewPoint);
}
}
// add edge end point
aRetval.append(aEdge.getEndPoint());
}
}
}
if(rCandidate.isClosed())
{
// set closed flag and correct last point (which is added double now).
utils::closeWithGeometryChange(aRetval);
}
return aRetval;
}
else
{
return rCandidate;
}
}
void adaptAndTransferCutsWithBezierSegment(
const temporaryPointVector& rPointVector, const B2DPolygon& rPolygon,
sal_uInt32 nInd, temporaryPointVector& rTempPoints)
{
// assuming that the subdivision to create rPolygon used equidistant pieces
// (as in adaptiveSubdivideByCount) it is now possible to calculate back the
// cut positions in the polygon to relative cut positions on the original bezier
// segment.
const sal_uInt32 nTempPointCount(rPointVector.size());
const sal_uInt32 nEdgeCount(rPolygon.count() ? rPolygon.count() - 1 : 0);
if(nTempPointCount && nEdgeCount)
{
for(sal_uInt32 a(0); a < nTempPointCount; a++)
{
const temporaryPoint& rTempPoint = rPointVector[a];
const double fCutPosInPolygon(static_cast<double>(rTempPoint.getIndex()) + rTempPoint.getCut());
const double fRelativeCutPos(fCutPosInPolygon / static_cast<double>(nEdgeCount));
rTempPoints.emplace_back(rTempPoint.getPoint(), nInd, fRelativeCutPos);
}
}
}
} // end of anonymous namespace
} // end of namespace basegfx
namespace basegfx
{
namespace
{
// predefines for calls to this methods before method implementation
void findCuts(const B2DPolygon& rCandidate, temporaryPointVector& rTempPoints);
void findTouches(const B2DPolygon& rEdgePolygon, const B2DPolygon& rPointPolygon, temporaryPointVector& rTempPoints);
void findCuts(const B2DPolygon& rCandidateA, const B2DPolygon& rCandidateB, temporaryPointVector& rTempPointsA, temporaryPointVector& rTempPointsB);
void findEdgeCutsTwoEdges(
const B2DPoint& rCurrA, const B2DPoint& rNextA,
const B2DPoint& rCurrB, const B2DPoint& rNextB,
sal_uInt32 nIndA, sal_uInt32 nIndB,
temporaryPointVector& rTempPointsA, temporaryPointVector& rTempPointsB)
{
// no null length edges
if(rCurrA.equal(rNextA) || rCurrB.equal(rNextB))
return;
// no common start/end points, this can be no cuts
if(rCurrB.equal(rCurrA) || rCurrB.equal(rNextA) || rNextB.equal(rCurrA) || rNextB.equal(rNextA))
return;
const B2DVector aVecA(rNextA - rCurrA);
const B2DVector aVecB(rNextB - rCurrB);
double fCut(aVecA.cross(aVecB));
if(fTools::equalZero(fCut))
return;
const double fZero(0.0);
const double fOne(1.0);
fCut = (aVecB.getY() * (rCurrB.getX() - rCurrA.getX()) + aVecB.getX() * (rCurrA.getY() - rCurrB.getY())) / fCut;
if (!fTools::betweenOrEqualEither(fCut, fZero, fOne))
return;
// it's a candidate, but also need to test parameter value of cut on line 2
double fCut2;
// choose the more precise version
if(fabs(aVecB.getX()) > fabs(aVecB.getY()))
{
fCut2 = (rCurrA.getX() + (fCut * aVecA.getX()) - rCurrB.getX()) / aVecB.getX();
}
else
{
fCut2 = (rCurrA.getY() + (fCut * aVecA.getY()) - rCurrB.getY()) / aVecB.getY();
}
if (fTools::betweenOrEqualEither(fCut2, fZero, fOne))
{
// cut is in range, add point. Two edges can have only one cut, but
// add a cut point to each list. The lists may be the same for
// self intersections.
const B2DPoint aCutPoint(interpolate(rCurrA, rNextA, fCut));
rTempPointsA.emplace_back(aCutPoint, nIndA, fCut);
rTempPointsB.emplace_back(aCutPoint, nIndB, fCut2);
}
}
void findCutsAndTouchesAndCommonForBezier(const B2DPolygon& rCandidateA, const B2DPolygon& rCandidateB, temporaryPointVector& rTempPointsA, temporaryPointVector& rTempPointsB)
{
// #i76891#
// This new method is necessary since in findEdgeCutsBezierAndEdge and in findEdgeCutsTwoBeziers
// it is not sufficient to use findCuts() recursively. This will indeed find the cuts between the
// segments of the two temporarily adaptive subdivided bezier segments, but not the touches or
// equal points of them.
// It would be possible to find the touches using findTouches(), but at last with common points
// the adding of cut points (temporary points) would fail. But for these temporarily adaptive
// subdivided bezier segments, common points may be not very likely, but the bug shows that it
// happens.
// Touch points are a little bit more likely than common points. All in all it is best to use
// a specialized method here which can profit from knowing that it is working on a special
// family of B2DPolygons: no curve segments included and not closed.
OSL_ENSURE(!rCandidateA.areControlPointsUsed() && !rCandidateB.areControlPointsUsed(), "findCutsAndTouchesAndCommonForBezier only works with subdivided polygons (!)");
OSL_ENSURE(!rCandidateA.isClosed() && !rCandidateB.isClosed(), "findCutsAndTouchesAndCommonForBezier only works with opened polygons (!)");
const sal_uInt32 nPointCountA(rCandidateA.count());
const sal_uInt32 nPointCountB(rCandidateB.count());
if(nPointCountA <= 1 || nPointCountB <= 1)
return;
const sal_uInt32 nEdgeCountA(nPointCountA - 1);
const sal_uInt32 nEdgeCountB(nPointCountB - 1);
B2DPoint aCurrA(rCandidateA.getB2DPoint(0));
for(sal_uInt32 a(0); a < nEdgeCountA; a++)
{
const B2DPoint aNextA(rCandidateA.getB2DPoint(a + 1));
const B2DRange aRangeA(aCurrA, aNextA);
B2DPoint aCurrB(rCandidateB.getB2DPoint(0));
for(sal_uInt32 b(0); b < nEdgeCountB; b++)
{
const B2DPoint aNextB(rCandidateB.getB2DPoint(b + 1));
const B2DRange aRangeB(aCurrB, aNextB);
if(aRangeA.overlaps(aRangeB))
{
// no null length edges
if(!(aCurrA.equal(aNextA) || aCurrB.equal(aNextB)))
{
const B2DVector aVecA(aNextA - aCurrA);
const B2DVector aVecB(aNextB - aCurrB);
double fCutA(aVecA.cross(aVecB));
if(!fTools::equalZero(fCutA))
{
const double fZero(0.0);
const double fOne(1.0);
fCutA = (aVecB.getY() * (aCurrB.getX() - aCurrA.getX()) + aVecB.getX() * (aCurrA.getY() - aCurrB.getY())) / fCutA;
// use range [0.0 .. 1.0[, thus in the loop, all direct aCurrA cuts will be registered
// as 0.0 cut. The 1.0 cut will be registered in the next loop step
if(fTools::moreOrEqual(fCutA, fZero) && fTools::less(fCutA, fOne))
{
// it's a candidate, but also need to test parameter value of cut on line 2
double fCutB;
// choose the more precise version
if(fabs(aVecB.getX()) > fabs(aVecB.getY()))
{
fCutB = (aCurrA.getX() + (fCutA * aVecA.getX()) - aCurrB.getX()) / aVecB.getX();
}
else
{
fCutB = (aCurrA.getY() + (fCutA * aVecA.getY()) - aCurrB.getY()) / aVecB.getY();
}
// use range [0.0 .. 1.0[, thus in the loop, all direct aCurrA cuts will be registered
// as 0.0 cut. The 1.0 cut will be registered in the next loop step
if(fTools::moreOrEqual(fCutB, fZero) && fTools::less(fCutB, fOne))
{
// cut is in both ranges. Add points for A and B
// #i111715# use fTools::equal instead of fTools::equalZero for better accuracy
if(fTools::equal(fCutA, fZero))
{
// ignore for start point in first edge; this is handled
// by outer methods and would just produce a double point
if(a)
{
rTempPointsA.emplace_back(aCurrA, a, 0.0);
}
}
else
{
const B2DPoint aCutPoint(interpolate(aCurrA, aNextA, fCutA));
rTempPointsA.emplace_back(aCutPoint, a, fCutA);
}
// #i111715# use fTools::equal instead of fTools::equalZero for better accuracy
if(fTools::equal(fCutB, fZero))
{
// ignore for start point in first edge; this is handled
// by outer methods and would just produce a double point
if(b)
{
rTempPointsB.emplace_back(aCurrB, b, 0.0);
}
}
else
{
const B2DPoint aCutPoint(interpolate(aCurrB, aNextB, fCutB));
rTempPointsB.emplace_back(aCutPoint, b, fCutB);
}
}
}
}
}
}
// prepare next step
aCurrB = aNextB;
}
// prepare next step
aCurrA = aNextA;
}
}
void findEdgeCutsBezierAndEdge(
const B2DCubicBezier& rCubicA,
const B2DPoint& rCurrB, const B2DPoint& rNextB,
sal_uInt32 nIndA, sal_uInt32 nIndB,
temporaryPointVector& rTempPointsA, temporaryPointVector& rTempPointsB)
{
// find all cuts between given bezier segment and edge. Add an entry to the tempPoints
// for each common point with the cut value describing the relative position on given
// bezier segment and edge.
B2DPolygon aTempPolygonA;
B2DPolygon aTempPolygonEdge;
temporaryPointVector aTempPointVectorA;
temporaryPointVector aTempPointVectorEdge;
// create subdivided polygons and find cuts between them
// Keep adaptiveSubdivideByCount due to needed quality
aTempPolygonA.reserve(SUBDIVIDE_FOR_CUT_TEST_COUNT + 8);
aTempPolygonA.append(rCubicA.getStartPoint());
rCubicA.adaptiveSubdivideByCount(aTempPolygonA, SUBDIVIDE_FOR_CUT_TEST_COUNT);
aTempPolygonEdge.append(rCurrB);
aTempPolygonEdge.append(rNextB);
// #i76891# using findCuts recursively is not sufficient here
findCutsAndTouchesAndCommonForBezier(aTempPolygonA, aTempPolygonEdge, aTempPointVectorA, aTempPointVectorEdge);
if(!aTempPointVectorA.empty())
{
// adapt tempVector entries to segment
adaptAndTransferCutsWithBezierSegment(aTempPointVectorA, aTempPolygonA, nIndA, rTempPointsA);
}
// append remapped tempVector entries for edge to tempPoints for edge
for(const temporaryPoint & rTempPoint : aTempPointVectorEdge)
{
rTempPointsB.emplace_back(rTempPoint.getPoint(), nIndB, rTempPoint.getCut());<--- Consider using std::transform algorithm instead of a raw loop.
}
}
void findEdgeCutsTwoBeziers(
const B2DCubicBezier& rCubicA,
const B2DCubicBezier& rCubicB,
sal_uInt32 nIndA, sal_uInt32 nIndB,
temporaryPointVector& rTempPointsA, temporaryPointVector& rTempPointsB)
{
// find all cuts between the two given bezier segments. Add an entry to the tempPoints
// for each common point with the cut value describing the relative position on given
// bezier segments.
B2DPolygon aTempPolygonA;
B2DPolygon aTempPolygonB;
temporaryPointVector aTempPointVectorA;
temporaryPointVector aTempPointVectorB;
// create subdivided polygons and find cuts between them
// Keep adaptiveSubdivideByCount due to needed quality
aTempPolygonA.reserve(SUBDIVIDE_FOR_CUT_TEST_COUNT + 8);
aTempPolygonA.append(rCubicA.getStartPoint());
rCubicA.adaptiveSubdivideByCount(aTempPolygonA, SUBDIVIDE_FOR_CUT_TEST_COUNT);
aTempPolygonB.reserve(SUBDIVIDE_FOR_CUT_TEST_COUNT + 8);
aTempPolygonB.append(rCubicB.getStartPoint());
rCubicB.adaptiveSubdivideByCount(aTempPolygonB, SUBDIVIDE_FOR_CUT_TEST_COUNT);
// #i76891# using findCuts recursively is not sufficient here
findCutsAndTouchesAndCommonForBezier(aTempPolygonA, aTempPolygonB, aTempPointVectorA, aTempPointVectorB);
if(!aTempPointVectorA.empty())
{
// adapt tempVector entries to segment
adaptAndTransferCutsWithBezierSegment(aTempPointVectorA, aTempPolygonA, nIndA, rTempPointsA);
}
if(!aTempPointVectorB.empty())
{
// adapt tempVector entries to segment
adaptAndTransferCutsWithBezierSegment(aTempPointVectorB, aTempPolygonB, nIndB, rTempPointsB);
}
}
void findEdgeCutsOneBezier(
const B2DCubicBezier& rCubicA,
sal_uInt32 nInd, temporaryPointVector& rTempPoints)
{
// avoid expensive part of this method if possible
// TODO: use hasAnyExtremum() method instead when it becomes available
double fDummy;
const bool bHasAnyExtremum = rCubicA.getMinimumExtremumPosition( fDummy );
if( !bHasAnyExtremum )
return;
// find all self-intersections on the given bezier segment. Add an entry to the tempPoints
// for each self intersection point with the cut value describing the relative position on given
// bezier segment.
B2DPolygon aTempPolygon;
temporaryPointVector aTempPointVector;
// create subdivided polygon and find cuts on it
// Keep adaptiveSubdivideByCount due to needed quality
aTempPolygon.reserve(SUBDIVIDE_FOR_CUT_TEST_COUNT + 8);
aTempPolygon.append(rCubicA.getStartPoint());
rCubicA.adaptiveSubdivideByCount(aTempPolygon, SUBDIVIDE_FOR_CUT_TEST_COUNT);
findCuts(aTempPolygon, aTempPointVector);
if(!aTempPointVector.empty())
{
// adapt tempVector entries to segment
adaptAndTransferCutsWithBezierSegment(aTempPointVector, aTempPolygon, nInd, rTempPoints);
}
}
void findCuts(const B2DPolygon& rCandidate, temporaryPointVector& rTempPoints)
{
// find out if there are edges with intersections (self-cuts). If yes, add
// entries to rTempPoints accordingly
const sal_uInt32 nPointCount(rCandidate.count());
if(!nPointCount)
return;
const sal_uInt32 nEdgeCount(rCandidate.isClosed() ? nPointCount : nPointCount - 1);
if(!nEdgeCount)
return;
const bool bCurvesInvolved(rCandidate.areControlPointsUsed());
if(bCurvesInvolved)
{
B2DCubicBezier aCubicA;
B2DCubicBezier aCubicB;
for(sal_uInt32 a(0); a < nEdgeCount - 1; a++)
{
rCandidate.getBezierSegment(a, aCubicA);
aCubicA.testAndSolveTrivialBezier();
const bool bEdgeAIsCurve(aCubicA.isBezier());
const B2DRange aRangeA(aCubicA.getRange());
if(bEdgeAIsCurve)
{
// curved segments may have self-intersections, do not forget those (!)
findEdgeCutsOneBezier(aCubicA, a, rTempPoints);
}
for(sal_uInt32 b(a + 1); b < nEdgeCount; b++)
{
rCandidate.getBezierSegment(b, aCubicB);
aCubicB.testAndSolveTrivialBezier();
const B2DRange aRangeB(aCubicB.getRange());
// only overlapping segments need to be tested
// consecutive segments touch of course
bool bOverlap = false;
if( b > a+1)
bOverlap = aRangeA.overlaps(aRangeB);
else
bOverlap = aRangeA.overlapsMore(aRangeB);
if( bOverlap)
{
const bool bEdgeBIsCurve(aCubicB.isBezier());
if(bEdgeAIsCurve && bEdgeBIsCurve)
{
// test for bezier-bezier cuts
findEdgeCutsTwoBeziers(aCubicA, aCubicB, a, b, rTempPoints, rTempPoints);
}
else if(bEdgeAIsCurve)
{
// test for bezier-edge cuts
findEdgeCutsBezierAndEdge(aCubicA, aCubicB.getStartPoint(), aCubicB.getEndPoint(), a, b, rTempPoints, rTempPoints);
}
else if(bEdgeBIsCurve)
{
// test for bezier-edge cuts
findEdgeCutsBezierAndEdge(aCubicB, aCubicA.getStartPoint(), aCubicA.getEndPoint(), b, a, rTempPoints, rTempPoints);
}
else
{
// test for simple edge-edge cuts
findEdgeCutsTwoEdges(aCubicA.getStartPoint(), aCubicA.getEndPoint(), aCubicB.getStartPoint(), aCubicB.getEndPoint(),
a, b, rTempPoints, rTempPoints);
}
}
}
}
}
else
{
B2DPoint aCurrA(rCandidate.getB2DPoint(0));
for(sal_uInt32 a(0); a < nEdgeCount - 1; a++)
{
const B2DPoint aNextA(rCandidate.getB2DPoint(a + 1 == nPointCount ? 0 : a + 1));
const B2DRange aRangeA(aCurrA, aNextA);
B2DPoint aCurrB(rCandidate.getB2DPoint(a + 1));
for(sal_uInt32 b(a + 1); b < nEdgeCount; b++)
{
const B2DPoint aNextB(rCandidate.getB2DPoint(b + 1 == nPointCount ? 0 : b + 1));
const B2DRange aRangeB(aCurrB, aNextB);
// consecutive segments touch of course
bool bOverlap = false;
if( b > a+1)
bOverlap = aRangeA.overlaps(aRangeB);
else
bOverlap = aRangeA.overlapsMore(aRangeB);
if( bOverlap)
{
findEdgeCutsTwoEdges(aCurrA, aNextA, aCurrB, aNextB, a, b, rTempPoints, rTempPoints);
}
// prepare next step
aCurrB = aNextB;
}
// prepare next step
aCurrA = aNextA;
}
}
}
} // end of anonymous namespace
} // end of namespace basegfx
namespace basegfx
{
namespace
{
void findTouchesOnEdge(
const B2DPoint& rCurr, const B2DPoint& rNext, const B2DPolygon& rPointPolygon,
sal_uInt32 nInd, temporaryPointVector& rTempPoints)
{
// find out if points from rPointPolygon are positioned on given edge. If Yes, add
// points there to represent touches (which may be enter or leave nodes later).
const sal_uInt32 nPointCount(rPointPolygon.count());
if(!nPointCount)
return;
const B2DRange aRange(rCurr, rNext);
const B2DVector aEdgeVector(rNext - rCurr);
bool bTestUsingX(fabs(aEdgeVector.getX()) > fabs(aEdgeVector.getY()));
for(sal_uInt32 a(0); a < nPointCount; a++)
{
const B2DPoint aTestPoint(rPointPolygon.getB2DPoint(a));
if(aRange.isInside(aTestPoint))
{
if(!aTestPoint.equal(rCurr) && !aTestPoint.equal(rNext))
{
const B2DVector aTestVector(aTestPoint - rCurr);
if(areParallel(aEdgeVector, aTestVector))
{
const double fCut(bTestUsingX
? aTestVector.getX() / aEdgeVector.getX()
: aTestVector.getY() / aEdgeVector.getY());
const double fZero(0.0);
const double fOne(1.0);
if(fTools::more(fCut, fZero) && fTools::less(fCut, fOne))
{
rTempPoints.emplace_back(aTestPoint, nInd, fCut);
}
}
}
}
}
}
void findTouchesOnCurve(
const B2DCubicBezier& rCubicA, const B2DPolygon& rPointPolygon,
sal_uInt32 nInd, temporaryPointVector& rTempPoints)
{
// find all points from rPointPolygon which touch the given bezier segment. Add an entry
// for each touch to the given pointVector. The cut for that entry is the relative position on
// the given bezier segment.
B2DPolygon aTempPolygon;
temporaryPointVector aTempPointVector;
// create subdivided polygon and find cuts on it
// Keep adaptiveSubdivideByCount due to needed quality
aTempPolygon.reserve(SUBDIVIDE_FOR_CUT_TEST_COUNT + 8);
aTempPolygon.append(rCubicA.getStartPoint());
rCubicA.adaptiveSubdivideByCount(aTempPolygon, SUBDIVIDE_FOR_CUT_TEST_COUNT);
findTouches(aTempPolygon, rPointPolygon, aTempPointVector);
if(!aTempPointVector.empty())
{
// adapt tempVector entries to segment
adaptAndTransferCutsWithBezierSegment(aTempPointVector, aTempPolygon, nInd, rTempPoints);
}
}
void findTouches(const B2DPolygon& rEdgePolygon, const B2DPolygon& rPointPolygon, temporaryPointVector& rTempPoints)
{
// find out if points from rPointPolygon touch edges from rEdgePolygon. If yes,
// add entries to rTempPoints
const sal_uInt32 nPointCount(rPointPolygon.count());
const sal_uInt32 nEdgePointCount(rEdgePolygon.count());
if(!(nPointCount && nEdgePointCount))
return;
const sal_uInt32 nEdgeCount(rEdgePolygon.isClosed() ? nEdgePointCount : nEdgePointCount - 1);
B2DPoint aCurr(rEdgePolygon.getB2DPoint(0));
for(sal_uInt32 a(0); a < nEdgeCount; a++)
{
const sal_uInt32 nNextIndex((a + 1) % nEdgePointCount);
const B2DPoint aNext(rEdgePolygon.getB2DPoint(nNextIndex));
if(!aCurr.equal(aNext))
{
bool bHandleAsSimpleEdge(true);
if(rEdgePolygon.areControlPointsUsed())
{
const B2DPoint aNextControlPoint(rEdgePolygon.getNextControlPoint(a));
const B2DPoint aPrevControlPoint(rEdgePolygon.getPrevControlPoint(nNextIndex));
const bool bEdgeIsCurve(!aNextControlPoint.equal(aCurr) || !aPrevControlPoint.equal(aNext));
if(bEdgeIsCurve)
{
bHandleAsSimpleEdge = false;
const B2DCubicBezier aCubicA(aCurr, aNextControlPoint, aPrevControlPoint, aNext);
findTouchesOnCurve(aCubicA, rPointPolygon, a, rTempPoints);
}
}
if(bHandleAsSimpleEdge)
{
findTouchesOnEdge(aCurr, aNext, rPointPolygon, a, rTempPoints);
}
}
// next step
aCurr = aNext;
}
}
} // end of anonymous namespace
} // end of namespace basegfx
namespace basegfx
{
namespace
{
void findCuts(const B2DPolygon& rCandidateA, const B2DPolygon& rCandidateB, temporaryPointVector& rTempPointsA, temporaryPointVector& rTempPointsB)
{
// find out if edges from both polygons cut. If so, add entries to rTempPoints which
// should be added to the polygons accordingly
const sal_uInt32 nPointCountA(rCandidateA.count());
const sal_uInt32 nPointCountB(rCandidateB.count());
if(!(nPointCountA && nPointCountB))
return;
const sal_uInt32 nEdgeCountA(rCandidateA.isClosed() ? nPointCountA : nPointCountA - 1);
const sal_uInt32 nEdgeCountB(rCandidateB.isClosed() ? nPointCountB : nPointCountB - 1);
if(!(nEdgeCountA && nEdgeCountB))
return;
const bool bCurvesInvolved(rCandidateA.areControlPointsUsed() || rCandidateB.areControlPointsUsed());
if(bCurvesInvolved)
{
B2DCubicBezier aCubicA;
B2DCubicBezier aCubicB;
for(sal_uInt32 a(0); a < nEdgeCountA; a++)
{
rCandidateA.getBezierSegment(a, aCubicA);
aCubicA.testAndSolveTrivialBezier();
const bool bEdgeAIsCurve(aCubicA.isBezier());
const B2DRange aRangeA(aCubicA.getRange());
for(sal_uInt32 b(0); b < nEdgeCountB; b++)
{
rCandidateB.getBezierSegment(b, aCubicB);
aCubicB.testAndSolveTrivialBezier();
const B2DRange aRangeB(aCubicB.getRange());
// consecutive segments touch of course
bool bOverlap = false;
if( b > a+1)
bOverlap = aRangeA.overlaps(aRangeB);
else
bOverlap = aRangeA.overlapsMore(aRangeB);
if( bOverlap)
{
const bool bEdgeBIsCurve(aCubicB.isBezier());
if(bEdgeAIsCurve && bEdgeBIsCurve)
{
// test for bezier-bezier cuts
findEdgeCutsTwoBeziers(aCubicA, aCubicB, a, b, rTempPointsA, rTempPointsB);
}
else if(bEdgeAIsCurve)
{
// test for bezier-edge cuts
findEdgeCutsBezierAndEdge(aCubicA, aCubicB.getStartPoint(), aCubicB.getEndPoint(), a, b, rTempPointsA, rTempPointsB);
}
else if(bEdgeBIsCurve)
{
// test for bezier-edge cuts
findEdgeCutsBezierAndEdge(aCubicB, aCubicA.getStartPoint(), aCubicA.getEndPoint(), b, a, rTempPointsB, rTempPointsA);
}
else
{
// test for simple edge-edge cuts
findEdgeCutsTwoEdges(aCubicA.getStartPoint(), aCubicA.getEndPoint(), aCubicB.getStartPoint(), aCubicB.getEndPoint(),
a, b, rTempPointsA, rTempPointsB);
}
}
}
}
}
else
{
B2DPoint aCurrA(rCandidateA.getB2DPoint(0));
for(sal_uInt32 a(0); a < nEdgeCountA; a++)
{
const B2DPoint aNextA(rCandidateA.getB2DPoint(a + 1 == nPointCountA ? 0 : a + 1));
const B2DRange aRangeA(aCurrA, aNextA);
B2DPoint aCurrB(rCandidateB.getB2DPoint(0));
for(sal_uInt32 b(0); b < nEdgeCountB; b++)
{
const B2DPoint aNextB(rCandidateB.getB2DPoint(b + 1 == nPointCountB ? 0 : b + 1));
const B2DRange aRangeB(aCurrB, aNextB);
// consecutive segments touch of course
bool bOverlap = false;
if( b > a+1)
bOverlap = aRangeA.overlaps(aRangeB);
else
bOverlap = aRangeA.overlapsMore(aRangeB);
if( bOverlap)
{
// test for simple edge-edge cuts
findEdgeCutsTwoEdges(aCurrA, aNextA, aCurrB, aNextB, a, b, rTempPointsA, rTempPointsB);
}
// prepare next step
aCurrB = aNextB;
}
// prepare next step
aCurrA = aNextA;
}
}
}
} // end of anonymous namespace
} // end of namespace basegfx
namespace basegfx::utils
{
B2DPolygon addPointsAtCutsAndTouches(const B2DPolygon& rCandidate)
{
if(rCandidate.count())
{
temporaryPointVector aTempPoints;
findTouches(rCandidate, rCandidate, aTempPoints);
findCuts(rCandidate, aTempPoints);
return mergeTemporaryPointsAndPolygon(rCandidate, aTempPoints);
}
else
{
return rCandidate;
}
}
B2DPolyPolygon addPointsAtCutsAndTouches(const B2DPolyPolygon& rCandidate)
{
const sal_uInt32 nCount(rCandidate.count());
if(nCount)
{
B2DPolyPolygon aRetval;
if(nCount == 1)
{
// remove self intersections
aRetval.append(addPointsAtCutsAndTouches(rCandidate.getB2DPolygon(0)));
}
else
{
// first solve self cuts and self touches for all contained single polygons
std::unique_ptr<temporaryPolygonData[]> pTempData(new temporaryPolygonData[nCount]);
sal_uInt32 a, b;
for(a = 0; a < nCount; a++)
{
// use polygons with solved self intersections
pTempData[a].setPolygon(addPointsAtCutsAndTouches(rCandidate.getB2DPolygon(a)));
}
// now cuts and touches between the polygons
for(a = 0; a < nCount; a++)
{
for(b = 0; b < nCount; b++)
{
if(a != b)
{
// look for touches, compare each edge polygon to all other points
if(pTempData[a].getRange().overlaps(pTempData[b].getRange()))
{
findTouches(pTempData[a].getPolygon(), pTempData[b].getPolygon(), pTempData[a].getTemporaryPointVector());
}
}
if(a < b)
{
// look for cuts, compare each edge polygon to following ones
if(pTempData[a].getRange().overlaps(pTempData[b].getRange()))
{
findCuts(pTempData[a].getPolygon(), pTempData[b].getPolygon(), pTempData[a].getTemporaryPointVector(), pTempData[b].getTemporaryPointVector());
}
}
}
}
// consolidate the result
for(a = 0; a < nCount; a++)
{
aRetval.append(mergeTemporaryPointsAndPolygon(pTempData[a].getPolygon(), pTempData[a].getTemporaryPointVector()));
}
}
return aRetval;
}
else
{
return rCandidate;
}
}
B2DPolygon addPointsAtCuts(const B2DPolygon& rCandidate, const B2DPoint& rStart, const B2DPoint& rEnd)
{
const sal_uInt32 nCount(rCandidate.count());
if(nCount && !rStart.equal(rEnd))
{
const B2DRange aPolygonRange(rCandidate.getB2DRange());
const B2DRange aEdgeRange(rStart, rEnd);
if(aPolygonRange.overlaps(aEdgeRange))
{
const sal_uInt32 nEdgeCount(rCandidate.isClosed() ? nCount : nCount - 1);
temporaryPointVector aTempPoints;
temporaryPointVector aUnusedTempPoints;
B2DCubicBezier aCubic;
for(sal_uInt32 a(0); a < nEdgeCount; a++)
{
rCandidate.getBezierSegment(a, aCubic);
B2DRange aCubicRange(aCubic.getStartPoint(), aCubic.getEndPoint());
if(aCubic.isBezier())
{
aCubicRange.expand(aCubic.getControlPointA());
aCubicRange.expand(aCubic.getControlPointB());
if(aCubicRange.overlaps(aEdgeRange))
{
findEdgeCutsBezierAndEdge(aCubic, rStart, rEnd, a, 0, aTempPoints, aUnusedTempPoints);
}
}
else
{
if(aCubicRange.overlaps(aEdgeRange))
{
findEdgeCutsTwoEdges(aCubic.getStartPoint(), aCubic.getEndPoint(), rStart, rEnd, a, 0, aTempPoints, aUnusedTempPoints);
}
}
}
return mergeTemporaryPointsAndPolygon(rCandidate, aTempPoints);
}
}
return rCandidate;
}
B2DPolygon addPointsAtCuts(const B2DPolygon& rCandidate, const B2DPolyPolygon& rPolyMask)
{
const sal_uInt32 nCountA(rCandidate.count());
const sal_uInt32 nCountM(rPolyMask.count());
if(nCountA && nCountM)
{
const B2DRange aRangeA(rCandidate.getB2DRange());
const B2DRange aRangeM(rPolyMask.getB2DRange());
if(aRangeA.overlaps(aRangeM))
{
const sal_uInt32 nEdgeCountA(rCandidate.isClosed() ? nCountA : nCountA - 1);
temporaryPointVector aTempPointsA;
temporaryPointVector aUnusedTempPointsB;
for(sal_uInt32 m(0); m < nCountM; m++)
{
const B2DPolygon& aMask(rPolyMask.getB2DPolygon(m));
const sal_uInt32 nCountB(aMask.count());
if(nCountB)
{
B2DCubicBezier aCubicA;
B2DCubicBezier aCubicB;
for(sal_uInt32 a(0); a < nEdgeCountA; a++)
{
rCandidate.getBezierSegment(a, aCubicA);
const bool bCubicAIsCurve(aCubicA.isBezier());
B2DRange aCubicRangeA(aCubicA.getStartPoint(), aCubicA.getEndPoint());
if(bCubicAIsCurve)
{
aCubicRangeA.expand(aCubicA.getControlPointA());
aCubicRangeA.expand(aCubicA.getControlPointB());
}
for(sal_uInt32 b(0); b < nCountB; b++)
{
aMask.getBezierSegment(b, aCubicB);
const bool bCubicBIsCurve(aCubicB.isBezier());
B2DRange aCubicRangeB(aCubicB.getStartPoint(), aCubicB.getEndPoint());
if(bCubicBIsCurve)
{
aCubicRangeB.expand(aCubicB.getControlPointA());
aCubicRangeB.expand(aCubicB.getControlPointB());
}
if(aCubicRangeA.overlaps(aCubicRangeB))
{
if(bCubicAIsCurve && bCubicBIsCurve)
{
findEdgeCutsTwoBeziers(aCubicA, aCubicB, a, b, aTempPointsA, aUnusedTempPointsB);
}
else if(bCubicAIsCurve)
{
findEdgeCutsBezierAndEdge(aCubicA, aCubicB.getStartPoint(), aCubicB.getEndPoint(), a, b, aTempPointsA, aUnusedTempPointsB);
}
else if(bCubicBIsCurve)
{
findEdgeCutsBezierAndEdge(aCubicB, aCubicA.getStartPoint(), aCubicA.getEndPoint(), b, a, aUnusedTempPointsB, aTempPointsA);
}
else
{
findEdgeCutsTwoEdges(aCubicA.getStartPoint(), aCubicA.getEndPoint(), aCubicB.getStartPoint(), aCubicB.getEndPoint(), a, b, aTempPointsA, aUnusedTempPointsB);
}
}
}
}
}
}
return mergeTemporaryPointsAndPolygon(rCandidate, aTempPointsA);
}
}
return rCandidate;
}
} // end of namespace
/* vim:set shiftwidth=4 softtabstop=4 expandtab: */
|