1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
/* -*- Mode: C++; tab-width: 4; indent-tabs-mode: nil; c-basic-offset: 4 -*- */
/*
 * This file is part of the LibreOffice project.
 *
 * This Source Code Form is subject to the terms of the Mozilla Public
 * License, v. 2.0. If a copy of the MPL was not distributed with this
 * file, You can obtain one at http://mozilla.org/MPL/2.0/.
 *
 * This file incorporates work covered by the following license notice:
 *
 *   Licensed to the Apache Software Foundation (ASF) under one or more
 *   contributor license agreements. See the NOTICE file distributed
 *   with this work for additional information regarding copyright
 *   ownership. The ASF licenses this file to you under the Apache
 *   License, Version 2.0 (the "License"); you may not use this file
 *   except in compliance with the License. You may obtain a copy of
 *   the License at http://www.apache.org/licenses/LICENSE-2.0 .
 */

#include <malloc.h>
#include <rtl/alloc.h>

#include <com/sun/star/uno/genfunc.hxx>
#include <com/sun/star/uno/Exception.hpp>
#include "com/sun/star/uno/RuntimeException.hpp"
#include <o3tl/runtimetooustring.hxx>
#include <uno/data.h>

#include <bridge.hxx>
#include <types.hxx>
#include <unointerfaceproxy.hxx>
#include <vtables.hxx>

#include "share.hxx"

#include <exception>
#include <stdio.h>
#include <string.h>
#include <typeinfo>

/*
 * Based on http://gcc.gnu.org/PR41443
 * References to __SOFTFP__ are incorrect for EABI; the __SOFTFP__ code
 * should be used for *soft-float ABI* whether or not VFP is enabled,
 * and __SOFTFP__ does specifically mean soft-float not soft-float ABI.
 *
 * Changing the conditionals to __SOFTFP__ || __ARM_EABI__ then
 * -mfloat-abi=softfp should work.  -mfloat-abi=hard won't; that would
 * need both a new macro to identify the hard-VFP ABI.
 */
#if !defined(__ARM_EABI__) && !defined(__SOFTFP__)
#error Not Implemented

/*
 some possibly handy code to detect that we have VFP registers
 */

#include <sys/types.h>
#include <sys/stat.h>
#include <fcntl.h>
#include <unistd.h>
#include <elf.h>

#define HWCAP_ARM_VFP 64

int hasVFP()
{
    int fd = open ("/proc/self/auxv", O_RDONLY);
    if (fd == -1)
        return -1;

    int ret = -1;

    Elf32_auxv_t buf[128];
    ssize_t n;
    while ((ret == -1) && ((n = read(fd, buf, sizeof (buf))) > 0))
    {
        for (int i = 0; i < 128; ++i)
        {
        if (buf[i].a_type == AT_HWCAP)
        {
                ret = (buf[i].a_un.a_val & HWCAP_ARM_VFP) ? true : false;
                break;
        }
            else if (buf[i].a_type == AT_NULL)
            {
                ret = -2;
                break;
            }
        }
    }

    close (fd);
    return ret;
}

#endif

using namespace ::com::sun::star::uno;

namespace arm
{
    bool is_complex_struct(const typelib_TypeDescription * type)
    {
        const typelib_CompoundTypeDescription * p
            = reinterpret_cast< const typelib_CompoundTypeDescription * >(type);
        for (sal_Int32 i = 0; i < p->nMembers; ++i)
        {
            if (p->ppTypeRefs[i]->eTypeClass == typelib_TypeClass_STRUCT ||
                p->ppTypeRefs[i]->eTypeClass == typelib_TypeClass_EXCEPTION)
            {
                typelib_TypeDescription * t = 0;
                TYPELIB_DANGER_GET(&t, p->ppTypeRefs[i]);
                bool b = is_complex_struct(t);
                TYPELIB_DANGER_RELEASE(t);
                if (b) {
                    return true;
                }
            }
            else if (!bridges::cpp_uno::shared::isSimpleType(p->ppTypeRefs[i]->eTypeClass))
                return true;
        }
        if (p->pBaseTypeDescription != 0)
            return is_complex_struct(&p->pBaseTypeDescription->aBase);
        return false;
    }

#ifdef __ARM_PCS_VFP
    bool is_float_only_struct(const typelib_TypeDescription * type)
    {
        const typelib_CompoundTypeDescription * p
            = reinterpret_cast< const typelib_CompoundTypeDescription * >(type);
        for (sal_Int32 i = 0; i < p->nMembers; ++i)
        {
            if (p->ppTypeRefs[i]->eTypeClass != typelib_TypeClass_FLOAT &&
                p->ppTypeRefs[i]->eTypeClass != typelib_TypeClass_DOUBLE)
                return false;
        }
        return true;
    }
#endif
    bool return_in_hidden_param( typelib_TypeDescriptionReference *pTypeRef )
    {
        if (bridges::cpp_uno::shared::isSimpleType(pTypeRef))
            return false;
        else if (pTypeRef->eTypeClass == typelib_TypeClass_STRUCT || pTypeRef->eTypeClass == typelib_TypeClass_EXCEPTION)
        {
            typelib_TypeDescription * pTypeDescr = 0;
            TYPELIB_DANGER_GET( &pTypeDescr, pTypeRef );

            //A Composite Type not larger than 4 bytes is returned in r0
            bool bRet = pTypeDescr->nSize > 4 || is_complex_struct(pTypeDescr);

#ifdef __ARM_PCS_VFP
            // In the VFP ABI, structs with only float/double values that fit in
            // 16 bytes are returned in registers
            if( pTypeDescr->nSize <= 16 && is_float_only_struct(pTypeDescr))
                bRet = false;
#endif

            TYPELIB_DANGER_RELEASE( pTypeDescr );
            return bRet;
        }
        return true;
    }
}

void MapReturn(sal_uInt32 r0, sal_uInt32 r1, typelib_TypeDescriptionReference * pReturnType, sal_uInt32* pRegisterReturn)
{
    switch( pReturnType->eTypeClass )
    {
        case typelib_TypeClass_HYPER:
        case typelib_TypeClass_UNSIGNED_HYPER:
            pRegisterReturn[1] = r1;
            SAL_FALLTHROUGH;
        case typelib_TypeClass_LONG:
        case typelib_TypeClass_UNSIGNED_LONG:
        case typelib_TypeClass_ENUM:
        case typelib_TypeClass_CHAR:
        case typelib_TypeClass_SHORT:
        case typelib_TypeClass_UNSIGNED_SHORT:
        case typelib_TypeClass_BOOLEAN:
        case typelib_TypeClass_BYTE:
            pRegisterReturn[0] = r0;
            break;
        case typelib_TypeClass_FLOAT:
#if !defined(__ARM_PCS_VFP) && (defined(__ARM_EABI__) || defined(__SOFTFP__))
            pRegisterReturn[0] = r0;
#else
            register float fret asm("s0");
            *(float*)pRegisterReturn = fret;
#endif
        break;
        case typelib_TypeClass_DOUBLE:
#if !defined(__ARM_PCS_VFP) && (defined(__ARM_EABI__) || defined(__SOFTFP__))
            pRegisterReturn[1] = r1;
            pRegisterReturn[0] = r0;
#else
            register double dret asm("d0");
            *(double*)pRegisterReturn = dret;
#endif
            break;
        case typelib_TypeClass_STRUCT:
        case typelib_TypeClass_EXCEPTION:
        {
            if (!arm::return_in_hidden_param(pReturnType))
                pRegisterReturn[0] = r0;
            break;
        }
        default:
            break;
    }
}

namespace
{

void callVirtualMethod(
    void * pThis,
    sal_Int32 nVtableIndex,
    void * pRegisterReturn,
    typelib_TypeDescriptionReference * pReturnType,
    sal_uInt32 *pStack,
    sal_uInt32 nStack,
    sal_uInt32 *pGPR,
    sal_uInt32 nGPR,
    double *pFPR) __attribute__((noinline));

void callVirtualMethod(
    void * pThis,
    sal_Int32 nVtableIndex,
    void * pRegisterReturn,
    typelib_TypeDescriptionReference * pReturnType,
    sal_uInt32 *pStack,
    sal_uInt32 nStack,
    sal_uInt32 *pGPR,
    sal_uInt32 nGPR,
    double *pFPR)
{
    // never called
    if (! pThis)
        CPPU_CURRENT_NAMESPACE::dummy_can_throw_anything("xxx"); // address something

    if ( nStack )
    {
        // 8-bytes aligned
        sal_uInt32 nStackBytes = ( ( nStack + 1 ) >> 1 ) * 8;
        sal_uInt32 *stack = (sal_uInt32 *) __builtin_alloca( nStackBytes );
        memcpy( stack, pStack, nStackBytes );
    }

    // Should not happen, but...
    if ( nGPR > arm::MAX_GPR_REGS )
        nGPR = arm::MAX_GPR_REGS;

    sal_uInt32 pMethod = *((sal_uInt32*)pThis);
    pMethod += 4 * nVtableIndex;
    pMethod = *((sal_uInt32 *)pMethod);

    //Return registers
    sal_uInt32 r0;
    sal_uInt32 r1;

    __asm__ __volatile__ (
        //Fill in general purpose register arguments
        "ldr r4, %[pgpr]\n\t"
        "ldmia r4, {r0-r3}\n\t"

#ifdef __ARM_PCS_VFP
        //Fill in VFP register arguments as double precision values
        "ldr r4, %[pfpr]\n\t"
        "vldmia r4, {d0-d7}\n\t"
#endif
        //Make the call
        "ldr r5, %[pmethod]\n\t"
#ifndef __ARM_ARCH_4T__
        "blx r5\n\t"
#else
        "mov lr, pc ; bx r5\n\t"
#endif

        //Fill in return values
        "mov %[r0], r0\n\t"
        "mov %[r1], r1\n\t"
        : [r0]"=r" (r0), [r1]"=r" (r1)
        : [pmethod]"m" (pMethod), [pgpr]"m" (pGPR), [pfpr]"m" (pFPR)
        : "r0", "r1", "r2", "r3", "r4", "r5");

    MapReturn(r0, r1, pReturnType, (sal_uInt32*)pRegisterReturn);
}
}

#define INSERT_INT32( pSV, nr, pGPR, pDS ) \
        if ( nr < arm::MAX_GPR_REGS ) \
                pGPR[nr++] = *reinterpret_cast<sal_uInt32 *>( pSV ); \
        else \
                *pDS++ = *reinterpret_cast<sal_uInt32 *>( pSV );

#ifdef __ARM_EABI__
#define INSERT_INT64( pSV, nr, pGPR, pDS, pStart ) \
        if ( (nr < arm::MAX_GPR_REGS) && (nr % 2) ) \
        { \
                ++nr; \
        } \
        if ( nr < arm::MAX_GPR_REGS ) \
        { \
                pGPR[nr++] = *reinterpret_cast<sal_uInt32 *>( pSV ); \
                pGPR[nr++] = *(reinterpret_cast<sal_uInt32 *>( pSV ) + 1); \
        } \
        else \
    { \
        if ( (pDS - pStart) % 2) \
                { \
                    ++pDS; \
                } \
                *pDS++ = reinterpret_cast<sal_uInt32 *>( pSV )[0]; \
                *pDS++ = reinterpret_cast<sal_uInt32 *>( pSV )[1]; \
    }
#else
#define INSERT_INT64( pSV, nr, pGPR, pDS, pStart ) \
        INSERT_INT32( pSV, nr, pGPR, pDS ) \
        INSERT_INT32( ((sal_uInt32*)pSV)+1, nr, pGPR, pDS )
#endif

#ifdef __ARM_PCS_VFP
// Since single and double arguments share the same register bank the filling of the
// registers is not always linear. Single values go to the first available single register,
// while doubles need to have an 8 byte alignment, so only go into double registers starting
// at every other single register. For ex a float, double, float sequence will fill registers
// s0, d1, and s1, actually corresponding to the linear order s0,s1, d1.
//
// These use the single/double register array and counters and ignore the pGPR argument
// nSR and nDR are the number of single and double precision registers that are no longer
// available
#define INSERT_FLOAT( pSV, nr, pGPR, pDS ) \
        if (nSR % 2 == 0) {\
            nSR = 2*nDR; \
        }\
        if ( nSR < arm::MAX_FPR_REGS*2 ) {\
                pSPR[nSR++] = *reinterpret_cast<float *>( pSV ); \
                if ((nSR % 2 == 1) && (nSR > 2*nDR)) {\
                    nDR++; \
                }\
        }\
        else \
        {\
                *pDS++ = *reinterpret_cast<float *>( pSV );\
        }
#define INSERT_DOUBLE( pSV, nr, pGPR, pDS, pStart ) \
        if ( nDR < arm::MAX_FPR_REGS ) { \
                pFPR[nDR++] = *reinterpret_cast<double *>( pSV ); \
        }\
        else\
        {\
            if ( (pDS - pStart) % 2) \
                { \
                    ++pDS; \
                } \
            *(double *)pDS = *reinterpret_cast<double *>( pSV );\
            pDS += 2;\
        }
#else
#define INSERT_FLOAT( pSV, nr, pFPR, pDS ) \
        INSERT_INT32( pSV, nr, pGPR, pDS )

#define INSERT_DOUBLE( pSV, nr, pFPR, pDS, pStart ) \
        INSERT_INT64( pSV, nr, pGPR, pDS, pStart )
#endif

#define INSERT_INT16( pSV, nr, pGPR, pDS ) \
        if ( nr < arm::MAX_GPR_REGS ) \
                pGPR[nr++] = *reinterpret_cast<sal_uInt16 *>( pSV ); \
        else \
                *pDS++ = *reinterpret_cast<sal_uInt16 *>( pSV );

#define INSERT_INT8( pSV, nr, pGPR, pDS ) \
        if ( nr < arm::MAX_GPR_REGS ) \
                pGPR[nr++] = *reinterpret_cast<sal_uInt8 *>( pSV ); \
        else \
                *pDS++ = *reinterpret_cast<sal_uInt8 *>( pSV );

namespace {

static void cpp_call(
    bridges::cpp_uno::shared::UnoInterfaceProxy * pThis,
    bridges::cpp_uno::shared::VtableSlot aVtableSlot,
    typelib_TypeDescriptionReference * pReturnTypeRef,
    sal_Int32 nParams, typelib_MethodParameter * pParams,
    void * pUnoReturn, void * pUnoArgs[], uno_Any ** ppUnoExc )
{
    // max space for: [complex ret ptr], values|ptr ...
    sal_uInt32 * pStack = (sal_uInt32 *)__builtin_alloca(
        sizeof(sal_Int32) + ((nParams+2) * sizeof(sal_Int64)) );
    sal_uInt32 * pStackStart = pStack;

    sal_uInt32 pGPR[arm::MAX_GPR_REGS];
    sal_uInt32 nGPR = 0;

    // storage and counters for single and double precision VFP registers
    double pFPR[arm::MAX_FPR_REGS];
#ifdef __ARM_PCS_VFP
    sal_uInt32 nDR = 0;
    float *pSPR = reinterpret_cast< float *>(&pFPR);<--- Casting between double ** and float* which have an incompatible binary data representation.
    sal_uInt32 nSR = 0;
#endif

    // return
    typelib_TypeDescription * pReturnTypeDescr = 0;
    TYPELIB_DANGER_GET( &pReturnTypeDescr, pReturnTypeRef );
    assert(pReturnTypeDescr);

    void * pCppReturn = 0; // if != 0 && != pUnoReturn, needs reconversion

    if (pReturnTypeDescr)
    {
        bool bSimpleReturn = !arm::return_in_hidden_param( pReturnTypeRef );

        if (bSimpleReturn)
            pCppReturn = pUnoReturn; // direct way for simple types
        else
        {
            // complex return via ptr
            pCppReturn = (bridges::cpp_uno::shared::relatesToInterfaceType( pReturnTypeDescr )
                    ? __builtin_alloca( pReturnTypeDescr->nSize )
                    : pUnoReturn); // direct way

            INSERT_INT32( &pCppReturn, nGPR, pGPR, pStack );
        }
    }
    // push this
    void * pAdjustedThisPtr = reinterpret_cast< void ** >(pThis->getCppI())
        + aVtableSlot.offset;
    INSERT_INT32( &pAdjustedThisPtr, nGPR, pGPR, pStack );

    // stack space
    static_assert(sizeof(void *) == sizeof(sal_Int32), "### unexpected size!");
    // args
    void ** pCppArgs  = (void **)alloca( 3 * sizeof(void *) * nParams );
    // indices of values this have to be converted (interface conversion cpp<=>uno)
    sal_Int32 * pTempIndices = (sal_Int32 *)(pCppArgs + nParams);
    // type descriptions for reconversions
    typelib_TypeDescription ** ppTempParamTypeDescr = (typelib_TypeDescription **)(pCppArgs + (2 * nParams));

    sal_Int32 nTempIndices   = 0;

    for ( sal_Int32 nPos = 0; nPos < nParams; ++nPos )
    {
        const typelib_MethodParameter & rParam = pParams[nPos];
        typelib_TypeDescription * pParamTypeDescr = 0;
        TYPELIB_DANGER_GET( &pParamTypeDescr, rParam.pTypeRef );

        if (!rParam.bOut && bridges::cpp_uno::shared::isSimpleType( pParamTypeDescr ))
        {
//            uno_copyAndConvertData( pCppArgs[nPos] = pStack, pUnoArgs[nPos],
            uno_copyAndConvertData( pCppArgs[nPos] = alloca(8), pUnoArgs[nPos],
                pParamTypeDescr, pThis->getBridge()->getUno2Cpp() );

            switch (pParamTypeDescr->eTypeClass)
            {
            case typelib_TypeClass_HYPER:
            case typelib_TypeClass_UNSIGNED_HYPER:
#if OSL_DEBUG_LEVEL > 2
                fprintf(stderr, "hyper is %p\n", pCppArgs[nPos]);
#endif
                INSERT_INT64( pCppArgs[nPos], nGPR, pGPR, pStack, pStackStart );
                break;
            case typelib_TypeClass_LONG:
            case typelib_TypeClass_UNSIGNED_LONG:
            case typelib_TypeClass_ENUM:
#if OSL_DEBUG_LEVEL > 2
                fprintf(stderr, "long is %p\n", pCppArgs[nPos]);
#endif
                INSERT_INT32( pCppArgs[nPos], nGPR, pGPR, pStack );
                break;
            case typelib_TypeClass_SHORT:
            case typelib_TypeClass_CHAR:
            case typelib_TypeClass_UNSIGNED_SHORT:
                INSERT_INT16( pCppArgs[nPos], nGPR, pGPR, pStack );
                break;
            case typelib_TypeClass_BOOLEAN:
            case typelib_TypeClass_BYTE:
                INSERT_INT8( pCppArgs[nPos], nGPR, pGPR, pStack );
                break;
            case typelib_TypeClass_FLOAT:
                INSERT_FLOAT( pCppArgs[nPos], nGPR, pGPR, pStack );
                break;
            case typelib_TypeClass_DOUBLE:
                INSERT_DOUBLE( pCppArgs[nPos], nGPR, pGPR, pStack, pStackStart );
                break;
            default:
                break;
            }
            // no longer needed
            TYPELIB_DANGER_RELEASE( pParamTypeDescr );
        }
        else // ptr to complex value | ref
        {
            if (! rParam.bIn) // is pure out
            {
                // cpp out is constructed mem, uno out is not!
                uno_constructData(
                    pCppArgs[nPos] = alloca( pParamTypeDescr->nSize ),
                    pParamTypeDescr );
                pTempIndices[nTempIndices] = nPos; // default constructed for cpp call
                // will be released at reconversion
                ppTempParamTypeDescr[nTempIndices++] = pParamTypeDescr;
            }
            // is in/inout
            else if (bridges::cpp_uno::shared::relatesToInterfaceType( pParamTypeDescr ))
            {
                uno_copyAndConvertData(
                    pCppArgs[nPos] = alloca( pParamTypeDescr->nSize ),
                    pUnoArgs[nPos], pParamTypeDescr, pThis->getBridge()->getUno2Cpp() );

                pTempIndices[nTempIndices] = nPos; // has to be reconverted
                // will be released at reconversion
                ppTempParamTypeDescr[nTempIndices++] = pParamTypeDescr;
            }
            else // direct way
            {
                pCppArgs[nPos] = pUnoArgs[nPos];
                // no longer needed
                TYPELIB_DANGER_RELEASE( pParamTypeDescr );
            }
            INSERT_INT32( &(pCppArgs[nPos]), nGPR, pGPR, pStack );
        }
    }

    try
    {
        try {
            callVirtualMethod(
                pAdjustedThisPtr, aVtableSlot.index,
                pCppReturn, pReturnTypeRef,
                pStackStart,
                (pStack - pStackStart),
                pGPR, nGPR,
                pFPR);
        } catch (css::uno::Exception &) {
            throw;
        } catch (std::exception & e) {
            throw css::uno::RuntimeException(
                "C++ code threw " + o3tl::runtimeToOUString(typeid(e).name()) + ": "
                + o3tl::runtimeToOUString(e.what()));
        } catch (...) {
            throw css::uno::RuntimeException("C++ code threw unknown exception");
        }

        // NO exception occurred...
        *ppUnoExc = 0;

        // reconvert temporary params
        for ( ; nTempIndices--; )
        {
            sal_Int32 nIndex = pTempIndices[nTempIndices];
            typelib_TypeDescription * pParamTypeDescr = ppTempParamTypeDescr[nTempIndices];

            if (pParams[nIndex].bIn)
            {
                if (pParams[nIndex].bOut) // inout
                {
                    uno_destructData( pUnoArgs[nIndex], pParamTypeDescr, 0 ); // destroy uno value
                    uno_copyAndConvertData( pUnoArgs[nIndex], pCppArgs[nIndex], pParamTypeDescr,
                                            pThis->getBridge()->getCpp2Uno() );
                }
            }
            else // pure out
            {
                uno_copyAndConvertData( pUnoArgs[nIndex], pCppArgs[nIndex], pParamTypeDescr,
                                        pThis->getBridge()->getCpp2Uno() );
            }
            // destroy temp cpp param => cpp: every param was constructed
            uno_destructData( pCppArgs[nIndex], pParamTypeDescr, cpp_release );

            TYPELIB_DANGER_RELEASE( pParamTypeDescr );
        }
        // return value
        if (pCppReturn && pUnoReturn != pCppReturn)
        {
            uno_copyAndConvertData( pUnoReturn, pCppReturn, pReturnTypeDescr,
                                    pThis->getBridge()->getCpp2Uno() );
            uno_destructData( pCppReturn, pReturnTypeDescr, cpp_release );
        }
    }
    catch (...)
    {
        // fill uno exception
        CPPU_CURRENT_NAMESPACE::fillUnoException(*ppUnoExc, pThis->getBridge()->getCpp2Uno());

        // temporary params
        for ( ; nTempIndices--; )
        {
            sal_Int32 nIndex = pTempIndices[nTempIndices];
            // destroy temp cpp param => cpp: every param was constructed
            uno_destructData( pCppArgs[nIndex], ppTempParamTypeDescr[nTempIndices], cpp_release );
            TYPELIB_DANGER_RELEASE( ppTempParamTypeDescr[nTempIndices] );
        }

        // return type
        if (pReturnTypeDescr)
            TYPELIB_DANGER_RELEASE( pReturnTypeDescr );
    }
}
}

namespace bridges { namespace cpp_uno { namespace shared {

void unoInterfaceProxyDispatch(
    uno_Interface * pUnoI, const typelib_TypeDescription * pMemberDescr,
    void * pReturn, void * pArgs[], uno_Any ** ppException )
{
    // is my surrogate
    bridges::cpp_uno::shared::UnoInterfaceProxy * pThis
          = static_cast< bridges::cpp_uno::shared::UnoInterfaceProxy * >(pUnoI);
#if OSL_DEBUG_LEVEL > 0
    typelib_InterfaceTypeDescription * pTypeDescr = pThis->pTypeDescr;
#endif

    switch (pMemberDescr->eTypeClass)
    {
    case typelib_TypeClass_INTERFACE_ATTRIBUTE:
    {
#if OSL_DEBUG_LEVEL > 0
        // determine vtable call index
        sal_Int32 nMemberPos = ((typelib_InterfaceMemberTypeDescription *)pMemberDescr)->nPosition;
        assert(nMemberPos < pTypeDescr->nAllMembers);
#endif

        VtableSlot aVtableSlot(
            getVtableSlot(
            reinterpret_cast<typelib_InterfaceAttributeTypeDescription const *>
              (pMemberDescr)));

        if (pReturn)
        {
            // dependent dispatch
            cpp_call(
                pThis, aVtableSlot,
                ((typelib_InterfaceAttributeTypeDescription *)pMemberDescr)->pAttributeTypeRef,
                0, 0, // no params
                pReturn, pArgs, ppException );
        }
        else
        {
            // is SET
            typelib_MethodParameter aParam;
            aParam.pTypeRef =
                ((typelib_InterfaceAttributeTypeDescription *)pMemberDescr)->pAttributeTypeRef;
            aParam.bIn      = sal_True;
            aParam.bOut     = sal_False;

            typelib_TypeDescriptionReference * pReturnTypeRef = 0;
            OUString aVoidName("void");
            typelib_typedescriptionreference_new(
                &pReturnTypeRef, typelib_TypeClass_VOID, aVoidName.pData );

            // dependent dispatch
            aVtableSlot.index += 1;
            cpp_call(
                pThis, aVtableSlot, // get, then set method
                pReturnTypeRef,
                1, &aParam,
                pReturn, pArgs, ppException );

            typelib_typedescriptionreference_release( pReturnTypeRef );
        }

        break;
    }
    case typelib_TypeClass_INTERFACE_METHOD:
    {
#if OSL_DEBUG_LEVEL > 0
        // determine vtable call index
        sal_Int32 nMemberPos = ((typelib_InterfaceMemberTypeDescription *)pMemberDescr)->nPosition;
        assert(nMemberPos < pTypeDescr->nAllMembers);
#endif

        VtableSlot aVtableSlot(
            getVtableSlot(
            reinterpret_cast<typelib_InterfaceMethodTypeDescription const *>
              (pMemberDescr)));

        switch (aVtableSlot.index)
        {
            // standard calls
        case 1: // acquire uno interface
            (*pUnoI->acquire)( pUnoI );
            *ppException = 0;
            break;
        case 2: // release uno interface
            (*pUnoI->release)( pUnoI );
            *ppException = 0;
            break;
        case 0: // queryInterface() opt
        {
            typelib_TypeDescription * pTD = 0;
            TYPELIB_DANGER_GET( &pTD, reinterpret_cast< Type * >( pArgs[0] )->getTypeLibType() );
            if (pTD)
            {
                uno_Interface * pInterface = 0;
                (*pThis->getBridge()->getUnoEnv()->getRegisteredInterface)(
                    pThis->getBridge()->getUnoEnv(),
                    (void **)&pInterface, pThis->oid.pData, (typelib_InterfaceTypeDescription *)pTD );

                if (pInterface)
                {
                    ::uno_any_construct(
                        reinterpret_cast< uno_Any * >( pReturn ),
                        &pInterface, pTD, 0 );
                    (*pInterface->release)( pInterface );
                    TYPELIB_DANGER_RELEASE( pTD );
                    *ppException = 0;
                    break;
                }
                TYPELIB_DANGER_RELEASE( pTD );
            }
        } SAL_FALLTHROUGH; // else perform queryInterface()
        default:
            // dependent dispatch
            cpp_call(
                pThis, aVtableSlot,
                ((typelib_InterfaceMethodTypeDescription *)pMemberDescr)->pReturnTypeRef,
                ((typelib_InterfaceMethodTypeDescription *)pMemberDescr)->nParams,
                ((typelib_InterfaceMethodTypeDescription *)pMemberDescr)->pParams,
                pReturn, pArgs, ppException );
        }
        break;
    }
    default:
    {
        ::com::sun::star::uno::RuntimeException aExc(
            "illegal member type description!",
            ::com::sun::star::uno::Reference< ::com::sun::star::uno::XInterface >() );

        Type const & rExcType = cppu::UnoType<decltype(aExc)>::get();
        // binary identical null reference
        ::uno_type_any_construct( *ppException, &aExc, rExcType.getTypeLibType(), 0 );
    }
    }
}

} } }

/* vim:set shiftwidth=4 softtabstop=4 expandtab: */