1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218 | /* -*- Mode: C++; tab-width: 4; indent-tabs-mode: nil; c-basic-offset: 4 -*- */
/*
* This file is part of the LibreOffice project.
*
* This Source Code Form is subject to the terms of the Mozilla Public
* License, v. 2.0. If a copy of the MPL was not distributed with this
* file, You can obtain one at http://mozilla.org/MPL/2.0/.
*
* This file incorporates work covered by the following license notice:
*
* Licensed to the Apache Software Foundation (ASF) under one or more
* contributor license agreements. See the NOTICE file distributed
* with this work for additional information regarding copyright
* ownership. The ASF licenses this file to you under the Apache
* License, Version 2.0 (the "License"); you may not use this file
* except in compliance with the License. You may obtain a copy of
* the License at http://www.apache.org/licenses/LICENSE-2.0 .
*/
#ifndef INCLUDED_FILTER_SOURCE_GRAPHICFILTER_IDXF_DXFVEC_HXX
#define INCLUDED_FILTER_SOURCE_GRAPHICFILTER_IDXF_DXFVEC_HXX
#include <sal/types.h>
#include <vcl/lineinfo.hxx>
class Point;
class DXFLineInfo {
public:
LineStyle eStyle;
sal_Int32 nDashCount;
double fDashLen;
sal_Int32 nDotCount;
double fDotLen;
double fDistance;
DXFLineInfo() :
eStyle(LineStyle::Solid),
nDashCount(0),
fDashLen(0),
nDotCount(0),
fDotLen(0),
fDistance(0) {}
};
//---------------------------- DXFVector ---------------------------------------
// common 3D vector with doubles
class DXFVector {
public:
double fx,fy,fz; // public ! - why not?
inline DXFVector(double fX=0.0, double fY=0.0, double fZ=0.0);
// summation/subtraktion:
DXFVector & operator += (const DXFVector & rV);
DXFVector operator + (const DXFVector & rV) const;
DXFVector operator - (const DXFVector & rV) const;
// vector product
DXFVector operator * (const DXFVector & rV) const;
// scalar product:
double SProd(const DXFVector & rV) const;
// multiplication with scalar:
DXFVector & operator *= (double fs);
DXFVector operator * (double fs) const;
// length:
double Abs() const;
// vector with same direction and a length of 1:
DXFVector Unit() const;
// equivalence or net:
bool operator == (const DXFVector & rV) const;
};
//---------------------------- DXFTransform ------------------------------------
// a transformation matrice specialized for our problem
class DXFTransform {
public:
DXFTransform();
// destination coordinate = source coordinate
DXFTransform(double fScaleX, double fScaleY, double fScaleZ,
const DXFVector & rShift);
// dest coordinate = translate(scale(source coordinate))
DXFTransform(double fScaleX, double fScaleY, double fScaleZ,
double fRotAngle,
const DXFVector & rShift);
// dest coordinate = translate(rotate(scale(source coordinate)))
// rotation around z-axis, fRotAngle in degrees.
DXFTransform(const DXFVector & rExtrusion);<--- Class 'DXFTransform' has a constructor with 1 argument that is not explicit. [+]Class 'DXFTransform' has a constructor with 1 argument that is not explicit. Such constructors should in general be explicit for type safety reasons. Using the explicit keyword in the constructor means some mistakes when using the class can be avoided. <--- Class 'DXFTransform' has a constructor with 1 argument that is not explicit. [+]Class 'DXFTransform' has a constructor with 1 argument that is not explicit. Such constructors should in general be explicit for type safety reasons. Using the explicit keyword in the constructor means some mistakes when using the class can be avoided. <--- Class 'DXFTransform' has a constructor with 1 argument that is not explicit. [+]Class 'DXFTransform' has a constructor with 1 argument that is not explicit. Such constructors should in general be explicit for type safety reasons. Using the explicit keyword in the constructor means some mistakes when using the class can be avoided. <--- Class 'DXFTransform' has a constructor with 1 argument that is not explicit. [+]Class 'DXFTransform' has a constructor with 1 argument that is not explicit. Such constructors should in general be explicit for type safety reasons. Using the explicit keyword in the constructor means some mistakes when using the class can be avoided. <--- Class 'DXFTransform' has a constructor with 1 argument that is not explicit. [+]Class 'DXFTransform' has a constructor with 1 argument that is not explicit. Such constructors should in general be explicit for type safety reasons. Using the explicit keyword in the constructor means some mistakes when using the class can be avoided. <--- Class 'DXFTransform' has a constructor with 1 argument that is not explicit. [+]Class 'DXFTransform' has a constructor with 1 argument that is not explicit. Such constructors should in general be explicit for type safety reasons. Using the explicit keyword in the constructor means some mistakes when using the class can be avoided. <--- Class 'DXFTransform' has a constructor with 1 argument that is not explicit. [+]Class 'DXFTransform' has a constructor with 1 argument that is not explicit. Such constructors should in general be explicit for type safety reasons. Using the explicit keyword in the constructor means some mistakes when using the class can be avoided.
// Transformation "ECS->WCS" via "Entity Extrusion Direction"
// ant the "Arbitrary Axis Algorithm"
// (See DXF-Docu from AutoDesk)
DXFTransform(const DXFVector & rViewDir, const DXFVector & rViewTarget);
// Transformation object space->picture space on the basis of direction
// destination point of a viewport
// (See DXF-Docu from AutoDesk: VPORT)
DXFTransform(const DXFTransform & rT1, const DXFTransform & rT2);
// destination coordinate = rT2(rT1(source coordinate))
void Transform(const DXFVector & rSrc, DXFVector & rTgt) const;
// Transformation from DXFVector to DXFVector
void Transform(const DXFVector & rSrc, Point & rTgt) const;
// Transformation from DXFVector to SvPoint
void TransDir(const DXFVector & rSrc, DXFVector & rTgt) const;
// Transformation of a relative vector (so no translation)
bool TransCircleToEllipse(double fRadius, double & rEx, double & rEy) const;
// Attempt to transform a circle (in xy plane) so that it results
// in an aligned ellipse. If the does not work because an ellipse of
// arbitrary position would be created, sal_False is returned.
// (The center point will not be transformed, use Transform(..))
double CalcRotAngle() const;
// Calculates the rotation angle around z-axis (in degrees)
bool Mirror() const;
// Returns sal_True, if the matrice represents a left-handed coordinate system
LineInfo Transform(const DXFLineInfo& aDXFLineInfo) const;
// Transform to LineInfo
private:
DXFVector aMX;
DXFVector aMY;
DXFVector aMZ;
DXFVector aMP;
};
//------------------------------- inlines --------------------------------------
inline DXFVector::DXFVector(double fX, double fY, double fZ)
{
fx=fX; fy=fY; fz=fZ;
}
inline DXFVector & DXFVector::operator += (const DXFVector & rV)
{
fx+=rV.fx; fy+=rV.fy; fz+=rV.fz;
return *this;
}
inline DXFVector DXFVector::operator + (const DXFVector & rV) const
{
return DXFVector(fx+rV.fx, fy+rV.fy, fz+rV.fz);
}
inline DXFVector DXFVector::operator - (const DXFVector & rV) const
{
return DXFVector(fx-rV.fx, fy-rV.fy, fz-rV.fz);
}
inline DXFVector DXFVector::operator * (const DXFVector & rV) const
{
return DXFVector(
fy * rV.fz - fz * rV.fy,
fz * rV.fx - fx * rV.fz,
fx * rV.fy - fy * rV.fx
);
}
inline double DXFVector::SProd(const DXFVector & rV) const
{
return fx*rV.fx + fy*rV.fy + fz*rV.fz;
}
inline DXFVector & DXFVector::operator *= (double fs)
{
fx*=fs; fy*=fs; fz*=fs;
return *this;
}
inline DXFVector DXFVector::operator * (double fs) const
{
return DXFVector(fx*fs,fy*fs,fz*fs);
}
inline bool DXFVector::operator == (const DXFVector & rV) const
{
if (fx==rV.fx && fy==rV.fy && fz==rV.fz) return true;
else return false;
}
#endif
/* vim:set shiftwidth=4 softtabstop=4 expandtab: */
|