1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
/* -*- Mode: C++; tab-width: 4; indent-tabs-mode: nil; c-basic-offset: 4 -*- */
/*
 * This file is part of the LibreOffice project.
 *
 * This Source Code Form is subject to the terms of the Mozilla Public
 * License, v. 2.0. If a copy of the MPL was not distributed with this
 * file, You can obtain one at http://mozilla.org/MPL/2.0/.
 *
 * This file incorporates work covered by the following license notice:
 *
 *   Licensed to the Apache Software Foundation (ASF) under one or more
 *   contributor license agreements. See the NOTICE file distributed
 *   with this work for additional information regarding copyright
 *   ownership. The ASF licenses this file to you under the Apache
 *   License, Version 2.0 (the "License"); you may not use this file
 *   except in compliance with the License. You may obtain a copy of
 *   the License at http://www.apache.org/licenses/LICENSE-2.0 .
 */

#include <sal/config.h>

#include <exception>
#include <malloc.h>
#include <typeinfo>

#include <com/sun/star/uno/Exception.hpp>
#include <com/sun/star/uno/RuntimeException.hpp>
#include <com/sun/star/uno/genfunc.hxx>
#include <o3tl/runtimetooustring.hxx>
#include <uno/data.h>

#include "bridge.hxx"
#include "types.hxx"
#include "unointerfaceproxy.hxx"
#include "vtables.hxx"

#include "share.hxx"


using namespace ::com::sun::star::uno;

namespace
{


static void callVirtualMethod(
    void * pAdjustedThisPtr,
    sal_Int32 nVtableIndex,
    void * pRegisterReturn,
    typelib_TypeClass eReturnType,
    char * pPT,
    sal_Int32 * pStackLongs,
    sal_Int32 nStackLongs)
{

  // parameter list is mixed list of * and values
  // reference parameters are pointers

  // the basic idea here is to use gpr[8] as a storage area for
  // the future values of registers r3 to r10 needed for the call,
  // and similarly fpr[8] as a storage area for the future values
  // of floating point registers f1 to f8

     unsigned long * mfunc;        // actual function to be invoked
     int gpr[8];                   // storage for gpregisters, map to r3-r10
     int off;                      // offset used to find function
#ifndef __NO_FPRS__
     double fpr[8];                // storage for fpregisters, map to f1-f8
     int f;                        // number of fprs mapped so far
     double dret;                  // temporary function return values
#endif
     int n;                        // number of gprs mapped so far
     long *p;                      // pointer to parameter overflow area
     int c;                        // character of parameter type being decoded
     int iret, iret2;

     // Because of the Power PC calling conventions we could be passing
     // parameters in both register types and on the stack. To create the
     // stack parameter area we need we now simply allocate local
     // variable storage param[] that is at least the size of the parameter stack
     // (more than enough space) which we can overwrite the parameters into.

     // Note: This keeps us from having to decode the signature twice and
     // prevents problems with later local variables.

     // Note: could require up to  2*nStackLongs words of parameter stack area
     // if the call has many float parameters (i.e. floats take up only 1
     // word on the stack but double takes 2 words in parameter area in the
     // stack frame.

     // Update! Floats on the outgoing parameter stack only take up 1 word
     // (stfs is used) which is not correct according to the ABI but we
     // will match what the compiler does until this is figured out

     // this grows the current stack to the appropriate size
     // and sets the outgoing stack pointer p to the right place
     __asm__ __volatile__ (
          "rlwinm %0,%0,3,3,28\n\t"
          "addi %0,%0,22\n\t"
          "rlwinm %0,%0,0,4,28\n\t"
          "lwz 0,0(1)\n\t"
          "subf 1,%0,1\n\t"
          "stw 0,0(1)\n\t"
          : : "r" (nStackLongs) : "0" );

     __asm__ __volatile__ ( "addi %0,1,8" : "=r" (p) : );

     // never called
     // if (! pAdjustedThisPtr ) dummy_can_throw_anything("xxx"); // address something


     // now begin to load the C++ function arguments into storage
     n = 0;
#ifndef __NO_FPRS__
     f = 0;
#endif

     // now we need to parse the entire signature string */
     // until we get the END indicator */

     // treat complex return pointer like any other parameter

#if 0
     /* Let's figure out what is really going on here*/
     fprintf(stderr,"callVirtualMethod parameters string is %s\n",pPT);
     int k = nStackLongs;
     long * q = (long *)pStackLongs;
     while (k > 0) {
       fprintf(stderr,"uno stack is: %x\n",*q);
       k--;
       q++;
     }
#endif

     /* parse the argument list up to the ending ) */
     while (*pPT != 'X') {
       c = *pPT;
       switch (c) {
       case 'D':                   /* type is double */
#ifndef __NO_FPRS__
            if (f < 8) {
               fpr[f++] = *((double *)pStackLongs);   /* store in register */
#else
            if (n & 1)
               n++;
            if (n < 8) {<--- Either the condition 'n<8' is redundant or the array 'gpr[8]' is accessed at index 8, which is out of bounds.
               gpr[n++] = *pStackLongs;
               gpr[n++] = *(pStackLongs+1);
#endif
        } else {
           if (((long) p) & 4)
              p++;
               *p++ = *pStackLongs;       /* or on the parameter stack */
               *p++ = *(pStackLongs + 1);
        }
            pStackLongs += 2;
            break;

       case 'F':                   /* type is float */
     /* this assumes that floats are stored as 1 32 bit word on param
        stack and that if passed in parameter stack to C, should be
        as double word.

            Whoops: the abi is not actually followed by gcc, need to
            store floats as a *single* word on outgoing parameter stack
            to match what gcc actually does
     */
#ifndef __NO_FPRS__
            if (f < 8) {
               fpr[f++] = *((float *)pStackLongs);
#else
            if (n < 8) {
               gpr[n++] = *pStackLongs;
#endif
        } else {
#if 0 /* if abi were followed */
           if (((long) p) & 4)
              p++;
           *((double *)p) = *((float *)pStackLongs);
               p += 2;
#else
           *((float *)p) = *((float *)pStackLongs);<--- Casting between integer* and float* which have an incompatible binary data representation.
               p += 1;
#endif
        }
            pStackLongs += 1;
            break;

       case 'H':                /* type is long long */
            if (n & 1) n++;     /* note even elements gpr[] will map to
                                   odd registers*/
            if (n <= 6) {
               gpr[n++] = *pStackLongs;
               gpr[n++] = *(pStackLongs+1);
        } else {
           if (((long) p) & 4)
              p++;
               *p++ = *pStackLongs;
               *p++ = *(pStackLongs+1);
        }
            pStackLongs += 2;
            break;

       case 'S':
            if (n < 8) {
               gpr[n++] = *((unsigned short*)pStackLongs);
        } else {
               *p++ = *((unsigned short *)pStackLongs);
        }
            pStackLongs += 1;
            break;

       case 'B':
            if (n < 8) {
               gpr[n++] = *((char *)pStackLongs);
        } else {
               *p++ = *((char *)pStackLongs);
        }
            pStackLongs += 1;
            break;

       default:
            if (n < 8) {
               gpr[n++] = *pStackLongs;
        } else {
               *p++ = *pStackLongs;
        }
            pStackLongs += 1;
            break;
       }
       pPT++;
     }

     /* figure out the address of the function we need to invoke */
     off = nVtableIndex;
     off = off * 4;                         // 4 bytes per slot
     mfunc = *((unsigned long **)pAdjustedThisPtr);    // get the address of the vtable
     mfunc = (unsigned long *)((char *)mfunc + off); // get the address from the vtable entry at offset
     mfunc = *((unsigned long **)mfunc);                 // the function is stored at the address
     typedef void (*FunctionCall)(sal_uInt32, sal_uInt32, sal_uInt32, sal_uInt32, sal_uInt32, sal_uInt32, sal_uInt32, sal_uInt32);
     FunctionCall ptr = (FunctionCall)mfunc;

    /* Set up the machine registers and invoke the function */

    __asm__ __volatile__ (
        "lwz    3,  0(%0)\n\t"
        "lwz    4,  4(%0)\n\t"
        "lwz    5,  8(%0)\n\t"
        "lwz    6,  12(%0)\n\t"
        "lwz    7,  16(%0)\n\t"
        "lwz    8,  20(%0)\n\t"
        "lwz    9,  24(%0)\n\t"
        "lwz    10, 28(%0)\n\t"
#ifndef __NO_FPRS__
        "lfd    1,  0(%1)\n\t"
        "lfd    2,  8(%1)\n\t"
        "lfd    3,  16(%1)\n\t"
        "lfd    4,  24(%1)\n\t"
        "lfd    5,  32(%1)\n\t"
        "lfd    6,  40(%1)\n\t"
        "lfd    7,  48(%1)\n\t"
        "lfd    8,  56(%1)\n\t"
            : : "r" (gpr), "r" (fpr)
#else
            : : "r" (gpr)
#endif
        : "0", "3", "4", "5", "6", "7", "8", "9", "10", "11", "12"
    );

    // tell gcc that r3 to r10 are not available to it for doing the TOC and exception munge on the func call
    register sal_uInt32 r3 __asm__("r3");
    register sal_uInt32 r4 __asm__("r4");
    register sal_uInt32 r5 __asm__("r5");
    register sal_uInt32 r6 __asm__("r6");
    register sal_uInt32 r7 __asm__("r7");
    register sal_uInt32 r8 __asm__("r8");
    register sal_uInt32 r9 __asm__("r9");
    register sal_uInt32 r10 __asm__("r10");

    (*ptr)(r3, r4, r5, r6, r7, r8, r9, r10);

    __asm__ __volatile__ (
       "mr     %0,     3\n\t"
       "mr     %1,     4\n\t"
#ifndef __NO_FPRS__
       "fmr    %2,     1\n\t"
       : "=r" (iret), "=r" (iret2), "=f" (dret)
#else
       : "=r" (iret), "=r" (iret2)
#endif
       : );

    switch( eReturnType )
    {
        case typelib_TypeClass_HYPER:
        case typelib_TypeClass_UNSIGNED_HYPER:
                ((long*)pRegisterReturn)[0] = iret;
            ((long*)pRegisterReturn)[1] = iret2;
        case typelib_TypeClass_LONG:
        case typelib_TypeClass_UNSIGNED_LONG:
        case typelib_TypeClass_ENUM:
            ((long*)pRegisterReturn)[0] = iret;
            break;
        case typelib_TypeClass_CHAR:
        case typelib_TypeClass_SHORT:
        case typelib_TypeClass_UNSIGNED_SHORT:
                *(unsigned short*)pRegisterReturn = (unsigned short)iret;
            break;
        case typelib_TypeClass_BOOLEAN:
        case typelib_TypeClass_BYTE:
                *(unsigned char*)pRegisterReturn = (unsigned char)iret;
            break;
        case typelib_TypeClass_FLOAT:
#ifndef __NO_FPRS__
                *(float*)pRegisterReturn = (float)dret;
#else
                ((unsigned int*)pRegisterReturn)[0] = iret;
#endif
            break;
        case typelib_TypeClass_DOUBLE:
#ifndef __NO_FPRS__
            *(double*)pRegisterReturn = dret;
#else
            ((unsigned int*)pRegisterReturn)[0] = iret;
            ((unsigned int*)pRegisterReturn)[1] = iret2;
#endif
            break;
        default:
            break;
    }
}


static void cpp_call(
    bridges::cpp_uno::shared::UnoInterfaceProxy * pThis,
    bridges::cpp_uno::shared::VtableSlot  aVtableSlot,
    typelib_TypeDescriptionReference * pReturnTypeRef,
    sal_Int32 nParams, typelib_MethodParameter * pParams,
    void * pUnoReturn, void * pUnoArgs[], uno_Any ** ppUnoExc )
{
      // max space for: [complex ret ptr], values|ptr ...
      char * pCppStack      =
          (char *)alloca( sizeof(sal_Int32) + ((nParams+2) * sizeof(sal_Int64)) );
      char * pCppStackStart = pCppStack;

        // need to know parameter types for callVirtualMethod so generate a signature string
        char * pParamType = (char *) alloca(nParams+2);
        char * pPT = pParamType;

    // return
    typelib_TypeDescription * pReturnTypeDescr = 0;
    TYPELIB_DANGER_GET( &pReturnTypeDescr, pReturnTypeRef );
    // assert(pReturnTypeDescr);

    void * pCppReturn = 0; // if != 0 && != pUnoReturn, needs reconversion

    if (pReturnTypeDescr)<--- Either the condition 'pReturnTypeDescr' is redundant or there is possible null pointer dereference: pReturnTypeDescr.
    {
        if (bridges::cpp_uno::shared::isSimpleType( pReturnTypeDescr ))
        {
            pCppReturn = pUnoReturn; // direct way for simple types
        }
        else
        {
            // complex return via ptr
            pCppReturn = *(void **)pCppStack =
                              (bridges::cpp_uno::shared::relatesToInterfaceType( pReturnTypeDescr )
                   ? alloca( pReturnTypeDescr->nSize ): pUnoReturn); // direct way
                        *pPT++ = 'I'; //signify that a complex return type on stack
            pCppStack += sizeof(void *);
        }
    }
    // push this
        void* pAdjustedThisPtr = reinterpret_cast< void **>(pThis->getCppI()) + aVtableSlot.offset;
    *(void**)pCppStack = pAdjustedThisPtr;
    pCppStack += sizeof( void* );
        *pPT++ = 'I';

    // stack space
    // static_assert(sizeof(void *) == sizeof(sal_Int32), "### unexpected size!");
    // args
    void ** pCppArgs  = (void **)alloca( 3 * sizeof(void *) * nParams );
    // indices of values this have to be converted (interface conversion cpp<=>uno)
    sal_Int32 * pTempIndices = (sal_Int32 *)(pCppArgs + nParams);
    // type descriptions for reconversions
    typelib_TypeDescription ** ppTempParamTypeDescr = (typelib_TypeDescription **)(pCppArgs + (2 * nParams));

    sal_Int32 nTempIndices   = 0;

    for ( sal_Int32 nPos = 0; nPos < nParams; ++nPos )
    {
        const typelib_MethodParameter & rParam = pParams[nPos];
        typelib_TypeDescription * pParamTypeDescr = 0;
        TYPELIB_DANGER_GET( &pParamTypeDescr, rParam.pTypeRef );

        if (!rParam.bOut && bridges::cpp_uno::shared::isSimpleType( pParamTypeDescr ))
        {
            uno_copyAndConvertData( pCppArgs[nPos] = pCppStack, pUnoArgs[nPos], pParamTypeDescr,
                                    pThis->getBridge()->getUno2Cpp() );

            switch (pParamTypeDescr->eTypeClass)
            {

                          // we need to know type of each param so that we know whether to use
                          // gpr or fpr to pass in parameters:
                          // Key: I - int, long, pointer, etc means pass in gpr
                          //      B - byte value passed in gpr
                          //      S - short value passed in gpr
                          //      F - float value pass in fpr
                          //      D - double value pass in fpr
                          //      H - long long int pass in proper pairs of gpr (3,4) (5,6), etc
                          //      X - indicates end of parameter description string

                  case typelib_TypeClass_LONG:
                  case typelib_TypeClass_UNSIGNED_LONG:
                  case typelib_TypeClass_ENUM:
                *pPT++ = 'I';
                break;
                   case typelib_TypeClass_SHORT:
                  case typelib_TypeClass_CHAR:
                  case typelib_TypeClass_UNSIGNED_SHORT:
                            *pPT++ = 'S';
                            break;
                  case typelib_TypeClass_BOOLEAN:
                  case typelib_TypeClass_BYTE:
                            *pPT++ = 'B';
                            break;
                  case typelib_TypeClass_FLOAT:
                            *pPT++ = 'F';
                break;
                case typelib_TypeClass_DOUBLE:
                *pPT++ = 'D';
                pCppStack += sizeof(sal_Int32); // extra long
                break;
            case typelib_TypeClass_HYPER:
            case typelib_TypeClass_UNSIGNED_HYPER:
                *pPT++ = 'H';
                pCppStack += sizeof(sal_Int32); // extra long
            default:
                break;
            }

            // no longer needed
            TYPELIB_DANGER_RELEASE( pParamTypeDescr );
        }
        else // ptr to complex value | ref
        {
            if (! rParam.bIn) // is pure out
            {
                // cpp out is constructed mem, uno out is not!
                uno_constructData(
                    *(void **)pCppStack = pCppArgs[nPos] = alloca( pParamTypeDescr->nSize ),
                    pParamTypeDescr );
                pTempIndices[nTempIndices] = nPos; // default constructed for cpp call
                // will be released at reconversion
                ppTempParamTypeDescr[nTempIndices++] = pParamTypeDescr;
            }
            // is in/inout
            else if (bridges::cpp_uno::shared::relatesToInterfaceType( pParamTypeDescr ))
            {
                uno_copyAndConvertData(
                    *(void **)pCppStack = pCppArgs[nPos] = alloca( pParamTypeDescr->nSize ),
                    pUnoArgs[nPos], pParamTypeDescr,
                                        pThis->getBridge()->getUno2Cpp() );

                pTempIndices[nTempIndices] = nPos; // has to be reconverted
                // will be released at reconversion
                ppTempParamTypeDescr[nTempIndices++] = pParamTypeDescr;
            }
            else // direct way
            {
                *(void **)pCppStack = pCppArgs[nPos] = pUnoArgs[nPos];
                // no longer needed
                TYPELIB_DANGER_RELEASE( pParamTypeDescr );
            }
                        // KBH: FIXME: is this the right way to pass these
                        *pPT++='I';
        }
        pCppStack += sizeof(sal_Int32); // standard parameter length
    }

        // terminate the signature string
        *pPT++='X';
        *pPT=0;

    try
    {
        assert( !( (pCppStack - pCppStackStart ) & 3) && "UNALIGNED STACK !!! (Please DO panic)");
        try {
            callVirtualMethod(
                pAdjustedThisPtr, aVtableSlot.index,
                pCppReturn, pReturnTypeDescr->eTypeClass, pParamType,
                (sal_Int32 *)pCppStackStart, (pCppStack - pCppStackStart) / sizeof(sal_Int32) );
        } catch (css::uno::Exception &) {
            throw;
        } catch (std::exception & e) {
            throw css::uno::RuntimeException(
                "C++ code threw " + o3tl::runtimeToOUString(typeid(e).name()) + ": "
                + o3tl::runtimeToOUString(e.what()));
        } catch (...) {
            throw css::uno::RuntimeException("C++ code threw unknown exception");
        }
        // NO exception occurred...
        *ppUnoExc = 0;

        // reconvert temporary params
        for ( ; nTempIndices--; )
        {
            sal_Int32 nIndex = pTempIndices[nTempIndices];
            typelib_TypeDescription * pParamTypeDescr = ppTempParamTypeDescr[nTempIndices];

            if (pParams[nIndex].bIn)
            {
                if (pParams[nIndex].bOut) // inout
                {
                    uno_destructData( pUnoArgs[nIndex], pParamTypeDescr, 0 ); // destroy uno value
                    uno_copyAndConvertData( pUnoArgs[nIndex], pCppArgs[nIndex], pParamTypeDescr,
                                            pThis->getBridge()->getCpp2Uno() );
                }
            }
            else // pure out
            {
                uno_copyAndConvertData( pUnoArgs[nIndex], pCppArgs[nIndex], pParamTypeDescr,
                                        pThis->getBridge()->getCpp2Uno() );
            }
            // destroy temp cpp param => cpp: every param was constructed
            uno_destructData( pCppArgs[nIndex], pParamTypeDescr, cpp_release );

            TYPELIB_DANGER_RELEASE( pParamTypeDescr );
        }
        // return value
        if (pCppReturn && pUnoReturn != pCppReturn)
        {
            uno_copyAndConvertData( pUnoReturn, pCppReturn, pReturnTypeDescr,
                                    pThis->getBridge()->getCpp2Uno() );
            uno_destructData( pCppReturn, pReturnTypeDescr, cpp_release );
        }
    }
    catch (...)
    {
        // fill uno exception
        CPPU_CURRENT_NAMESPACE::fillUnoException(*ppUnoExc, pThis->getBridge()->getCpp2Uno());

        // temporary params
        for ( ; nTempIndices--; )
        {
            sal_Int32 nIndex = pTempIndices[nTempIndices];
            // destroy temp cpp param => cpp: every param was constructed
            uno_destructData( pCppArgs[nIndex], ppTempParamTypeDescr[nTempIndices], cpp_release );
            TYPELIB_DANGER_RELEASE( ppTempParamTypeDescr[nTempIndices] );
        }
        // return type
        if (pReturnTypeDescr)
            TYPELIB_DANGER_RELEASE( pReturnTypeDescr );
    }
}

}

namespace bridges { namespace cpp_uno { namespace shared {

void unoInterfaceProxyDispatch(
    uno_Interface * pUnoI, const typelib_TypeDescription * pMemberDescr,
    void * pReturn, void * pArgs[], uno_Any ** ppException )
{
    // is my surrogate
        bridges::cpp_uno::shared::UnoInterfaceProxy * pThis
            = static_cast< bridges::cpp_uno::shared::UnoInterfaceProxy *> (pUnoI);

    switch (pMemberDescr->eTypeClass)
    {
    case typelib_TypeClass_INTERFACE_ATTRIBUTE:
    {

        VtableSlot aVtableSlot(
            getVtableSlot(
                reinterpret_cast<
                    typelib_InterfaceAttributeTypeDescription const * >(
                        pMemberDescr)));

        if (pReturn)
        {
            // dependent dispatch
            cpp_call(
                pThis, aVtableSlot,
                ((typelib_InterfaceAttributeTypeDescription *)pMemberDescr)->pAttributeTypeRef,
                0, 0, // no params
                pReturn, pArgs, ppException );
        }
        else
        {
            // is SET
            typelib_MethodParameter aParam;
            aParam.pTypeRef =
                ((typelib_InterfaceAttributeTypeDescription *)pMemberDescr)->pAttributeTypeRef;
            aParam.bIn      = sal_True;
            aParam.bOut     = sal_False;

            typelib_TypeDescriptionReference * pReturnTypeRef = 0;
            OUString aVoidName("void");
            typelib_typedescriptionreference_new(
                &pReturnTypeRef, typelib_TypeClass_VOID, aVoidName.pData );

            // dependent dispatch
                        aVtableSlot.index += 1; //get then set method
            cpp_call(
                pThis, aVtableSlot,
                pReturnTypeRef,
                1, &aParam,
                pReturn, pArgs, ppException );

            typelib_typedescriptionreference_release( pReturnTypeRef );
        }

        break;
    }
    case typelib_TypeClass_INTERFACE_METHOD:
    {

        VtableSlot aVtableSlot(
            getVtableSlot(
                reinterpret_cast<
                    typelib_InterfaceMethodTypeDescription const * >(
                        pMemberDescr)));
        switch (aVtableSlot.index)
        {
            // standard calls
        case 1: // acquire uno interface
            (*pUnoI->acquire)( pUnoI );
            *ppException = 0;
            break;
        case 2: // release uno interface
            (*pUnoI->release)( pUnoI );
            *ppException = 0;
            break;
        case 0: // queryInterface() opt
        {
            typelib_TypeDescription * pTD = 0;
            TYPELIB_DANGER_GET( &pTD, reinterpret_cast< Type * >( pArgs[0] )->getTypeLibType() );
            if (pTD)
            {
                uno_Interface * pInterface = 0;
                (*pThis->pBridge->getUnoEnv()->getRegisteredInterface)(
                    pThis->pBridge->getUnoEnv(),
                    (void **)&pInterface, pThis->oid.pData, (typelib_InterfaceTypeDescription *)pTD );

                if (pInterface)
                {
                    ::uno_any_construct(
                        reinterpret_cast< uno_Any * >( pReturn ),
                        &pInterface, pTD, 0 );
                    (*pInterface->release)( pInterface );
                    TYPELIB_DANGER_RELEASE( pTD );
                    *ppException = 0;
                    break;
                }
                TYPELIB_DANGER_RELEASE( pTD );
            }
        } // else perform queryInterface()
        default:
            // dependent dispatch
            cpp_call(
                pThis, aVtableSlot,
                ((typelib_InterfaceMethodTypeDescription *)pMemberDescr)->pReturnTypeRef,
                ((typelib_InterfaceMethodTypeDescription *)pMemberDescr)->nParams,
                ((typelib_InterfaceMethodTypeDescription *)pMemberDescr)->pParams,
                pReturn, pArgs, ppException );
        }
        break;
    }
    default:
    {
        ::com::sun::star::uno::RuntimeException aExc(
            "illegal member type description!",
            ::com::sun::star::uno::Reference< ::com::sun::star::uno::XInterface >() );

        Type const & rExcType = cppu::UnoType<decltype(aExc)>::get();
        // binary identical null reference
        ::uno_type_any_construct( *ppException, &aExc, rExcType.getTypeLibType(), 0 );
    }
    }
}

} } }

/* vim:set shiftwidth=4 softtabstop=4 expandtab: */