1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
/* -*- Mode: C++; tab-width: 4; indent-tabs-mode: nil; c-basic-offset: 4 -*- */
/*
 * This file is part of the LibreOffice project.
 *
 * This Source Code Form is subject to the terms of the Mozilla Public
 * License, v. 2.0. If a copy of the MPL was not distributed with this
 * file, You can obtain one at http://mozilla.org/MPL/2.0/.
 *
 * This file incorporates work covered by the following license notice:
 *
 *   Licensed to the Apache Software Foundation (ASF) under one or more
 *   contributor license agreements. See the NOTICE file distributed
 *   with this work for additional information regarding copyright
 *   ownership. The ASF licenses this file to you under the Apache
 *   License, Version 2.0 (the "License"); you may not use this file
 *   except in compliance with the License. You may obtain a copy of
 *   the License at http://www.apache.org/licenses/LICENSE-2.0 .
 */

#include <sal/config.h>

#include <exception>
#include <malloc.h>
#include <typeinfo>

#include <com/sun/star/uno/Exception.hpp>
#include <com/sun/star/uno/RuntimeException.hpp>
#include <com/sun/star/uno/genfunc.hxx>
#include <o3tl/runtimetooustring.hxx>
#include <uno/data.h>

#include "bridge.hxx"
#include "types.hxx"
#include "unointerfaceproxy.hxx"
#include "vtables.hxx"

#include "share.hxx"

#include <stdio.h>
#include <string.h>


using namespace ::com::sun::star::uno;

namespace ppc64
{
#if defined(_CALL_ELF) && _CALL_ELF == 2
    bool is_complex_struct(const typelib_TypeDescription * type)
    {
        const typelib_CompoundTypeDescription * p
            = reinterpret_cast< const typelib_CompoundTypeDescription * >(type);
        for (sal_Int32 i = 0; i < p->nMembers; ++i)
        {
            if (p->ppTypeRefs[i]->eTypeClass == typelib_TypeClass_STRUCT ||
                p->ppTypeRefs[i]->eTypeClass == typelib_TypeClass_EXCEPTION)
            {
                typelib_TypeDescription * t = 0;
                TYPELIB_DANGER_GET(&t, p->ppTypeRefs[i]);
                bool b = is_complex_struct(t);
                TYPELIB_DANGER_RELEASE(t);
                if (b) {
                    return true;
                }
            }
            else if (!bridges::cpp_uno::shared::isSimpleType(p->ppTypeRefs[i]->eTypeClass))
                return true;
        }
        if (p->pBaseTypeDescription != 0)
            return is_complex_struct(&p->pBaseTypeDescription->aBase);
        return false;
    }
#endif

    bool return_in_hidden_param( typelib_TypeDescriptionReference *pTypeRef )
    {
        if (bridges::cpp_uno::shared::isSimpleType(pTypeRef))
            return false;
#if defined(_CALL_ELF) && _CALL_ELF == 2
        else if (pTypeRef->eTypeClass == typelib_TypeClass_STRUCT || pTypeRef->eTypeClass == typelib_TypeClass_EXCEPTION)
        {
            typelib_TypeDescription * pTypeDescr = 0;
            TYPELIB_DANGER_GET( &pTypeDescr, pTypeRef );

            //A Composite Type not larger than 16 bytes is returned in up to two GPRs
            bool bRet = pTypeDescr->nSize > 16 || is_complex_struct(pTypeDescr);

            TYPELIB_DANGER_RELEASE( pTypeDescr );
            return bRet;
        }
#endif
        return true;
    }
}

void MapReturn(long r3, long r4, double dret, typelib_TypeDescriptionReference* pReturnType, void *pRegisterReturn)
{
    switch (pReturnType->eTypeClass)
    {
    case typelib_TypeClass_HYPER:
    case typelib_TypeClass_UNSIGNED_HYPER:
            *reinterpret_cast<sal_uInt64 *>( pRegisterReturn ) = r3;
            break;
    case typelib_TypeClass_LONG:
    case typelib_TypeClass_UNSIGNED_LONG:
    case typelib_TypeClass_ENUM:
            *reinterpret_cast<sal_uInt32 *>( pRegisterReturn ) = r3;
            break;
    case typelib_TypeClass_CHAR:
    case typelib_TypeClass_SHORT:
    case typelib_TypeClass_UNSIGNED_SHORT:
            *reinterpret_cast<sal_uInt16 *>( pRegisterReturn ) = (unsigned short)r3;
            break;
    case typelib_TypeClass_BOOLEAN:
    case typelib_TypeClass_BYTE:
            *reinterpret_cast<sal_uInt8 *>( pRegisterReturn ) = (unsigned char)r3;
            break;
    case typelib_TypeClass_FLOAT:
            *reinterpret_cast<float *>( pRegisterReturn ) = dret;
        break;
    case typelib_TypeClass_DOUBLE:
            *reinterpret_cast<double *>( pRegisterReturn ) = dret;
            break;
#if defined(_CALL_ELF) && _CALL_ELF == 2
    case typelib_TypeClass_STRUCT:
    case typelib_TypeClass_EXCEPTION:
            if (!ppc64::return_in_hidden_param(pReturnType))
            {
                sal_uInt64 *pRegisters = reinterpret_cast<sal_uInt64*>(pRegisterReturn);
                pRegisters[0] = r3;
                if (pReturnType->pType->nSize > 8)
                    pRegisters[1] = r4;
            }
#else
    (void)r4;
#endif
    default:
            break;
    }
}

namespace
{

static void callVirtualMethod(void * pThis, sal_uInt32 nVtableIndex,
    void * pRegisterReturn, typelib_TypeDescription * pReturnTypeDescr,
        sal_uInt64 *pStack, sal_uInt32 nStack,
        sal_uInt64 *pGPR, sal_uInt32 nGPR,
        double *pFPR, sal_uInt32 nFPR)
{
    // Stack, if used, must be 16-bytes aligned
    if ( nStack )
        nStack = ( nStack + 1 ) & ~1;

    // Should not happen, but...
    if ( nFPR > ppc64::MAX_SSE_REGS )
        nFPR = ppc64::MAX_SSE_REGS;
    if ( nGPR > ppc64::MAX_GPR_REGS )
        nGPR = ppc64::MAX_GPR_REGS;

#if OSL_DEBUG_LEVEL > 2
        // Let's figure out what is really going on here
        {
                fprintf( stderr, "= callVirtualMethod() =\nGPR's (%d): ", nGPR );
                for ( int i = 0; i < nGPR; ++i )
                        fprintf( stderr, "0x%lx, ", pGPR[i] );
                fprintf( stderr, "\nFPR's (%d): ", nFPR );
                for ( int i = 0; i < nFPR; ++i )
                        fprintf( stderr, "0x%lx (%f), ", pFPR[i], pFPR[i] );
                fprintf( stderr, "\nStack (%d): ", nStack );
                for ( int i = 0; i < nStack; ++i )
                        fprintf( stderr, "0x%lx, ", pStack[i] );
                fprintf( stderr, "\n" );
        }
#endif

    // Load parameters to stack, if necessary
    sal_uInt64 *stack = (sal_uInt64 *) __builtin_alloca( nStack * 8 );
    memcpy( stack, pStack, nStack * 8 );

    // Get pointer to method
    sal_uInt64 pMethod = *((sal_uInt64 *)pThis);
    pMethod += 8 * nVtableIndex;
    pMethod = *((sal_uInt64 *)pMethod);

#if defined(_CALL_ELF) && _CALL_ELF == 2
    typedef void (* FunctionCall )(...);
#else
    typedef void (* FunctionCall )( sal_uInt64, sal_uInt64, sal_uInt64, sal_uInt64, sal_uInt64, sal_uInt64, sal_uInt64, sal_uInt64 );
#endif
    FunctionCall pFunc = (FunctionCall)pMethod;

    volatile double dret;

    //  fill registers
    __asm__ __volatile__ (
                "lfd  1,  0(%0)\n\t"
                "lfd  2,  8(%0)\n\t"
                "lfd  3, 16(%0)\n\t"
                "lfd  4, 24(%0)\n\t"
                "lfd  5, 32(%0)\n\t"
                "lfd  6, 40(%0)\n\t"
                "lfd  7, 48(%0)\n\t"
                "lfd  8, 56(%0)\n\t"
                "lfd  9, 64(%0)\n\t"
                "lfd 10, 72(%0)\n\t"
                "lfd 11, 80(%0)\n\t"
                "lfd 12, 88(%0)\n\t"
                "lfd 13, 96(%0)\n\t"
                : : "r" (pFPR)
              : "fr1", "fr2", "fr3", "fr4", "fr5", "fr6", "fr7", "fr8", "fr9",
                "fr10", "fr11", "fr12", "fr13"
    );

    // tell gcc that r3 to r11 are not available to it for doing the TOC and exception munge on the func call
    register sal_uInt64 r3 asm("r3");
    register sal_uInt64 r4 asm("r4");

    (*pFunc)(pGPR[0], pGPR[1], pGPR[2], pGPR[3], pGPR[4], pGPR[5], pGPR[6], pGPR[7]);

    // get return value
    __asm__ __volatile__ (
                "mr     %1,     3\n\t"
                "mr     %2,     4\n\t"
                "fmr    %0,     1\n\t"
                : "=f" (dret), "=r" (r3), "=r" (r4) : );

    MapReturn(r3, r4, dret, reinterpret_cast<typelib_TypeDescriptionReference *>(pReturnTypeDescr), pRegisterReturn);
}

// Macros for easier insertion of values to registers or stack
// pSV - pointer to the source
// nr - order of the value [will be increased if stored to register]
// pFPR, pGPR - pointer to the registers
// pDS - pointer to the stack [will be increased if stored here]

// The value in %xmm register is already prepared to be retrieved as a float,
// thus we treat float and double the same
#define INSERT_FLOAT( pSV, nr, pFPR, nGPR, pDS, bOverflow ) \
        if ( nGPR < ppc64::MAX_GPR_REGS ) \
                ++nGPR;                   \
        if ( nr < ppc64::MAX_SSE_REGS )   \
                pFPR[nr++] = *reinterpret_cast<float *>( pSV ); \
        else \
            bOverflow = true; \
        if (bOverflow) \
                *pDS++ = *reinterpret_cast<sal_uInt64 *>( pSV ); // verbatim!

#define INSERT_DOUBLE( pSV, nr, pFPR, nGPR, pDS, bOverflow ) \
        if ( nGPR < ppc64::MAX_GPR_REGS ) \
                ++nGPR;                   \
        if ( nr < ppc64::MAX_SSE_REGS )   \
                pFPR[nr++] = *reinterpret_cast<double *>( pSV ); \
        else \
            bOverflow = true; \
        if (bOverflow) \
                *pDS++ = *reinterpret_cast<sal_uInt64 *>( pSV ); // verbatim!

#define INSERT_INT64( pSV, nr, pGPR, pDS, bOverflow ) \
        if ( nr < ppc64::MAX_GPR_REGS ) \
                pGPR[nr++] = *reinterpret_cast<sal_uInt64 *>( pSV ); \
        else \
        bOverflow = true; \
    if (bOverflow) \
                *pDS++ = *reinterpret_cast<sal_uInt64 *>( pSV );

#define INSERT_INT32( pSV, nr, pGPR, pDS, bOverflow ) \
        if ( nr < ppc64::MAX_GPR_REGS ) \
                pGPR[nr++] = *reinterpret_cast<sal_uInt32 *>( pSV ); \
        else \
                bOverflow = true; \
        if (bOverflow) \
                *pDS++ = *reinterpret_cast<sal_uInt32 *>( pSV );

#define INSERT_INT16( pSV, nr, pGPR, pDS, bOverflow ) \
        if ( nr < ppc64::MAX_GPR_REGS ) \
                pGPR[nr++] = *reinterpret_cast<sal_uInt16 *>( pSV ); \
        else \
                bOverflow = true; \
        if (bOverflow) \
                *pDS++ = *reinterpret_cast<sal_uInt16 *>( pSV );

#define INSERT_INT8( pSV, nr, pGPR, pDS, bOverflow ) \
        if ( nr < ppc64::MAX_GPR_REGS ) \
                pGPR[nr++] = *reinterpret_cast<sal_uInt8 *>( pSV ); \
        else \
                bOverflow = true; \
        if (bOverflow) \
                *pDS++ = *reinterpret_cast<sal_uInt8 *>( pSV );

static void cpp_call(
    bridges::cpp_uno::shared::UnoInterfaceProxy * pThis,
    bridges::cpp_uno::shared::VtableSlot  aVtableSlot,
    typelib_TypeDescriptionReference * pReturnTypeRef,
    sal_Int32 nParams, typelib_MethodParameter * pParams,
    void * pUnoReturn, void * pUnoArgs[], uno_Any ** ppUnoExc )
{
      // max space for: [complex ret ptr], values|ptr ...
      sal_uInt64 * pStack = (sal_uInt64 *)alloca( (nParams+3) * sizeof(sal_Int64) );
      sal_uInt64 * pStackStart = pStack;

    sal_uInt64 pGPR[ppc64::MAX_GPR_REGS];
    sal_uInt32 nGPR = 0;

    double pFPR[ppc64::MAX_SSE_REGS];
    sal_uInt32 nFPR = 0;

    // return
    typelib_TypeDescription * pReturnTypeDescr = 0;
    TYPELIB_DANGER_GET( &pReturnTypeDescr, pReturnTypeRef );
    assert(pReturnTypeDescr);

    void * pCppReturn = 0; // if != 0 && != pUnoReturn, needs reconversion

    bool bOverflow = false;

    if (pReturnTypeDescr)
    {
#if OSL_DEBUG_LEVEL > 2
        fprintf(stderr, "return type is %d\n", pReturnTypeDescr->eTypeClass);
#endif
        bool bSimpleReturn =!ppc64::return_in_hidden_param(pReturnTypeRef);

        if (bSimpleReturn)
        {
            pCppReturn = pUnoReturn; // direct way for simple types
#if OSL_DEBUG_LEVEL > 2
            fprintf(stderr, "simple return\n");
#endif
        }
        else
        {
            // complex return via ptr
            pCppReturn = (bridges::cpp_uno::shared::relatesToInterfaceType( pReturnTypeDescr )
                   ? alloca( pReturnTypeDescr->nSize ) : pUnoReturn);
#if OSL_DEBUG_LEVEL > 2
            fprintf(stderr, "pCppReturn/pUnoReturn is %lx/%lx", pCppReturn, pUnoReturn);
#endif
            INSERT_INT64( &pCppReturn, nGPR, pGPR, pStack, bOverflow );
        }
    }
    // push "this" pointer
        void * pAdjustedThisPtr = reinterpret_cast< void ** >( pThis->getCppI() ) + aVtableSlot.offset;
#if OSL_DEBUG_LEVEL > 2
    fprintf(stderr, "this pointer is %p\n", pAdjustedThisPtr);
#endif
    INSERT_INT64( &pAdjustedThisPtr, nGPR, pGPR, pStack, bOverflow );

        // Args
        void ** pCppArgs = (void **)alloca( 3 * sizeof(void *) * nParams );
    // indices of values this have to be converted (interface conversion cpp<=>uno)
    sal_Int32 * pTempIndices = (sal_Int32 *)(pCppArgs + nParams);
    // type descriptions for reconversions
    typelib_TypeDescription ** ppTempParamTypeDescr = (typelib_TypeDescription **)(pCppArgs + (2 * nParams));

    sal_Int32 nTempIndices   = 0;

#if OSL_DEBUG_LEVEL > 2
    fprintf(stderr, "n params is %d\n", nParams);
#endif

    for ( sal_Int32 nPos = 0; nPos < nParams; ++nPos )
    {
        const typelib_MethodParameter & rParam = pParams[nPos];
        typelib_TypeDescription * pParamTypeDescr = 0;
        TYPELIB_DANGER_GET( &pParamTypeDescr, rParam.pTypeRef );

#if OSL_DEBUG_LEVEL > 2
        fprintf(stderr, "param %d is %d %d %d\n", nPos, rParam.bOut, bridges::cpp_uno::shared::isSimpleType( pParamTypeDescr ),
            pParamTypeDescr->eTypeClass);
#endif

        if (!rParam.bOut && bridges::cpp_uno::shared::isSimpleType( pParamTypeDescr ))
        {
            uno_copyAndConvertData( pCppArgs[nPos] = pStack, pUnoArgs[nPos], pParamTypeDescr,
                                    pThis->getBridge()->getUno2Cpp() );
                switch (pParamTypeDescr->eTypeClass)
                        {
                        case typelib_TypeClass_HYPER:
                        case typelib_TypeClass_UNSIGNED_HYPER:
#if OSL_DEBUG_LEVEL > 2
                                fprintf(stderr, "hyper is %lx\n", pCppArgs[nPos]);
#endif
                                INSERT_INT64( pCppArgs[nPos], nGPR, pGPR, pStack, bOverflow );
                                break;
                        case typelib_TypeClass_LONG:
                        case typelib_TypeClass_UNSIGNED_LONG:
                        case typelib_TypeClass_ENUM:
#if OSL_DEBUG_LEVEL > 2
                                fprintf(stderr, "long is %x\n", pCppArgs[nPos]);
#endif
                                INSERT_INT32( pCppArgs[nPos], nGPR, pGPR, pStack, bOverflow );
                                break;
                        case typelib_TypeClass_SHORT:
                        case typelib_TypeClass_CHAR:
                        case typelib_TypeClass_UNSIGNED_SHORT:
                                INSERT_INT16( pCppArgs[nPos], nGPR, pGPR, pStack, bOverflow );
                                break;
                        case typelib_TypeClass_BOOLEAN:
                        case typelib_TypeClass_BYTE:
                                INSERT_INT8( pCppArgs[nPos], nGPR, pGPR, pStack, bOverflow );
                                break;
                        case typelib_TypeClass_FLOAT:
                                INSERT_FLOAT( pCppArgs[nPos], nFPR, pFPR, nGPR, pStack, bOverflow );
                                break;
                        case typelib_TypeClass_DOUBLE:
                                INSERT_DOUBLE( pCppArgs[nPos], nFPR, pFPR, nGPR, pStack, bOverflow );
                                break;
                        default:
                                break;
                        }

                        // no longer needed
                        TYPELIB_DANGER_RELEASE( pParamTypeDescr );

        }
        else // ptr to complex value | ref
        {
#if OSL_DEBUG_LEVEL > 2
            fprintf(stderr, "complex type again %d\n", rParam.bIn);
#endif
                        if (! rParam.bIn) // is pure out
                        {
#if OSL_DEBUG_LEVEL > 2
                fprintf(stderr, "complex size is %d\n", pParamTypeDescr->nSize );
#endif
                                // cpp out is constructed mem, uno out is not!
                                uno_constructData(
                                        pCppArgs[nPos] = alloca( pParamTypeDescr->nSize ),
                                        pParamTypeDescr );
                                pTempIndices[nTempIndices] = nPos; // default constructed for cpp call
                                // will be released at reconversion
                                ppTempParamTypeDescr[nTempIndices++] = pParamTypeDescr;
                        }
                        // is in/inout
                        else if (bridges::cpp_uno::shared::relatesToInterfaceType( pParamTypeDescr ))
                        {
#if OSL_DEBUG_LEVEL > 2
                fprintf(stderr, "this one\n");
#endif
                                uno_copyAndConvertData(
                                        pCppArgs[nPos] = alloca( pParamTypeDescr->nSize ),
                                        pUnoArgs[nPos], pParamTypeDescr, pThis->getBridge()->getUno2Cpp() );

                                pTempIndices[nTempIndices] = nPos; // has to be reconverted
                                // will be released at reconversion
                                ppTempParamTypeDescr[nTempIndices++] = pParamTypeDescr;
                        }
                        else // direct way
                        {
#if OSL_DEBUG_LEVEL > 2
                fprintf(stderr, "that one, passing %lx through\n", pUnoArgs[nPos]);
#endif
                                pCppArgs[nPos] = pUnoArgs[nPos];
                                // no longer needed
                                TYPELIB_DANGER_RELEASE( pParamTypeDescr );
                        }
                        INSERT_INT64( &(pCppArgs[nPos]), nGPR, pGPR, pStack, bOverflow );
        }
    }

    try
    {
        try {
               callVirtualMethod(
                        pAdjustedThisPtr, aVtableSlot.index,
                        pCppReturn, pReturnTypeDescr,
                        pStackStart, ( pStack - pStackStart ),
                        pGPR, nGPR,
                        pFPR, nFPR );
        } catch (css::uno::Exception &) {
            throw;
        } catch (std::exception & e) {
            throw css::uno::RuntimeException(
                "C++ code threw " + o3tl::runtimeToOUString(typeid(e).name()) + ": "
                + o3tl::runtimeToOUString(e.what()));
        } catch (...) {
            throw css::uno::RuntimeException("C++ code threw unknown exception");
        }
        // NO exception occurred...
        *ppUnoExc = 0;

        // reconvert temporary params
        for ( ; nTempIndices--; )
        {
            sal_Int32 nIndex = pTempIndices[nTempIndices];
            typelib_TypeDescription * pParamTypeDescr = ppTempParamTypeDescr[nTempIndices];

            if (pParams[nIndex].bIn)
            {
                if (pParams[nIndex].bOut) // inout
                {
                    uno_destructData( pUnoArgs[nIndex], pParamTypeDescr, 0 ); // destroy uno value
                    uno_copyAndConvertData( pUnoArgs[nIndex], pCppArgs[nIndex], pParamTypeDescr,
                                            pThis->getBridge()->getCpp2Uno() );
                }
            }
            else // pure out
            {
                uno_copyAndConvertData( pUnoArgs[nIndex], pCppArgs[nIndex], pParamTypeDescr,
                                        pThis->getBridge()->getCpp2Uno() );
            }
            // destroy temp cpp param => cpp: every param was constructed
            uno_destructData( pCppArgs[nIndex], pParamTypeDescr, cpp_release );

            TYPELIB_DANGER_RELEASE( pParamTypeDescr );
        }
        // return value
        if (pCppReturn && pUnoReturn != pCppReturn)
        {
            uno_copyAndConvertData( pUnoReturn, pCppReturn, pReturnTypeDescr,
                                    pThis->getBridge()->getCpp2Uno() );
            uno_destructData( pCppReturn, pReturnTypeDescr, cpp_release );
        }
    }
    catch (...)
    {
        // fill uno exception
        CPPU_CURRENT_NAMESPACE::fillUnoException(*ppUnoExc, pThis->getBridge()->getCpp2Uno());

        // temporary params
        for ( ; nTempIndices--; )
        {
            sal_Int32 nIndex = pTempIndices[nTempIndices];
            // destroy temp cpp param => cpp: every param was constructed
            uno_destructData( pCppArgs[nIndex], ppTempParamTypeDescr[nTempIndices], cpp_release );
            TYPELIB_DANGER_RELEASE( ppTempParamTypeDescr[nTempIndices] );
        }
        // return type
        if (pReturnTypeDescr)
            TYPELIB_DANGER_RELEASE( pReturnTypeDescr );
    }
}

}

namespace bridges { namespace cpp_uno { namespace shared {

void unoInterfaceProxyDispatch(
    uno_Interface * pUnoI, const typelib_TypeDescription * pMemberDescr,
    void * pReturn, void * pArgs[], uno_Any ** ppException )
{
    // is my surrogate
    bridges::cpp_uno::shared::UnoInterfaceProxy * pThis
        = static_cast< bridges::cpp_uno::shared::UnoInterfaceProxy *> (pUnoI);

    switch (pMemberDescr->eTypeClass)
    {
    case typelib_TypeClass_INTERFACE_ATTRIBUTE:
    {

        VtableSlot aVtableSlot(
            getVtableSlot(
                reinterpret_cast<
                    typelib_InterfaceAttributeTypeDescription const * >(
                        pMemberDescr)));

        if (pReturn)
        {
            // dependent dispatch
            cpp_call(
                pThis, aVtableSlot,
                ((typelib_InterfaceAttributeTypeDescription *)pMemberDescr)->pAttributeTypeRef,
                0, 0, // no params
                pReturn, pArgs, ppException );
        }
        else
        {
            // is SET
            typelib_MethodParameter aParam;
            aParam.pTypeRef =
                ((typelib_InterfaceAttributeTypeDescription *)pMemberDescr)->pAttributeTypeRef;
            aParam.bIn      = sal_True;
            aParam.bOut     = sal_False;

            typelib_TypeDescriptionReference * pReturnTypeRef = 0;
            OUString aVoidName("void");
            typelib_typedescriptionreference_new(
                &pReturnTypeRef, typelib_TypeClass_VOID, aVoidName.pData );

            // dependent dispatch
                        aVtableSlot.index += 1; //get then set method
            cpp_call(
                pThis, aVtableSlot,
                pReturnTypeRef,
                1, &aParam,
                pReturn, pArgs, ppException );

            typelib_typedescriptionreference_release( pReturnTypeRef );
        }

        break;
    }
    case typelib_TypeClass_INTERFACE_METHOD:
    {

        VtableSlot aVtableSlot(
            getVtableSlot(
                reinterpret_cast<
                    typelib_InterfaceMethodTypeDescription const * >(
                        pMemberDescr)));
        switch (aVtableSlot.index)
        {
            // standard calls
        case 1: // acquire uno interface
            (*pUnoI->acquire)( pUnoI );
            *ppException = 0;
            break;
        case 2: // release uno interface
            (*pUnoI->release)( pUnoI );
            *ppException = 0;
            break;
        case 0: // queryInterface() opt
        {
            typelib_TypeDescription * pTD = 0;
            TYPELIB_DANGER_GET( &pTD, reinterpret_cast< Type * >( pArgs[0] )->getTypeLibType() );
            if (pTD)
            {
                uno_Interface * pInterface = 0;
                (*pThis->pBridge->getUnoEnv()->getRegisteredInterface)(
                    pThis->pBridge->getUnoEnv(),
                    (void **)&pInterface, pThis->oid.pData, (typelib_InterfaceTypeDescription *)pTD );

                if (pInterface)
                {
                    ::uno_any_construct(
                        reinterpret_cast< uno_Any * >( pReturn ),
                        &pInterface, pTD, 0 );
                    (*pInterface->release)( pInterface );
                    TYPELIB_DANGER_RELEASE( pTD );
                    *ppException = 0;
                    break;
                }
                TYPELIB_DANGER_RELEASE( pTD );
            }
        } // else perform queryInterface()
        default:
            // dependent dispatch
            cpp_call(
                pThis, aVtableSlot,
                ((typelib_InterfaceMethodTypeDescription *)pMemberDescr)->pReturnTypeRef,
                ((typelib_InterfaceMethodTypeDescription *)pMemberDescr)->nParams,
                ((typelib_InterfaceMethodTypeDescription *)pMemberDescr)->pParams,
                pReturn, pArgs, ppException );
        }
        break;
    }
    default:
    {
        ::com::sun::star::uno::RuntimeException aExc(
            "illegal member type description!",
            ::com::sun::star::uno::Reference< ::com::sun::star::uno::XInterface >() );

        Type const & rExcType = cppu::UnoType<decltype(aExc)>::get();
        // binary identical null reference
        ::uno_type_any_construct( *ppException, &aExc, rExcType.getTypeLibType(), 0 );
    }
    }
}

} } }

/* vim:set shiftwidth=4 softtabstop=4 expandtab: */