LCOV - code coverage report
Current view: top level - libreoffice/oox/source/core - binarycodec.cxx (source / functions) Hit Total Coverage
Test: libreoffice_filtered.info Lines: 0 187 0.0 %
Date: 2012-12-17 Functions: 0 25 0.0 %
Legend: Lines: hit not hit

          Line data    Source code
       1             : /* -*- Mode: C++; tab-width: 4; indent-tabs-mode: nil; c-basic-offset: 4 -*- */
       2             : /*
       3             :  * This file is part of the LibreOffice project.
       4             :  *
       5             :  * This Source Code Form is subject to the terms of the Mozilla Public
       6             :  * License, v. 2.0. If a copy of the MPL was not distributed with this
       7             :  * file, You can obtain one at http://mozilla.org/MPL/2.0/.
       8             :  *
       9             :  * This file incorporates work covered by the following license notice:
      10             :  *
      11             :  *   Licensed to the Apache Software Foundation (ASF) under one or more
      12             :  *   contributor license agreements. See the NOTICE file distributed
      13             :  *   with this work for additional information regarding copyright
      14             :  *   ownership. The ASF licenses this file to you under the Apache
      15             :  *   License, Version 2.0 (the "License"); you may not use this file
      16             :  *   except in compliance with the License. You may obtain a copy of
      17             :  *   the License at http://www.apache.org/licenses/LICENSE-2.0 .
      18             :  */
      19             : 
      20             : #include "oox/core/binarycodec.hxx"
      21             : 
      22             : #include <algorithm>
      23             : #include <string.h>
      24             : #include "oox/helper/attributelist.hxx"
      25             : 
      26             : #include <comphelper/sequenceashashmap.hxx>
      27             : #include <comphelper/docpasswordhelper.hxx>
      28             : 
      29             : using namespace ::com::sun::star;
      30             : 
      31             : namespace oox {
      32             : namespace core {
      33             : 
      34             : // ============================================================================
      35             : 
      36             : namespace {
      37             : 
      38             : /** Rotates rnValue left by nBits bits. */
      39             : template< typename Type >
      40           0 : inline void lclRotateLeft( Type& rnValue, size_t nBits )
      41             : {
      42             :     OSL_ENSURE( nBits < sizeof( Type ) * 8, "lclRotateLeft - rotation count overflow" );
      43           0 :     rnValue = static_cast< Type >( (rnValue << nBits) | (rnValue >> (sizeof( Type ) * 8 - nBits)) );
      44           0 : }
      45             : 
      46             : /** Rotates the lower nWidth bits of rnValue left by nBits bits. */
      47             : template< typename Type >
      48           0 : inline void lclRotateLeft( Type& rnValue, size_t nBits, size_t nWidth )
      49             : {
      50             :     OSL_ENSURE( (nBits < nWidth) && (nWidth < sizeof( Type ) * 8), "lclRotateLeft - rotation count overflow" );
      51           0 :     Type nMask = static_cast< Type >( (1UL << nWidth) - 1 );
      52           0 :     rnValue = static_cast< Type >(
      53             :         ((rnValue << nBits) | ((rnValue & nMask) >> (nWidth - nBits))) & nMask );
      54           0 : }
      55             : 
      56           0 : sal_Int32 lclGetLen( const sal_uInt8* pnPassData, sal_Int32 nBufferSize )
      57             : {
      58           0 :     sal_Int32 nLen = 0;
      59           0 :     while( (nLen < nBufferSize) && pnPassData[ nLen ] ) ++nLen;
      60           0 :     return nLen;
      61             : }
      62             : 
      63           0 : sal_uInt16 lclGetKey( const sal_uInt8* pnPassData, sal_Int32 nBufferSize )
      64             : {
      65           0 :     sal_Int32 nLen = lclGetLen( pnPassData, nBufferSize );
      66           0 :     if( nLen <= 0 ) return 0;
      67             : 
      68           0 :     sal_uInt16 nKey = 0;
      69           0 :     sal_uInt16 nKeyBase = 0x8000;
      70           0 :     sal_uInt16 nKeyEnd = 0xFFFF;
      71           0 :     const sal_uInt8* pnChar = pnPassData + nLen - 1;
      72           0 :     for( sal_Int32 nIndex = 0; nIndex < nLen; ++nIndex, --pnChar )
      73             :     {
      74           0 :         sal_uInt8 cChar = *pnChar & 0x7F;
      75           0 :         for( size_t nBit = 0; nBit < 8; ++nBit )
      76             :         {
      77           0 :             lclRotateLeft( nKeyBase, 1 );
      78           0 :             if( nKeyBase & 1 ) nKeyBase ^= 0x1020;
      79           0 :             if( cChar & 1 ) nKey ^= nKeyBase;
      80           0 :             cChar >>= 1;
      81           0 :             lclRotateLeft( nKeyEnd, 1 );
      82           0 :             if( nKeyEnd & 1 ) nKeyEnd ^= 0x1020;
      83             :         }
      84             :     }
      85           0 :     return nKey ^ nKeyEnd;
      86             : }
      87             : 
      88           0 : sal_uInt16 lclGetHash( const sal_uInt8* pnPassData, sal_Int32 nBufferSize )
      89             : {
      90           0 :     sal_Int32 nLen = lclGetLen( pnPassData, nBufferSize );
      91             : 
      92           0 :     sal_uInt16 nHash = static_cast< sal_uInt16 >( nLen );
      93           0 :     if( nLen > 0 )
      94           0 :         nHash ^= 0xCE4B;
      95             : 
      96           0 :     const sal_uInt8* pnChar = pnPassData;
      97           0 :     for( sal_Int32 nIndex = 0; nIndex < nLen; ++nIndex, ++pnChar )
      98             :     {
      99           0 :         sal_uInt16 cChar = *pnChar;
     100           0 :         size_t nRot = static_cast< size_t >( (nIndex + 1) % 15 );
     101           0 :         lclRotateLeft( cChar, nRot, 15 );
     102           0 :         nHash ^= cChar;
     103             :     }
     104           0 :     return nHash;
     105             : }
     106             : 
     107             : } // namespace
     108             : 
     109             : // ============================================================================
     110             : 
     111           0 : /*static*/ sal_uInt16 CodecHelper::getPasswordHash( const AttributeList& rAttribs, sal_Int32 nElement )
     112             : {
     113           0 :     sal_Int32 nPasswordHash = rAttribs.getIntegerHex( nElement, 0 );
     114             :     OSL_ENSURE( (0 <= nPasswordHash) && (nPasswordHash <= SAL_MAX_UINT16), "CodecHelper::getPasswordHash - invalid password hash" );
     115           0 :     return static_cast< sal_uInt16 >( ((0 <= nPasswordHash) && (nPasswordHash <= SAL_MAX_UINT16)) ? nPasswordHash : 0 );
     116             : }
     117             : 
     118             : // ============================================================================
     119             : 
     120           0 : BinaryCodec_XOR::BinaryCodec_XOR( CodecType eCodecType ) :
     121             :     meCodecType( eCodecType ),
     122             :     mnOffset( 0 ),
     123             :     mnBaseKey( 0 ),
     124           0 :     mnHash( 0 )
     125             : {
     126           0 :     (void)memset( mpnKey, 0, sizeof( mpnKey ) );
     127           0 : }
     128             : 
     129           0 : BinaryCodec_XOR::~BinaryCodec_XOR()
     130             : {
     131           0 :     (void)memset( mpnKey, 0, sizeof( mpnKey ) );
     132           0 :     mnBaseKey = mnHash = 0;
     133           0 : }
     134             : 
     135           0 : void BinaryCodec_XOR::initKey( const sal_uInt8 pnPassData[ 16 ] )
     136             : {
     137             :     // calculate base key and hash from passed password
     138           0 :     mnBaseKey = lclGetKey( pnPassData, 16 );
     139           0 :     mnHash = lclGetHash( pnPassData, 16 );
     140             : 
     141             :      static const sal_uInt8 spnFillChars[] =
     142             :     {
     143             :         0xBB, 0xFF, 0xFF, 0xBA,
     144             :         0xFF, 0xFF, 0xB9, 0x80,
     145             :         0x00, 0xBE, 0x0F, 0x00,
     146             :         0xBF, 0x0F, 0x00
     147             :     };
     148             : 
     149           0 :     (void)memcpy( mpnKey, pnPassData, 16 );
     150             :     sal_Int32 nIndex;
     151           0 :     sal_Int32 nLen = lclGetLen( pnPassData, 16 );
     152           0 :     const sal_uInt8* pnFillChar = spnFillChars;
     153           0 :     for( nIndex = nLen; nIndex < static_cast< sal_Int32 >( sizeof( mpnKey ) ); ++nIndex, ++pnFillChar )
     154           0 :         mpnKey[ nIndex ] = *pnFillChar;
     155             : 
     156             :     // rotation of key values is application dependent
     157           0 :     size_t nRotateSize = 0;
     158           0 :     switch( meCodecType )
     159             :     {
     160           0 :         case CODEC_WORD:    nRotateSize = 7;    break;
     161           0 :         case CODEC_EXCEL:   nRotateSize = 2;    break;
     162             :         // compiler will warn, if new codec type is introduced and not handled here
     163             :     }
     164             : 
     165             :     // use little-endian base key to create key array
     166             :     sal_uInt8 pnBaseKeyLE[ 2 ];
     167           0 :     pnBaseKeyLE[ 0 ] = static_cast< sal_uInt8 >( mnBaseKey );
     168           0 :     pnBaseKeyLE[ 1 ] = static_cast< sal_uInt8 >( mnBaseKey >> 8 );
     169           0 :     sal_uInt8* pnKeyChar = mpnKey;
     170           0 :     for( nIndex = 0; nIndex < static_cast< sal_Int32 >( sizeof( mpnKey ) ); ++nIndex, ++pnKeyChar )
     171             :     {
     172           0 :         *pnKeyChar ^= pnBaseKeyLE[ nIndex & 1 ];
     173           0 :         lclRotateLeft( *pnKeyChar, nRotateSize );
     174             :     }
     175           0 : }
     176             : 
     177           0 : bool BinaryCodec_XOR::initCodec( const uno::Sequence< beans::NamedValue >& aData )
     178             : {
     179           0 :     bool bResult = sal_False;
     180             : 
     181           0 :     ::comphelper::SequenceAsHashMap aHashData( aData );
     182           0 :     uno::Sequence< sal_Int8 > aKey = aHashData.getUnpackedValueOrDefault("XOR95EncryptionKey", uno::Sequence< sal_Int8 >() );
     183             : 
     184           0 :     if ( aKey.getLength() == 16 )
     185             :     {
     186           0 :         (void)memcpy( mpnKey, aKey.getConstArray(), 16 );
     187           0 :         bResult = sal_True;
     188             : 
     189           0 :         mnBaseKey = (sal_uInt16)aHashData.getUnpackedValueOrDefault("XOR95BaseKey", (sal_Int16)0 );
     190           0 :         mnHash = (sal_uInt16)aHashData.getUnpackedValueOrDefault("XOR95PasswordHash", (sal_Int16)0 );
     191             :     }
     192             :     else
     193             :         OSL_FAIL( "Unexpected key size!\n" );
     194             : 
     195           0 :     return bResult;
     196             : }
     197             : 
     198           0 : uno::Sequence< beans::NamedValue > BinaryCodec_XOR::getEncryptionData()
     199             : {
     200           0 :     ::comphelper::SequenceAsHashMap aHashData;
     201           0 :     aHashData[ OUString("XOR95EncryptionKey") ] <<= uno::Sequence<sal_Int8>( (sal_Int8*)mpnKey, 16 );
     202           0 :     aHashData[ OUString("XOR95BaseKey") ] <<= (sal_Int16)mnBaseKey;
     203           0 :     aHashData[ OUString("XOR95PasswordHash") ] <<= (sal_Int16)mnHash;
     204             : 
     205           0 :     return aHashData.getAsConstNamedValueList();
     206             : }
     207             : 
     208           0 : bool BinaryCodec_XOR::verifyKey( sal_uInt16 nKey, sal_uInt16 nHash ) const
     209             : {
     210           0 :     return (nKey == mnBaseKey) && (nHash == mnHash);
     211             : }
     212             : 
     213           0 : void BinaryCodec_XOR::startBlock()
     214             : {
     215           0 :     mnOffset = 0;
     216           0 : }
     217             : 
     218           0 : bool BinaryCodec_XOR::decode( sal_uInt8* pnDestData, const sal_uInt8* pnSrcData, sal_Int32 nBytes )
     219             : {
     220           0 :     const sal_uInt8* pnCurrKey = mpnKey + mnOffset;
     221           0 :     const sal_uInt8* pnKeyLast = mpnKey + 0x0F;
     222             : 
     223             :     // switch/case outside of the for loop (performance)
     224           0 :     const sal_uInt8* pnSrcDataEnd = pnSrcData + nBytes;
     225           0 :     switch( meCodecType )
     226             :     {
     227             :         case CODEC_WORD:
     228             :         {
     229           0 :             for( ; pnSrcData < pnSrcDataEnd; ++pnSrcData, ++pnDestData )
     230             :             {
     231           0 :                 sal_uInt8 nData = *pnSrcData ^ *pnCurrKey;
     232           0 :                 if( (*pnSrcData != 0) && (nData != 0) )
     233           0 :                     *pnDestData = nData;
     234           0 :                 if( pnCurrKey < pnKeyLast ) ++pnCurrKey; else pnCurrKey = mpnKey;
     235             :             }
     236             :         }
     237           0 :         break;
     238             :         case CODEC_EXCEL:
     239             :         {
     240           0 :             for( ; pnSrcData < pnSrcDataEnd; ++pnSrcData, ++pnDestData )
     241             :             {
     242           0 :                 *pnDestData = *pnSrcData;
     243           0 :                 lclRotateLeft( *pnDestData, 3 );
     244           0 :                 *pnDestData ^= *pnCurrKey;
     245           0 :                 if( pnCurrKey < pnKeyLast ) ++pnCurrKey; else pnCurrKey = mpnKey;
     246             :             }
     247             :         }
     248           0 :         break;
     249             :         // compiler will warn, if new codec type is introduced and not handled here
     250             :     }
     251             : 
     252             :     // update offset and leave
     253           0 :     return skip( nBytes );
     254             : }
     255             : 
     256           0 : bool BinaryCodec_XOR::skip( sal_Int32 nBytes )
     257             : {
     258           0 :     mnOffset = static_cast< sal_Int32 >( (mnOffset + nBytes) & 0x0F );
     259           0 :     return true;
     260             : }
     261             : 
     262             : // ============================================================================
     263             : 
     264           0 : BinaryCodec_RCF::BinaryCodec_RCF()
     265             : {
     266           0 :     mhCipher = rtl_cipher_create( rtl_Cipher_AlgorithmARCFOUR, rtl_Cipher_ModeStream );
     267             :     OSL_ENSURE( mhCipher != 0, "BinaryCodec_RCF::BinaryCodec_RCF - cannot create cipher" );
     268             : 
     269           0 :     mhDigest = rtl_digest_create( rtl_Digest_AlgorithmMD5 );
     270             :     OSL_ENSURE( mhDigest != 0, "BinaryCodec_RCF::BinaryCodec_RCF - cannot create digest" );
     271             : 
     272           0 :     (void)memset( mpnDigestValue, 0, sizeof( mpnDigestValue ) );
     273           0 :     (void)memset (mpnUnique, 0, sizeof(mpnUnique));
     274           0 : }
     275             : 
     276           0 : BinaryCodec_RCF::~BinaryCodec_RCF()
     277             : {
     278           0 :     (void)memset( mpnDigestValue, 0, sizeof( mpnDigestValue ) );
     279           0 :     (void)memset (mpnUnique, 0, sizeof(mpnUnique));
     280           0 :     rtl_digest_destroy( mhDigest );
     281           0 :     rtl_cipher_destroy( mhCipher );
     282           0 : }
     283             : 
     284           0 : bool BinaryCodec_RCF::initCodec( const uno::Sequence< beans::NamedValue >& aData )
     285             : {
     286           0 :     bool bResult = sal_False;
     287             : 
     288           0 :     ::comphelper::SequenceAsHashMap aHashData( aData );
     289           0 :     uno::Sequence< sal_Int8 > aKey = aHashData.getUnpackedValueOrDefault("STD97EncryptionKey", uno::Sequence< sal_Int8 >() );
     290             : 
     291           0 :     if ( aKey.getLength() == RTL_DIGEST_LENGTH_MD5 )
     292             :     {
     293           0 :         (void)memcpy( mpnDigestValue, aKey.getConstArray(), RTL_DIGEST_LENGTH_MD5 );
     294           0 :         uno::Sequence< sal_Int8 > aUniqueID = aHashData.getUnpackedValueOrDefault("STD97UniqueID", uno::Sequence< sal_Int8 >() );
     295           0 :         if ( aUniqueID.getLength() == 16 )
     296             :         {
     297           0 :             (void)memcpy( mpnUnique, aUniqueID.getConstArray(), 16 );
     298           0 :             bResult = sal_False;
     299             :         }
     300             :         else
     301           0 :             OSL_FAIL( "Unexpected document ID!\n" );
     302             :     }
     303             :     else
     304             :         OSL_FAIL( "Unexpected key size!\n" );
     305             : 
     306           0 :     return bResult;
     307             : }
     308             : 
     309           0 : uno::Sequence< beans::NamedValue > BinaryCodec_RCF::getEncryptionData()
     310             : {
     311           0 :     ::comphelper::SequenceAsHashMap aHashData;
     312           0 :     aHashData[ OUString("STD97EncryptionKey") ] <<= uno::Sequence< sal_Int8 >( (sal_Int8*)mpnDigestValue, RTL_DIGEST_LENGTH_MD5 );
     313           0 :     aHashData[ OUString("STD97UniqueID") ] <<= uno::Sequence< sal_Int8 >( (sal_Int8*)mpnUnique, 16 );
     314             : 
     315           0 :     return aHashData.getAsConstNamedValueList();
     316             : }
     317             : 
     318           0 : void BinaryCodec_RCF::initKey( const sal_uInt16 pnPassData[ 16 ], const sal_uInt8 pnSalt[ 16 ] )
     319             : {
     320           0 :     uno::Sequence< sal_Int8 > aKey = ::comphelper::DocPasswordHelper::GenerateStd97Key( pnPassData, uno::Sequence< sal_Int8 >( (sal_Int8*)pnSalt, 16 ) );
     321             :     // Fill raw digest of above updates into DigestValue.
     322             : 
     323           0 :     if ( aKey.getLength() == sizeof(mpnDigestValue) )
     324           0 :         (void)memcpy ( mpnDigestValue, (const sal_uInt8*)aKey.getConstArray(), sizeof(mpnDigestValue) );
     325             :     else
     326           0 :         memset( mpnDigestValue, 0, sizeof(mpnDigestValue) );
     327             : 
     328           0 :     (void)memcpy( mpnUnique, pnSalt, 16 );
     329           0 : }
     330             : 
     331           0 : bool BinaryCodec_RCF::verifyKey( const sal_uInt8 pnVerifier[ 16 ], const sal_uInt8 pnVerifierHash[ 16 ] )
     332             : {
     333           0 :     if( !startBlock( 0 ) )
     334           0 :         return false;
     335             : 
     336             :     sal_uInt8 pnDigest[ RTL_DIGEST_LENGTH_MD5 ];
     337             :     sal_uInt8 pnBuffer[ 64 ];
     338             : 
     339             :     // decode salt data into buffer
     340           0 :     rtl_cipher_decode( mhCipher, pnVerifier, 16, pnBuffer, sizeof( pnBuffer ) );
     341             : 
     342           0 :     pnBuffer[ 16 ] = 0x80;
     343           0 :     (void)memset( pnBuffer + 17, 0, sizeof( pnBuffer ) - 17 );
     344           0 :     pnBuffer[ 56 ] = 0x80;
     345             : 
     346             :     // fill raw digest of buffer into digest
     347           0 :     rtl_digest_updateMD5( mhDigest, pnBuffer, sizeof( pnBuffer ) );
     348           0 :     rtl_digest_rawMD5( mhDigest, pnDigest, sizeof( pnDigest ) );
     349             : 
     350             :     // decode original salt digest into buffer
     351           0 :     rtl_cipher_decode( mhCipher, pnVerifierHash, 16, pnBuffer, sizeof( pnBuffer ) );
     352             : 
     353             :     // compare buffer with computed digest
     354           0 :     bool bResult = memcmp( pnBuffer, pnDigest, sizeof( pnDigest ) ) == 0;
     355             : 
     356             :     // erase buffer and digest arrays and leave
     357           0 :     (void)memset( pnBuffer, 0, sizeof( pnBuffer ) );
     358           0 :     (void)memset( pnDigest, 0, sizeof( pnDigest ) );
     359           0 :     return bResult;
     360             : }
     361             : 
     362           0 : bool BinaryCodec_RCF::startBlock( sal_Int32 nCounter )
     363             : {
     364             :     // initialize key data array
     365             :     sal_uInt8 pnKeyData[ 64 ];
     366           0 :     (void)memset( pnKeyData, 0, sizeof( pnKeyData ) );
     367             : 
     368             :     // fill 40 bit of digest value into [0..4]
     369           0 :     (void)memcpy( pnKeyData, mpnDigestValue, 5 );
     370             : 
     371             :     // fill little-endian counter into [5..8], static_cast masks out unneeded bits
     372           0 :     pnKeyData[ 5 ] = static_cast< sal_uInt8 >( nCounter );
     373           0 :     pnKeyData[ 6 ] = static_cast< sal_uInt8 >( nCounter >> 8 );
     374           0 :     pnKeyData[ 7 ] = static_cast< sal_uInt8 >( nCounter >> 16 );
     375           0 :     pnKeyData[ 8 ] = static_cast< sal_uInt8 >( nCounter >> 24 );
     376             : 
     377           0 :     pnKeyData[ 9 ] = 0x80;
     378           0 :     pnKeyData[ 56 ] = 0x48;
     379             : 
     380             :     // fill raw digest of key data into key data
     381           0 :     (void)rtl_digest_updateMD5( mhDigest, pnKeyData, sizeof( pnKeyData ) );
     382           0 :     (void)rtl_digest_rawMD5( mhDigest, pnKeyData, RTL_DIGEST_LENGTH_MD5 );
     383             : 
     384             :     // initialize cipher with key data (for decoding)
     385             :     rtlCipherError eResult =
     386           0 :         rtl_cipher_init( mhCipher, rtl_Cipher_DirectionDecode, pnKeyData, RTL_DIGEST_LENGTH_MD5, 0, 0 );
     387             : 
     388             :     // rrase key data array and leave
     389           0 :     (void)memset( pnKeyData, 0, sizeof( pnKeyData ) );
     390           0 :     return eResult == rtl_Cipher_E_None;
     391             : }
     392             : 
     393           0 : bool BinaryCodec_RCF::decode( sal_uInt8* pnDestData, const sal_uInt8* pnSrcData, sal_Int32 nBytes )
     394             : {
     395             :     rtlCipherError eResult = rtl_cipher_decode( mhCipher,
     396             :         pnSrcData, static_cast< sal_Size >( nBytes ),
     397           0 :         pnDestData, static_cast< sal_Size >( nBytes ) );
     398           0 :     return eResult == rtl_Cipher_E_None;
     399             : }
     400             : 
     401           0 : bool BinaryCodec_RCF::skip( sal_Int32 nBytes )
     402             : {
     403             :     // decode dummy data in memory to update internal state of RC4 cipher
     404             :     sal_uInt8 pnDummy[ 1024 ];
     405           0 :     sal_Int32 nBytesLeft = nBytes;
     406           0 :     bool bResult = true;
     407           0 :     while( bResult && (nBytesLeft > 0) )
     408             :     {
     409           0 :         sal_Int32 nBlockLen = ::std::min( nBytesLeft, static_cast< sal_Int32 >( sizeof( pnDummy ) ) );
     410           0 :         bResult = decode( pnDummy, pnDummy, nBlockLen );
     411           0 :         nBytesLeft -= nBlockLen;
     412             :     }
     413           0 :     return bResult;
     414             : }
     415             : 
     416             : // ============================================================================
     417             : 
     418             : } // namespace core
     419             : } // namespace oox
     420             : 
     421             : /* vim:set shiftwidth=4 softtabstop=4 expandtab: */

Generated by: LCOV version 1.10